
A New Interactive Hashing Theorem

Iftach Haitner∗ Omer Reingold†

Abstract

Interactive hashing, introduced by Naor et al. [NOVY98], plays an important role in many crypto-
graphic protocols. In particular, it is a major component in all known constructions of statistically-hiding
commitment schemes and of zero-knowledge arguments based on general one-way permutations and on
one-way functions. Interactive hashing with respect to a one-way permutations f is a two-party protocol
that enables a sender that knows y = f(x) to transfer a random hash z = h(y) to a receiver. The receiver
is guaranteed that the sender is committed to y (in the sense that it cannot come up with x and x′ such
that f(x) != f(x′) but h(f(x)) = h(f(x′)) = z). The sender is guaranteed that the receiver does not
learn any additional information on y. In particular, when h is a two-to-one hash function, the receiver
does not learn which of the two preimages {y, y′} = f−1(z) is the one the sender can invert with respect
to f .

This paper reexamines the notion of interactive hashing. We give an alternative proof for the NOVY-
protocol [NOVY98], which seems to us significantly simpler and more intuitive than the original one.
Moreover, the new proof achieves much better parameters (in terms of how security preserving the
reduction is). Finally, our proof implies a more versatile interactive hashing theorem for a more general
setting than that of [NOVY98]. One generalization relates to the selection of hash function h (allowing
much more flexibility). More importantly, the theorem applies to the case where the underlying function
f is hard-to-invert only on some given (possibly sparse) subset of the output strings. In other words,
the theorem is tuned towards hashing of a value y that may be distributed over a sparse subset of the
domain (rather than uniform on the entire domain as a random output of a one-way permutation is).

Our interest in interactive hashing is in part as a very appealing object (i.e., independent of any
particular application). Furthermore, a major motivation for looking into interactive hashing is towards
achieving a construction of statistical commitment schemes based on any one-way functions. Given the
history of the problem, it seems that extending our understanding of interactive hashing is a natural
approach towards relaxing the general assumptions needed for constructing statistical commitments.
Indeed, our new theorem is already useful in easily and more directly implying constructions of statistical
commitments based on the same assumptions as in [HHK+05]. In a subsequent work [HR06], we also
show how to use the new theorem for constructions based on substantially weaker assumptions. That
construction goes beyond the natