
Statistically-Hiding Commitment from Any One-Way Function

Iftach Haitner∗ Omer Reingold†

Abstract

We give a construction of statistically-hiding commitment schemes (ones where the hiding property
holds information theoretically), based on the minimal cryptographic assumption that one-way functions
exist. Our construction employs two-phase commitment schemes, recently constructed by Nguyen, Ong
and Vadhan (FOCS ‘06), and universal one-way hash functions introduced and constructed by Naor and
Yung (STOC ‘89) and Rompel (STOC ‘90).

∗Dept. of Computer Science and Applied Math., Weizmann Institute of Science, Rehovot 76100, Israel. E-mail:
iftach.haitner@weizmann.ac.il.

†Department of Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. E-
mail:omer.reingold@weizmann.ac.il. Research supported by grant no. 1300/05 from the Israel Science Foundation.

1 Introduction

A commitment scheme defines a two-stage interactive protocol between a sender S and a receiver R; infor-
mally, after the commit stage, S is bound to (at most) one value, which is not yet revealed to R, and in the
reveal stage R finally learns this value. The two security properties hinted at in this informal description
are known as binding (namely, that S is bound to at most one value after the commit stage) and hiding
(namely, that R does not learn the value to which S commits before the reveal stage). In a statistically-hiding
computationally-binding commitment scheme (for short, statistical commitment) the hiding property holds
even against all-powerful receivers (i.e., hiding holds information-theoretically), while the binding property
is required to hold only for polynomial-bounded senders.

Statistical commitment schemes can be used as a building block in constructions of statistical zero-
knowledge arguments [BCC88, NOVY98] and certain coin-tossing protocols [Blu82, Lin03]. It therefore
implies, via standard reduction, a way to transform protocols that are secure assuming an all powerful
honest-but-curious party, into one that is secure even when this party maliciously deviates from the protocol.
More generally, when used within protocols in which certain commitments are never revealed, statistical
commitments have the following advantage over computationally-hiding commitment schemes: in such a
scenario, it need only be infeasible to violate the binding property during the period of time the protocol is
run, whereas the committed values will remain hidden forever (i.e., regardless of how much time the receiver
invests after completion of the protocol).

Perfectly-hiding1 commitment schemes were first shown to exist based on specific number-theoretic as-
sumptions [BCC88, BKK90] or, more generally, based on any collection of claw-free permutations [GMR88]
with an efficiently-recognizable index set [GK96] (see [GK96] for a weaker variant of statistically-hiding
commitment which suffices for some applications and for which an efficiently-recognizable index set is not
needed). Statistical commitment schemes can also be constructed from collision-resistant hash functions
[DPP93, HM96]. Naor et al. [NOVY98] showed a construction of a perfectly-hiding commitment scheme
based on any one-way permutation. Haitner et. al. [HHK+05] make progress by constructing statistical com-
mitment based on regular one-way functions and also on the so called approximable-size one-way functions.

In their recent breakthrough result, Nguyen et al. [NOV06] show how to construct statistical zero-
knowledge arguments for NP based on any one-way function. The question of whether one-way functions
imply statistical commitments, however, was still open.

We mention that the complementary notion of commitment schemes, where the hiding is computational
and the binding holds even w.r.t. an all powerful sender, was already known to be implied by the existence
of one-way functions [Nao91, HILL99].

1.1 Our result
Our main result is that the existence of one-functions is a sufficient condition for the existence of statistical
commitment. Namely, we prove the following theorem.
Theorem 1.1. Assuming that one-way functions exist, then there exists a statistically-hiding computationally-
binding commitment.

By Impagliazzo and Luby [IL89], the existence of statistical commitment schemes implies the existence
of one-way functions and thus the above result is tight.

1.2 Our technique
Our protocol combines, in a sense, the following two fundamental cryptographic primitives: two-phase
commitment schemes recently presented by Nguyen et al. [NOV06] (extending a similar notion given in
[NV06]) and universal one-way hash functions (UOWHF) presented by Naor and Yung [NY89]. Following is
an informal description of the these primitives (a formal definition appears in Section 2).
Universal one-way hash functions Universal one-way hash functions is a relaxation of the notion of

collision-resistant hash functions. A family of compressing hash functions is universal one-way if no
1Very informally, in a statistically-hiding commitment scheme the receiver learns only a negligible amount of information

about the sender’s committed value, whereas in a perfectly-hiding commitment scheme the receiver learns nothing. Note that
any perfectly-hiding scheme is also statistically hiding.

1

efficient algorithm succeeds in the following game with more than negligible probability. The algorithm
should first announce a value x. Then, on a uniformly selected hash function f (given to the algorithm
after it announces x), it should find x′ != x such that f(x′) = f(x).

Rompel [Rom90] shows that the existence of one-way functions implies the existence of universal one-
way hash functions, this result was recently rewritten by Koo and Katz [KK05], adding missing details
and fixing some errors.

Two-phase commitments In a two-phase commitment scheme, the sender and the receiver interact in
two consecutive phases. In each phase they carry out a commitment protocol (the commit stage and
the reveal stage). The transcript of the first phase is used as input for the second-phase commitment.
A two-phase commitment is hiding, if before each of the reveal stages the receiver has no information
about the value the commitment. A two-phase commitment is

(2
1

)
-binding, if the sender cannot cheat

both in the first phase and in the second phase. Specifically, after the first-phase commit, there is only
one value, which the sender can decommit to in the first-phase reveal, that does not guarantee the
binding of the second commitment (in the standard sense).

Nguyen et al. [NOV06] prove that the existence of one-way functions implies some non-uniform version
of two-phase commitment schemes.

The construction idea We would like to use two-phase commitment schemes to construct a (standard)
statistical commitment. A naive attempt to design the commitment scheme may go as follows: First, the
sender commits to some random string x using the first-phase commit. Then, the receiver flips a random
bit dec, if dec is zero then the first-phase commit is used as the commitment (e.g., the sender sends to the
receiver the exclusive or of its secret with the random string). Otherwise (dec = 1), the two parties execute
the first-phase reveal and if successful (i.e., the receiver does not reject), they use the second-phase commit
(invoked with the transcript of the first-phase as input) as the commitment.

The intuition is that since the two-phase commitment is
(
2
1

)
-binding, the sender cannot cheat in both

phases together and thus the receiver would catch a cheating sender with probability half. The problem is,
however, that the sender can decide in which commitment he likes to cheat after knowing dec. Hence, the
sender can cheat successfully in both cases without breaking the

(2
1

)
-binding of the underlying protocol.

Our key idea is to use universal one-way hash functions in order to force the sender to decide in which
phase it is about to cheat before knowing dec. Our actual implementation is as follows: After the first-phase
commit, the receiver selects a random (universal one-way) hash function f and the sender sends him back
y = f(x). The protocol proceeds as the naive protocol above, where any time the first-phase reveal is
executed in the naive protocol revealing the value x′ (either in the commit-stage for dec = 0 or in the reveal
stage for dec = 1), the receiver also verifies that f(x′) = y.

Assuming that the hash function, f , is “compressing enough”, the string x (committed to in the first-
phase commitment) remains sufficiently hidden even f(x) is sent to R (in the new variant of the protocol).
Thus, in the case that dec = 0, the string x can still be used to statistically hide the sender’s secret (assuming
it is sufficiently shorter than x). To show the statistical hiding in the complementary case when dec = 1,
it is sufficient to note that sending f(x), does not compromise the hiding property of the second-phase
commitment. All in all, the protocol is hiding for both choices of dec and thus it is hiding.

To argue about the binding of the protocol, recall that the
(
2
1

)
-binding of the two-phase commitment

scheme informally states that after the first-phase commit, there exists a single value x̃ that allows the sender
to cheat in the second-phase commitment. Now, if the sender sends y such that f(x̃) = y, then in order
to cheat in the case dec = 0, it will have to open the first-phase commitment to a value x′ != x̃ such that
f(x′) = y = f(x̃). This would imply the breaking of the universal one-way hash functions. On the other
hand, if f(x̃) != y, then in the case dec = 1 the sender is forced to open the first-phase commitment to a value
different than x̃. This guarantees that the sender cannot cheat in the second-phase commitment and thus in
this case our protocol is binding. In conclusion, since y is sent before dec is chosen, we are guaranteed that
our protocol is weakly-binding (since intuitively there always exist a choice of dec that prevent the sender
from cheating). We complete the construction by amplifying the above protocol into a full-fledged statistical
commitment scheme using standard techniques.

2

2 Preliminaries

2.1 Notation

We denote the ith bit of a string x by x[i]. We denotes the exclusive or of the bits x and y by x ⊕ y. For
k ∈ N, we denote by [k] the set {1, . . . , k}. Given a set L, we denote by x ← L the experiment in which x is
uniformly chosen from L. The statistical distance of two distributions P and Q over Ω, denoted SD(P, Q),
is defined as

SD(P, Q) def=
1
2

∑

x∈Ω

∣∣∣∣Pr
P

(x) − Pr
Q

(x)
∣∣∣∣ .

Given two interactive Turing machines A and B, we denote the protocol they define by (A, B) and denote
the following experiment by (oA | oB) ← 〈A(iA), B(iB)〉: The protocol (A, B) is invoked with inputs iA
and iB and the outputs of the parties are assigned to oA and oB respectively.

2.2 Families of pairwise-independent hash functions

Definition 2.1. (efficient family of pairwise-independent hash functions) Let H be a family of functions
mapping strings of length !(n) to strings of length m(n). We say that H is an efficient family of pairwise
independent hash functions (following [CW77]) if the following hold: 2

Samplable H is polynomially samplable (in n).

Efficient There exists a polynomial-time algorithm that given x ∈ {0, 1}!(n) and a description of h ∈ H
outputs h(x).

Pairwise independence For every distinct x1, x2 ∈ {0, 1}!(n) and every y1, y2 ∈ {0, 1}m(n), we have:

Prh ← H[h(x1) = y1
∧

h(x2) = y2] = 2−2m(n).

It is well known ([CW77]) that there exists an efficient family of pairwise-independent hash functions for
every choice of ! and m whose elements description size is O(max {!(n), m(n)}).

In this paper we focus on Boolean families of hash functions (i.e., m(n) = 1). The following standard
lemma (see for example, [Gol01, Lemma 4.3.1]) states that a random pairwise independent hash function
partitions a given set into (almost) equal size subsets.

Lemma 2.2. Let H be a family of Boolean pairwise independent hash functions defined over strings of length
!(n) and let L ⊆ {0, 1}!(n). Then for every δ > 0

Prh ← H
[∣∣ ∣∣h−1(1) ∩ L

∣∣ −
∣∣h−1(0) ∩ L

∣∣ ∣∣ > δ · |L|
]

< 4
δ2·|L| .

2.3 Universal one-way hash functions (UOWHF)

Definition 2.3. (universal one-way hash functions (UOWHF)) Let F be a family of functions mapping
strings of length !(n) to strings of length m(n). We say that F is a family of universal one-way hash functions
(following [NY89]) if the following hold: 3

Samplable F is polynomially samplable (in n).
2The first two properties, regarding the efficiency of the family, implicitly assume an ensemble of families (one family for

every value of n). For simplify of presentation, we only refer to a single family.
3As in Definition 2.1, the first two properties, regarding the efficiency of the family, implicitly assume an ensemble of families

(one family for every value of n).

3

Efficient There exists a polynomial-time algorithm that given x ∈ {0, 1}!(n) and a description of f ∈ F
outputs f(x).

Compression m(n) < !(n).

Hardness For all ppt A and x ∈ {0, 1}!(n) the following is negligible in n:

Pr[(x, state) ← A(1n), f ← F , x′ ← A(x, state, f) : x′ != x
∧

f(x′) = f(x)].

By [Rom90] (full proof is given in [KK05]), it follows that assuming the existence of a one-way function,
there exists a family of universal one-way hash functions for some polynomial !(n) ≥ n. Following [NY89,
Lemma 2.1], we have that the latter construction implies a construction with m(n) ≤ 1

2!(n).

Remark 2.4. The Hardness property of Definition 2.3 is somewhat stronger than the one given in [KK05]
(and somewhat weaker than the original definition in [NY89]). The strengthening is in allowing A to transfer
additional information, i.e., state, between the selection of x and finding the collision. We note that the proof
in [KK05] holds also w.r.t. to our stronger definition (and even w.r.t. the original definition of [NY89]).

2.4 Commitment schemes

In this paper we focus on bit-commitment schemes (i.e., the committed string is a single bit). Bit-commitment
schemes imply, via standard reductions, commitment schemes of any (polynomial) length.

An interactive bit-commitment scheme (S,R), with security parameter n, consists of two probabilistic
polynomial-time interactive protocols: (Sc,Rc) the commit stage, and (Sr,Rr) the reveal stage. We note
that in all the constructions of this paper, the reveal stage will always be non interactive, consisting of a
single message from the sender to the receiver. Throughout, both parties receive the security parameter 1n

as an input.

1. In the commit stage: Sc receives a private input b ∈ {0, 1}. At the end, Sc locally outputs some private
information prvt and Rc outputs some public information pub.

2. In the reveal stage: Sr and Rr receive a common input pub and a bit b and Sr receives a private input
prvt. At the end, Rr accepts or rejects.

We make the following correctness requirement: For all n, all b ∈ {0, 1}, and every pair (prvt, pub) that
may be output by 〈Sc(1n, b),Rc(1n)〉, it is the case that Rr accepts in 〈Sr(1n, prvt, pub, b),Rr(1n, pub, b)〉.

The security of a commitment scheme can be defined in two complementary ways, protecting against
either an all-powerful sender or an all-powerful receiver. In this paper, we are interested in the case of
statistical commitment (i.e., the latter case).

Definition 2.5. (hiding) A bit-commitment scheme (S,R) is ρ-hiding (for ρ a function of n) if the following
holds: Given an ITM R∗, let view〈Sc(b),R∗〉(n) denote the distribution on the view of R∗ when interacting
with Sc(1n, b) (this view simply consists of R∗’s random-coins and the sequence of messages it receives from
Sc), where this distribution is taken over the random coins of Sc and R∗. Then we require that for any (even
all-powerful) R∗ the two ensembles

{
view〈Sc(0),R∗〉(n)

}
and {view〈Sc(1),R∗〉(n)} have statistical difference at

most ρ.

We say that a scheme is statistically hiding if it is ρ-hiding for negligible ρ. A 0-hiding scheme is called
perfectly hiding.

Definition 2.6. (Binding-break) Let (S,R) be a bit commitment protocol and let S∗ = (S∗
c , S∗

r) be an
algorithm that is trying to break the binding of this protocol. For any possible values of the commit stage,
outs = (prvt, pub), we define the function

BndBreakS∗
r ,Rr(outs) def= min

b∈{0,1}
Pr[〈S∗

r (outs, b),Rr(pub, b)〉 = Accept].

4

Definition 2.7. (binding) A bit-commitment scheme (S,R) is ρ-binding (for ρ a function of n), if for all
ppt S∗ and any positive polynomial p, the following holds for large enough n:

Pr
outs ← <S∗

c (1n),Rc(1n)>
[BndBreakS∗

r ,Rr(outs) >
1

p(n)
] < ρ(n).

Note that in the above, assuming that S∗ consists of two separate algorithms is without loss of generality,
since any information that S∗ passes between the two stages can be encoded into its private output prvt. We
say that a scheme is computationally binding if it is ρ-binding for negligible ρ. The following amplifications
are standard (see for example [HHK+05]).

Proposition 2.8. There exists an efficient procedure that given polynomially many bit-commitment schemes
which are all computationally binding and at least one of them is statistically hiding, outputs a computationally-
binding statistically-hiding bit-commitment scheme.

Proposition 2.9. There exists an efficient procedure that given a ρ-binding bit-commitment scheme for
noticeable ρ, outputs a computationally-binding bit-commitment scheme, which is statistically hiding if the
given bit-commitment scheme is statistically hiding.

2.5 Two-phase commitments

The following definitions for two-phase commitment schemes given in this section, are slight generalizations
of the same definitions given in [NOV06] (which in turn are an extension of the definitions given in [NV06]).

Definition 2.10. (two-phase commitments) A two-phase commitment scheme (S, R), with security parame-
ter n and message lengths (k1, k2) = (k1(n), k2(n)), consists of four probabilistic polynomial-time interactive
protocols: (S1

c , R1
c) the first commit stage, (S1

r , R1
r) the first reveal stage, (S2

c , R2
c) the second commit stage,

and (S2
r , R2

r) the second reveal stage. Throughout, both parties receive the security parameter 1n as input.

1. In the first commit stage, S1
c receives a private input σ(1) ∈ {0, 1}k1. At the end, S1

c locally outputs
some private information prvt1 and R1

c outputs some public string pub1.

2. In the first reveal stage, S1
r and R1

r receive as common input pub1 and a string σ(1) ∈ {0, 1}k1 and S1
r

receives as private input prvt1. Let trans be the transcript of the first commit stage and the first reveal
stage and includes R1

r’s decision to accept or reject.

3. In the second commit stage, S2
c and R2

c both receive the common input trans, and S2
c receives a private

input σ(2) ∈ {0, 1}k2. At the end, S2
c locally outputs some private information prvt2 and R2

c outputs
some public string pub2.

4. In the second reveal stage, S2
r and R2

r receive as common input pub2 and a string σ(2) ∈ {0, 1}k2, and
S2

r receives as private input prvt2. At the end, R2
r accepts or rejects.

As for standard commitment schemes, the security of the sender is defined in terms of a hiding property.
Loosely speaking, the hiding property for a two-phase commitment scheme says that both commit phases are
hiding. Note that since the phases are run sequentially, the hiding property for the second commit stage is
required to hold even given the receiver’s view of the first stage.

Definition 2.11. (hiding) A two-phase commitment scheme (S, R), with security parameter n and mes-
sage lengths (k1, k2) = (k1(n), k2(n)), is statistically hiding if the following hold: Given an ITM R∗ and
σ(1) ∈ {0, 1}k1, let view〈S1

c (σ(1)),R∗〉(n) denote the distribution on the view of R∗(1n) when interacting with
S1

c (1n, σ(1)). Similarly, for σ(2) ∈ {0, 1}k2 and Λ ∈ {0, 1}∗ let view〈S2
c (σ(2)),R∗〉(Λ) denote the distribution on

the view of R∗(Λ) when interacting with S2
c (σ(2),Λ). We require that for any (even all-powerful) R∗,

1. The views of R∗ when interacting with the sender in the first phase on any two messages are sta-
tistically indistinguishable. That is, for all σ(1), σ̃(1) ∈ {0, 1}k1, view〈S1

c (σ(1)),R∗〉(n) is statistically
indistinguishable to view〈S1

c (σ(1)),R∗〉(n).

5

2. The views of R∗ when interacting with the sender in the second phase are statistically indistinguish-
able no matter what the sender committed to in the first phase. That is, for all σ(1) ∈ {0, 1}k1 and
σ(2), σ̃(2) ∈ {0, 1}k2, view〈S2

c (σ(2)),R∗〉(Λ) is statistically indistinguishable to view〈S2
c (σ(2)),R∗〉(Λ),

where Λ = transcript〈S1(1n, σ(1)), R∗(1n)〉.

We stress that the second condition of the above hiding definition (Definition 2.11) requires that the view
of receiver in the second phase be indistinguishable for any two messages even given the transcript of the
first phase, Λ = transcript〈S1(1n, σ(1)), R∗(1n)〉.

Loosely speaking, the binding property says that at least one of the two commit phases is (computation-
ally) binding. In other words, for every polynomial-time sender S∗, there is at most one “bad” phase j ∈ {1, 2}
such that given the common output pubj , S∗ can open pubj successfully both as σ(1) and σ̃(1) != σ(1) with
non-negligible probability. Actually, we allow this bad phase to be determined dynamically by S∗. Moreover,
the second phase is statistically binding if the sender breaks the first phase. 4

Definition 2.12. (
(
2
1

)
-binding) A two-phase commitment scheme (S, R), with security parameter n and

message lengths (k1, k2) = (k1(n), k2(n)), is computationally
(
2
1

)
-binding if there exists a set B of first-phase

transcripts and a negligible function ε such that:

1. For every (even unbounded) sender S∗, the first-phase transcripts in B make the second phase statis-
tically binding, i.e. ∀S∗, ∀trans ∈ B, with probability at least 1 − ε(n) over pub2, the output of R2

c in
〈S∗(trans), R2

c(trans)〉, there is at most one value σ(2) ∈ {0, 1}k2 such that 〈S∗(pub2, σ(2)), R2
r(pub2, σ(2))〉 =

Accept.

2. ∀ nonuniform PPT S∗, S∗ succeeds in the following game with probability at most ε(n) for all suffi-
ciently large n:

(a) S∗ and R1
c interact and R1

c outputs pub1. Let trans1 be the transcript of the interaction.
(b) S∗ outputs two full transcripts trans and t̃rans of both phases with the following three properties:

• Transcripts trans and t̃rans both start with prefix trans1.
• The transcript trans contains a successful opening of pub1 to the value σ(1) ∈ {0, 1}k1 using a

first-phase transcript not in B, and R1
r and R2

r both accept in trans.
• The transcript t̃rans contains a successful opening of pub1 to the value σ̃(1) ∈ {0, 1}k1 using a

first-phase transcript not in B, and R1
r and R2

r both accept in t̃rans.

(c) S∗ succeeds if all of the above conditions hold and σ(1) != σ̃(1).

The following theorem appears in [NOV06].

Theorem 2.13. ([NOV06, Theorem 7.10]) If one way functions exist, then on security parameter n, we
can construct in time poly(n) a collection of public-coin two-phase commitment schemes Com1, . . . , Comm

for m = poly(n) such that:

• There exists an index i such that the scheme Comi is hiding. (This property holds, regardless of whether
the one-way function for which the scheme is based on is one-way or not.)

• For every index j, scheme Comj is
(2
1

)
-binding.

2.6 Extending the message length

While Theorem 2.13 implies a set of two-phase commitment schemes with some given message lengths, for
our purposes we need the message length of the first-phase commitment to be sufficiently (though still poly-
nomially) long. The following lemma allows us to expand the message length of the first-phase commitment.

4In this paper, we do not use the fact that the second phase is statistically binding and not merely computationally binding.

6

Lemma 2.14. There exists an efficient procedure that given a two-phase commitment scheme with message
lengths (k1(n), k2(n)) and a positive polynomial p, outputs a two-phase commitment scheme with message
lengths (p(n), 1), which is hiding whenever the given scheme is hiding and it is

(2
1

)
-binding whenever the

given scheme is
(2
1

)
-binding.

Remark 2.15. Lemma 2.14 transforms any two-phase commitment scheme with message lengths (k1(n), k2(n))
into a two-phase commitment scheme with message lengths (p(n), 1) for any positive polynomial p. It is then
possible to use similar ideas in order to construct a two-phase commitment scheme with message lengths
(p(n), q(n)) for any positive polynomial q. For the purpose of this paper, however, the (p(n), 1) reduction
suffices.

Proof. (of Lemma 2.14) Let (S̃, R̃) be a two-phase commitment with message lengths (k1(n), k2(n)). We as-
sume w.l.o.g. that k1(n) = k2(n) = 1, since we can always decide to use only the first bit of the commitments.
We define the two-phase commitment (S,R) with message lengths (p(n), 1) as follows:

First-phase commit:

Common input: 1n.
Sender’s private input: x1 ∈ {0, 1}p(n).

1. For i = 1 . . . , p(n),

(S1
c ,R1

c) run 〈S̃1
c (x1[i]), R̃1

c(1!(n))〉, with S1
c and R1

c acting as S̃1
c and R̃1

c respectively.

Let pub1
i be the public output and let prvt1i be the private output of S̃1

c in the above execution.
2. S1

c locally outputs prvt1 = (prvt11, . . . , prvt1p(n)) and R1
c outputs pub1 = (pub1

1, . . . , pub1
p(n)).

First-phase reveal:

Common input: 1n, pub1 = (pub1
1, . . . , pub1

p(n)) and x1 ∈ {0, 1}p(n).
Sender’s private input: prvt1 = (prvt11, . . . , prvt1p(n)).

1. For i = 1 . . . , p(n),

(S1
c ,R1

c) run 〈S̃1
r (prvt1i , pub1

i , x1[i]), R̃1
r(pub1

i), x1[i]〉, with S1
c and R1

c acting as S̃1
c and R̃1

c

respectively. Let transi be the transcript of the execution.

2. S1
c accepts if S̃1

r accepts in all of the above executions.

Second-phase commit:

Common input: trans = (trans1, . . . , transp(n)).
Sender’s private input: b ∈ {0, 1}.

1. For i = 1 . . . , p(n),

(S2
c ,R2

c) run 〈S̃2
c (b, transi), R̃1

2(transi)〉, with S2
c and R2

c acting as S̃2
c and R̃2

c respectively.

Let pub2
i be the public output and let prvt2i be the private output of S̃2

c in the above execution.
2. S2

c locally outputs prvt2 = (prvt21, . . . , prvt2p(n)) and R2
c outputs pub2 = (pub2

1, . . . , pub2
p(n)).

7

Second-phase reveal:

Common input: pub2 = (pub2
1, . . . , pub2

p(n)) and b ∈ {0, 1}.
Sender’s private input: prvt2 = (prvt21, . . . , prvt2p(n)).

1. For i = 1 . . . , p(n),

(S2
c ,R2

c) run 〈S̃2
r (prvt2i , pub2

i , b), R̃1
r(pub2

i), b〉, with S2
c and R2

c acting as S̃2
c and R̃2

c respec-
tively.

2. S2
c accepts if S̃1

r accepts in all of the above executions.

The correctness of (S,R) is evident, and it is also clear that (S,R) is hiding given that (S̃, R̃) is. Assuming
that (S̃, R̃) is

(2
1

)
-binding, we show that (S,R) is

(2
1

)
-binding as follows: We define B, a set of first-phase

transcripts of (S,R) as B
def=

{
outs2 = (outs21, . . . , outs2p(n)) : ∃i ∈ p(n) s.t. outs2i ∈ B̃

}
, where B̃ is the set of

first-phase transcripts of (S̃, R̃) that make that second-phase commitment statistically binding. It is easy
to see that indeed any transcript in B, makes the second-phase commitment of (S,R) statistically binding
(as in Definition 2.12). Finally, let A be an adversary that breaks the

(
2
1

)
-binding of (S,R) by outputting

two transcripts trans = (trans1 . . . , transp(n)) and t̃rans = (t̃rans1 . . . , t̃ransp(n)). By our definition of B, there
must exists an index i ∈ p(n) such that both transi and t̃ransi are not in B̃, transi and t̃ransi contain different
first-phase openings σ(1) != σ̃(1), and R̃1

r and R̃2
r accept in both transcripts.

Since the latter holds for any breaking of the
(
2
1

)
-binding of (S,R), there must exist i′ ∈ p(n) (which can

be efficiently found) such that A breaks the
(2
1

)
-binding of (S,R) conditioned that the above holds w.r.t.

transi′ and t̃ransi′ . Thus, the existence of A implies an adversary the breaks the
(2
1

)
-binding of (S̃, R̃).

3 The Construction
Given a two-phase commitment scheme, we construct a bit-commitment scheme such that the following holds:
The scheme is statistically hiding whenever the two-phase commitment scheme is hiding and the scheme
is computationally binding whenever the two-phase commitment scheme is

(2
1

)
-binding. Thus, assuming

that one-way functions exist, the existence of a polynomial set of computationally-binding bit-commitment
schemes where at least one of them is statistically hiding follows by [NOV06, Theorem 7.10]. Finally,
we use standard reductions to amplify the latter set of commitment schemes into a full-fledged statistical
commitment scheme.

3.1 Main reduction
In this section we construct a bit-commitment scheme such that the following hold: The scheme is statistically
hiding whenever the two-phase commitment is hiding, and the scheme is weekly binding whenever the two-
phase commitment is

(2
1

)
-binding.

Construction 3.1. (The basic scheme) Let F be a family of universal one-way hash functions mapping
strings of length !(n) to strings of length m(n) ≤ 1

2!(n), let H be a family of Boolean pairwise independent
hash functions defined over strings of length !(n) and finally let (S̃, R̃) be a two-phase commitment scheme
with message lengths (!(n), 1).

8

Commit stage:

Common input: 1n.
Sender’s private input: b ∈ {0, 1}.

// First-phase commit:
1. Sc chooses uniformly at random x1 ∈ {0, 1}!(n).
2. (Sc,Rc) run 〈S̃1

c (x1), R̃1
c(1n)〉, with Sc and Rc acting as S̃1

c and R̃1
c respectively.

Let pub1 be the public output and let prvt1 be the private output of S̃1
c in the above execution.

3. Rc chooses uniformly at random f ∈ F and sends it to S.
4. Sc sends y = f(x1) back to R.
5. Rc flips a random coin dec ∈ {0, 1}.

If dec = 0, // Relying on the first-phase commitment.

(a) Sc chooses uniformly at random h ∈ H and sends h and c = b ⊕ h(x) to Rc.

(b) Rc outputs pub = (dec, pub1, f, y, h, c).

(c) Sc locally outputs prvt = (prvt1, x1).

Otherwise (i.e., dec = 1), // Verifying the first-phase commitment and moving to
second-phase commitment.

Sc sends x1 to Rc and (Sc,Rc) run 〈S̃1
r (prvt1, pub1, x1), R̃1

r(pub1), x1)〉, with Sc and Rc acting
as S̃1

c and R̃1
c respectively. Let trans be the transcript of the execution.

If R̃r
c rejects, then Rc outputs ⊥ (i.e., it will be impossible to decommit this execution).

Otherwise,
(a) (Sc,Rc) run 〈S̃2

c (b, trans), R̃2
c(trans)〉, with Sc and Rc acting as S̃2

c and R̃2
c respectively.

Let pub2 be the public output and let prvt2 be the private input of S̃2
c in the above

execution.
(b) Sc locally outputs prvt = prvt2 and Rc outputs pub = (dec, pub2).

Reveal stage:

In case dec = 0,
Common input: 1n, b ∈ {0, 1} and pub = (0, pub1, f, y, h, c).
Sender’s private input: prvt = (prvt1, x1).

Sr sends x1 to Rr and (Sr ,Rr) run 〈S̃1
r (prvt1, pub1, x1), R̃1

r(pub1, x1)〉, with Sr and Rr acting as
S̃1

r and R̃1
r respectively.

If R̃1
r rejects, or f(x1) != y or c ⊕ h(x1) != b, then Rr outputs Reject.

Otherwise, Rr outputs Accept.

In case dec = 1,
Common input: 1n, b ∈ {0, 1} and pub = (1, pub2).
Sender’s private input: prvt = prvt2.
(Sr ,Rr) run 〈S̃2

r (prvt2, pub2, b), R̃2
r(pub2, b)〉, with Sr and Rr acting as S̃2

r and R̃2
r respectively.

Rr outputs the same output as R̃2
r does in the above execution.

The correctness of the above commitment scheme is evident given that the underlying two-phase commit-
ment is correct. In Section 3.1.1, we prove that above scheme is statistically hiding whenever the underlying

9

two-phase commitment is hiding. In Section 3.1.2, we prove that if F is a family of universal one-way hash
functions and the underlying two-phase commitment is

(
2
1

)
-binding, then the above scheme is weakly binding.

Remark 3.2. We note that by changing slightly the protocol of Construction 3.1, we could get a weakly-
binding statistically-hiding commitment scheme for any polynomial length rather than for a mere bit. Since
the proof of the current version is somewhat simpler, and since the shift from bit-commitment scheme to
commitment scheme of any (polynomial) length is standard, we chose to present the above version.

3.1.1 The scheme is hiding

Lemma 3.3. If (S̃, R̃) is hiding, then (S,R) is statistically hiding.

Proof. Assuming that (S̃, R̃) is hiding, then the hiding in the case that dec = 1 is evident. That is, by
the hiding of (S̃, R̃), no information about x2 (and thus about b) has leaked to the receiver. Note that the
receiver also gets the values of f and f(x1), but this information could be generated from x1 and thus it
reveals no additional information about x2.

In the complementary case (dec = 0) the situation is a bit more involved. Essentially, the only information
that the receiver obtains about b is y = f(x1) and c = b ⊕ h(x1). Since f is condensing and by the pairwise
independence of H, it is easy to see that with overwhelming probability (y, c) contains only negligible
information about b and thus the protocol is hiding. Let us turn to the formal proof. Let (S′,R′) be the
same protocol as (S,R), but where in Line (2) of the commit stage, the first-phase commit of (S̃, R̃), is
always excused with S̃c’s input set to 0!(n) (instead of x1) and dec is always set to zero. Since (S̃, R̃) is
hiding, (S′,R′) is statistically hiding if and only if (S,R) is. Otherwise, one could have designed a statistical
test that distinguishes a commitment to 0!(n) from a commitment to a random x1 (that is known to the test),
which contradicts the hiding of the first phase of (S̃, R̃). Hence, for the following discussion we concentrate
on the hiding property of the protocol (S′′,R′′), where Line (2) is not executed at all (it is obvious that
(S′′,R′′) is statistically hiding if and only if (S′,R′) is).

Let us fix a deterministic ITM R∗ that interacts with S′′
c in the commit stage of (S′′,R′′), note that since

we allow R∗ to be unbounded, assuming that R∗ is deterministic is without loss of generality. For a given
value of n, it follows that since R∗ is deterministic and it sends the hash function f as the first message of
the interaction, f is the same in all interactions. We denote this value of f by f∗. The view of R∗ when
interacting with S′′

c consists of the values of y = f∗(x1), h and c = b ⊕ h(x1). Note that the only difference
between a commitment to one and a commitment to zero is the value of c. Let v be a possible view of R∗ in the
interaction with S′′

c and let h, y and c be the values of these variables in v. It follows that for both b ∈ {0, 1}
Pr[view〈S′′

c (b),R∗〉(n) = v] = 1
|H| · Prx1 ← {0,1}!(n) [f∗(x1) = y] · Prx1 ← {0,1}!(n) [b ⊕ h(x1) = c | f∗(x1) = y].

Therefore,

SD(view〈S′′
c (0),R∗〉(n), view〈S′′

c (1),R∗〉(n))

=
1
2

∑

v

∣∣Pr[view〈S′′
c (0),R∗〉(n) = v] − Pr[view〈S′′

c (1),R∗〉(n) = v]
∣∣

=
1
2
· 1
|H|

∑

y,h,c

Pr
x1 ← {0,1}!(n)

[f∗(x1) = y] ·

∣∣∣∣ Pr
x1 ← {0,1}!(n)

[0 ⊕ h(x1) = c | f∗(x1) = y] − Pr
x1 ← {0,1}!(n)

[1 ⊕ h(x1) = c | f∗(x1) = y]
∣∣∣∣

=
1
2
· 1
|H|

∑

y,h

Pr
x1 ← {0,1}!(n)

[f∗(x1) = y] ·

2 ·
∣∣∣∣ Pr
x1 ← {0,1}!(n)

[h(x1) = 0 | f∗(x1) = y] − Pr
x1 ← {0,1}!(n)

[h(x1) = 1 | f∗(x1) = y]
∣∣∣∣

= Ex
x1 ← {0,1}!(n),h ← H

[∣∣∣∣(f∗)−1(x1) ∩ h−1(0)
∣∣ −

∣∣(f∗)−1(x1) ∩ h−1(1)
∣∣∣∣

|(f∗)−1(x1)|

]
.

10

The proof of Lemma 3.3 is concluded by the following claim and Lemma 2.2.

Claim 3.4. For any f ∈ F it holds that Prx1 ← {0,1}!(n) [
∣∣f−1(f(x1))

∣∣ ≤ 2 1
4 !(n)] ≤ 2− 1

4 !(n).

Proof. For a given value of f ∈ F , we say that y ∈ {0, 1}m(n) is light, if
∣∣f−1(y)

∣∣ < 2 1
4 !(n). Clearly, f has

at most 2m(n) light images and therefore there are at most 2 1
4 !(n) · 2m(n) ≤ 2 3

43!(n) elements in {0, 1}!(n) for
which

∣∣f−1(f(x1))
∣∣ ≤ 2!(n)/4.

3.1.2 The scheme is weakly binding

Lemma 3.5. If F is a family of universal one-way hash functions and (S̃, R̃) is
(2
1

)
-binding, then (S,R) is

17
18 -binding.

Proof. Let S∗ = (S∗
c , S∗

r) be an algorithm trying to break the binding of (S,R) and recall BndBreak from
Definition 2.6. Let i ∈ {0, 1} and let p be a positive polynomial, we define
γS∗,p

i (n) def= Prouts ← <S∗
c (1n),Rc(1n)>[BndBreakS∗

r ,Rr(outs) > 1
p(n) |dec = i]. Namely, γS∗,p

i (n) is the probability
that the output of the commit stage enables S∗ to cheat in the reveal stage with noticeable probability. The
proof of the Lemma 3.5 follows by the next claim.

Claim 3.6. For any ppt S∗ and any positive polynomial p, for large enough n there exists i ∈ {0, 1} such
that γS∗,p

i (n) < 8
9 .

Therefore, for any positive polynomial p and large enough n, Prouts ← <S∗(1n),Rc(1n)>[BndBreakS∗,Rr(outs) >
1

p(n)] = Pr[dec = 0] · γS∗,p
0 (n) + Pr[dec = 1] · γS∗,p

1 (n) ≤ 1 − 1
2 · 1

9 , and the proof of Lemma 3.5 follows.

Proof. (of Claim 3.6) We assume toward a contradiction that the claim does not hold and prove that
either the hardness of the universal one-way hash functions or the

(
2
1

)
-binding of the underlying two-phase

commitment scheme are violated. More formally, let S∗ be algorithm and p be a positive polynomial such
that for infinitely many n’s and for both values of i ∈ {0, 1}, it holds that γS∗,p

i (n) ≥ 9
10 . Assuming that

the
(2
1

)
-binding of the underlying bit-commitment scheme holds, we use S∗ to construct an algorithm MS∗

,
described next, that breaks with noticeable probability the hardness of the universal one-way hash functions.
Recall that in order to break the hash function, MS∗

should first select a value x and then given a random
hash function f , it needs to output another element x′ != x such that f(x) = f(x′).

Before presenting the algorithm, we would like first to make the dependency of S∗
c and Rc on the their

random-coins explicit. That is, we assume that S∗
c and Rc are deterministic efficient algorithms that get

as additional inputs random strings randS∗
c
∈ {0, 1}!S∗

c
(n) and (dec, f, randRc) ∈ {0, 1} × F × {0, 1}!Rc(n)

respectively. We assume w.l.o.g. that both !S∗
c

and !Rc are some known polynomials.

11

MS∗
:

First stage, selecting a value x.
Input: 1n

a Select uniformly at random randS∗
c
∈ {0, 1}!S∗

c
(n), randRc ∈ {0, 1}!Rc(n) and f ∈ F .

b Simulate 〈S∗
c (randS∗

c
),Rc(1, f, randRc)〉.

Let outs = (prvt, pub) be the private output of S∗
c and the public output in the above

simulation and let outs[x1] be the value of x1 in pub (see the commit stage of Construction 3.1
for dec = 1).

c Output x = outs[x1] and state = (randS∗
c
, randRc).

Second stage, finding a collision.
Input: x, state = (randS∗

c
, randRc), f ′ ∈ F

d Simulate 〈S∗
c (randS∗

c
),Rc(0, f ′, randRc)〉.

Let outs′ = (prvt′, pub′) be the private output of S∗
c and the public output in the above

simulation.
e For both i ∈ {0, 1}:

Simulate 〈S∗
r (prvt′, pub′, b),Rr(pub′, i)〉.

Let zi be the value of the variable x1 that Rr gets from S∗
r in the simulation (see the reveal

stage of Construction 3.1 for dec = 0).
f If Rr accepts for both i ∈ {0, 1}, output x′ = zj , where j ∈ {0, 1} is such that zj != x. (Note

that since Rr accepts in both cases, it follows that i = c⊕ h(zi) for both i ∈ {0, 1} and thus
z0 != z1).

Some intuition: By the
(2
1

)
-binding of (S̃, R̃), it follows that after the first-phase commit, there is only a

single value, x̃, such that if the first-phase commitment is “opened” to this value, it might be possible to cheat
in the second-phase commitment. Since S∗ manages to cheat (also) for dec = 1 and therefore S∗ is able to
break the second-phase commitment of (S̃, R̃), it holds w.h.p. that x, defined in the first-stage of MS∗

, is
equal to x̃.

Let us now consider the second-stage of MS∗
. Since S∗

c does not know the value of dec when sending
y in the simulation of Line (d), it should send y such that y = f ′(x̃) where y is the value sent by S∗

r to
Rr after the first-phase commit. The point is that since we are using the same random coins as in the first
stage, this is the same x̃ as before. Whenever S∗ breaks the commitment for dec = 0, it needs to open the
first-phase commitment into two elements z0 != z1 such that f ′(z0) = f ′(z1) = y. Thus, w.h.p. it holds that
f ′(z0) = f ′(z1) = f ′(x̃) and MS∗

violates the hardness of F .
We now return to the formal proof. For any value of the parties random coins frand = (randS∗

c
, dec, f, randRc) ∈

{0, 1}!S∗
c
(n) ×{0, 1}×F ×{0, 1}!Rc(n), let outs(frand) def= (prvt(frand), pub(frand)), where prvt(frand) and

pub(frand) are the private output of S∗
c and the public output in 〈S∗

c (randS∗
c
),Rc((dec, f, randRc)〉 respec-

tively. The following lemma is the heart of our proof.

Lemma 3.7. Assuming that (S̃, R̃) is
(2
1

)
-binding and that Claim 3.6 does not hold w.r.t. S∗, then there

exists a set L ⊆ {0, 1}!S∗
c
(n) × {0, 1}!Rc(n) of density 1

6 for which the following hold:

1. For all (randS∗
c
, randRc) ∈ L and any value of dec ∈ {0, 1},

Pr
f ← F

[BndBreakS∗
r ,Rr(outs(randS∗

c
, dec, f, randRc)) ≥

1
p(n)

] ≥ 2
3
,

2. There exists a mapping σ : {0, 1}!S∗
c
(n) × {0, 1}!Rc(n) → {0, 1}!(n) s.t. for all (randS∗

c
, randRc) ∈ L,

Pr
f ← F

[outs(randS∗
c
, 1, f, randRc)[x1] = σ(randS∗

c
, randRc)] ≥

1
2
.

12

We now conclude the proof of Claim 3.6 by using the above lemma to prove that if (S̃, R̃) is
(2
1

)
-binding

and Claim 3.6 does not hold w.r.t. S∗, then MS∗
breaks the hardness of F .

For rand = (randS∗
c
, randRc) ∈ {0, 1}!S∗

c
(n) × {0, 1}!Rc(n) and f ∈ F , consider the value of y that S∗

r

sends to Rr (as the value of f(x1)) in the execution of 〈S∗
c (randS∗

c
),Rc(dec, f, randRc〉 for some value of

dec ∈ {0, 1}. Note that y is sent before dec is made public and therefore its value depends only on rand and
f . We denote the value of y for a given values of rand and f by y(rand, f).

Note that whenever Rr accepts in the simulation of Line (e), it must hold that f ′(zi) = y(state, f ′).
In addition, recall that if Rr accepts in the execution of MS∗

for both i ∈ {0, 1}, then z0 != z1 (see the
inline remark in Line (f)). Hence, conditioned that BndBreakS∗

r ,Rr(outs′) > 1
p(n) , we have that Pr[z0 !=

z1
∧

f ′(z0) = f ′(z1) = y(state, f)] ≥ 1
p(n)2 . Let’s assume now that after Line (d) algorithm MS∗

would
execute the following line,

(d’) Simulate 〈S∗
c (randS∗

c
),Rc(1, f ′, randRc)〉.

Let outs′′ = (prvt′′, pub′′) be the private and public outputs of the above simulation. Note that whenever
pub′′ !=⊥ (i.e., Rc did not abort the commit stage), it must hold that f ′(outs′′[x1]) = y(state, f). The main ob-
servation is that since S∗ does not know the value of dec in advance, it must succeed with noticeable probabil-
ity in Line (d) and in Line (d’) simultaneously. Namely, Lemma 3.7 yields that Prf ′ ← F [BndBreakS∗

r ,Rr(outs′) >
1

p(n)

∧
outs′′[x1] = σ(state) | state ∈ L] ≥ 2

3 − 1
2 = 1

6 . Thus, by the above observations

Prf ′ ← F [z0 != z1
∧

f ′(σ(state)) = f ′(z0) = f ′(z1)] ≥ 1
6 · 1

p(n)2 . (1)

Let us return to the value x, that MS∗
outputs in its first stage. Applying Lemma 3.7 once more yields

that

Prf ← F [x = σ(state) | state ∈ L] ≥ 1
2 . (2)

Since, conditioning on state, the events of Eq. 1 and Eq. 2 are independent, it follows that
Pr[z0 != z1

∧
f ′(x) = f ′(z0) = f ′(z1) | state ∈ L] ≥ 1

12 ·
1

p(n)2 . Since L is noticeable, MS∗
breaks the hardness

of F with noticeable probability.

Proof. (of Lemma 3.7) For both i ∈ {0, 1}, let Gi be the set of random coins on which conditioned on dec = i
S∗ manages to break the binding with high probability. Namely,
Gi

def=
{
(randS∗

c
, randRc) : Prf ← F [BndBreakS∗

r ,Rr(outs(randS∗
c
, i, f, randRc))) ≥ 1

p(n)] ≥
2
3

}
. Since for both

i ∈ {0, 1} we assumed that γS∗,p
i (n) ≥ 9

10 , it follows by a straight forward averaging argument that for both
i ∈ {0, 1} it holds that Pr[Gi] ≥ 2

3 and therefore G
def= G0 ∩G1 is of density at least 1

3 . For any x ∈ {0, 1}!(n)

and rand = (randS∗
c
, randRc), let wrand(x) def= Prf ← F [outs(randS∗

c
, 1, f, randRc)[x1] = x].

Claim 3.8. Prrand ← G[#x ∈ {0, 1}!(n) s.t. wrand(x) > 1
2] = neg.

Thus, we conclude the proof of Lemma 3.7, by letting σ(rand) = x̃ if there exists x̃ such that wrand(x̃) > 1
2

and letting σ(rand) = 0 otherwise, and defining L
def= G ∩

{
rand : wrand(σ(rand)) > 1

2

}
.

Proof. (of Claim 3.8) For any random coins frand = (randS∗
c
, 1, f, randRc) ∈ {0, 1}!S∗

c
(n) × {0, 1} × F ×

{0, 1}!Rc(n), let trans(frand) be the first-phase transcript of the interaction with R̃ embedded in the tran-
script of 〈S∗

c (randS∗
c
),Rc((1, f, randRc)〉 (i.e., the transcripts of the interactions with R̃1

c and R̃1
r). Recall

the set B from Definition 2.10 w.r.t. (S̃, R̃), which has the property that if a first-phase transcript of an
interaction with R̃ is in B, then the second-phase commitment with R̃ is statistically binding. It follows
that for almost all (randS∗

c
, randRc) ∈ G (save but a set of negligible probability) it holds that,

Pr
f ← F

[BndBreakS∗
r ,Rr(outs(randS∗

c
, 1, f, randRc)) ≥

1
p(n)

∧
trans(randS∗

c
, 1, f, randRc) /∈ B] ≥ 2

3
− neg(n).

13

Let’s assume towards a contradiction that Claim 3.8 does not hold. Therefore, by the above observation
there exists non-negligible set G′ ⊆ G, such that the following holds for any rand ∈ G′:

1. #x ∈ {0, 1}!(n) s.t. wrand(x) > 1
2 ,

2. Prf ← F [BndBreakS∗
r ,Rr(outs(randS∗

c
, 1, f, randRc) ≥ 1

p(n)

∧
trans(randS∗

c
, 1, f, randRc) /∈ B]) ≥ 3

5 .

We conclude the proof, by showing that the above set implies violation of the
(2
1

)
-binding of (S̃, R̃). Before

doing that, we would like to make the dependence of Rc in its random coins even more explicit. Recall that
we assume that Rc is a deterministic algorithm gets as additional input the random coins (dec, f, randRc) ∈
{0, 1}×F ×{0, 1}!Rc(n). To make the discussion more precise, we write that randRc = (randR1

c
, randother)

where randR1
c
∈ {0, 1}!R1

c
(n) is the random-coins used in the execution of R̃1

c embedded in the execution of

Rc. The following algorithm breaks the
(2
1

)
-binding of (S̃, R̃).

T S∗
:

Input: 1n

The interaction part.
a Select uniformly at random randS∗

c
∈ {0, 1}!S∗

c
(n).

b Interact with R̃1
c(1n) by invoking S∗

c (randS∗
c
) and simulating its interaction with Rc by for-

warding messages between S∗
c and R̃1

c .

Let trans1 be the transcript of the above interaction and let randR1
c

be the random coins

used by R̃1
c in the above interaction. (We do not need to actually know the value of randR1

c

for the run of T S∗
and only use it in order to simplify notation.)

Producing two transcripts.

a Select uniformly at random randother ∈ {0, 1}!R1
c
(n)−!R1

c
(n).

b For i ∈ {0, 1}:
1. Select uniformly at random fi ∈ F .
2. Simulate 〈S∗

c (randS∗
c
),Rc(1, fi, randRc

, randother〉 starting from Line 3 of Construction
3.1 (note that given trans1, we do not need to know randRc

in order to simulate).
Let outs2i = (prvt2i , pub2

i), where prvt2i and prvt2i are the private output of S∗
c and the pub-

lic output in the above simulation respectively. Let trans2i and trans3i be the transcripts
of the interactions with R̃1

r and R̃2
c in the above simulation.

3. Simulate 〈S∗
r (prvt2i , pub2

i , 0),Rr(pub2
i , 0)〉.

Let trans4i be the transcript of the interaction with R̃2
r in the above simulation.

4. Set transi = (trans1, trans2i , trans3i , trans4i).
c Output (trans0, trans1).

Claim 3.9. T S∗
breaks the

(2
1

)
-binding of (S̃, R̃) with non-negligible probability.

Proof. Conditioned on rand = (randS∗
c
, randR1

c
, randother) ∈ G′, we have by the second property of G′

Prf0 ← F [BndBreakS∗
r ,Rr(outs0) ≥ 1

p(n)

∧
(trans1, trans20) /∈ B] ≥ 3

5 . (3)

Clearly, the above also holds w.r.t. f1, outs1 and trans21. Moreover, by the first property of G′, we have the
following w.r.t. any z ∈ {0, 1}!(n),

Prf1 ← F [outs1[x1] != z
∧

BndBreakS∗
r ,Rr (outs1) ≥ 1

p(n)

∧
(trans1, trans21) /∈ B] ≥ 3

5 − 1
2 = 1

10 . (4)

14

Setting z = outs0[x1], since f1 is independent of f0, it follows that

Pr
f0 ← F ,f1 ← F

[outs0[x1] != outs1[x1]
∧

∀i ∈ {0, 1} BndBreakS∗
r ,Rr (outsi) ≥

1
p(n)

∧
(trans1, trans2i) /∈ B]

≥ 3
5
· 1
10

=
3
25

.

Therefore, we conclude that condition that rand ∈ G′, the following happens with probability at list
3
25 · 1

p(n)2 :

1. both trans0 and trans1 starts with trans1,

2. the first-phase transcripts (i.e., (trans1, trans2i)) in both trans0 and trans1 are not in B,

3. the value of x1 in trans0 and in trans1 is different,

4. R̃1
r and R̃2

r accept in both trans0 and trans1.

Since we assume that G′ is non-negligible, T S∗
breaks the

(
2
1

)
-binding of (S̃, R̃).

Thus we have concluded the proof of Lemma 3.7 and thus the proof of Lemma 3.5.

3.2 Completing the construction

The following corollary follows by the lemmata about Construction 3.1 (Lemma 3.1 and Lemma 3.5) and
the standard bit-commitment binding amplification (Proposition 2.9).

Corollary 3.10. There exists an efficient procedure that given a family of universal one-way hash functions
and a two-phase commitment scheme, outputs a bit-commitment scheme which is statistically hiding whenever
the underlying protocol is hiding and it is computationally binding whenever the underlying protocol is

(
2
1

)
-

binding.

By the above Corollary, the existence of universal one-way hash functions ([Rom90, KK05]), the exis-
tence of a collections of two-phase commitment schemes that are all

(
2
1

)
-binding and at least one of them is

hiding (Theorem 2.13) and the standard bit-commitment hiding amplification (Proposition 2.8). It follows
that statistical bit-commitment can be constructed using any one-way function. Finally, the proof of Theo-
rem 1.1 follows by the above conclusion and the standard transformation of a bit-commitment scheme into
a commitment scheme of any polynomial length.

Remark 3.11. Note that since the reveal stage of the commitments guaranteed by Theorem 2.13 are non-
interactive (i.e., consistent on a single message from the sender to the receiver), the reveal stage of our
bit-commitment is non-interactive as well.

Acknowledgments

We are grateful to Danny Harnik, Oded Goldreich, Tal Moran, Moni Naor, Alon Rosen and Salil Vadhan
for helpful conversations.

15

References

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. J. Computer
and System Sciences, 37(2):156–189, 1988.

[BKK90] J.F. Boyar, S.A. Kurtz, and M.W. Krentel. Discrete logarithm implementation of perfect zero-
knowledge blobs. Journal of Cryptology, 2(2):63–76, 1990.

[Blu82] M. Blum. Coin flipping by phone. In IEEE COMPCOM, 1982.

[CW77] I. Carter and M. Wegman. Universal classes of hash functions. In 9th ACM Symposium on
Theory of Computing, pages 106–112, 1977.

[DPP93] I. Damg̊ard, T. Pedersen, and B. Pfitzmann. On the existence of statistically-hiding bit commit-
ment and fail-stop signatures. In Crypto, 1993.

[GK96] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems for
NP. Journal of Cryptology, 9(2):167–189, 1996.

[GMR88] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. on Computing, 17(2):281–308, 1988.

[Gol01] O. Goldreich. Randomized methods in computation - lecture notes. 2001.

[HHK+05] Haitner, Horvitz, Katz, Koo, Morselli, and Shaltiel. Reducing complexity assumptions for
statistically-hiding commitment. In EUROCRYPT: Advances in Cryptology: Proceedings of EU-
ROCRYPT, 2005.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal of Computing, 29(4):1364–1396, 1999.

[HM96] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-free
hashing. In Crypto, 1996.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography.
pages 230–235, 1989.

[KK05] J. Katz and C. Koo. On constructing universal one-way hash functions from arbitrary one-way
functions. Cryptology ePrint Archive, Report 2005/328, 2005. http://eprint.iacr.org.

[Lin03] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal of
Cryptology, 16(3):143–184, 2003.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158, 1991.

[NOV06] M. Nguyen, S. Ong, and S. Vadhan. Statistical zero-knowledge arguments for NP from any
one-way function. Electronic Colloquium on Computational Complexity (ECCC), TR06-075,
2006.

[NOVY98] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for NP
using any one-way permutation. Journal of Cryptology, 11(2):87–108, 1998. preliminary version
in CRYPTO 92.

[NV06] M. Nguyen and S. Vadhan. Zero knowledge with efficient provers. In Proceedings of the 38th
ACM Symposium on Theory of Computing, 2006.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In 21st ACM Symposium on the Theory of Computing, pages 33–43, 1989.

16

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM
Symposium on the Theory of Computing, pages 387–394, 1990.

17

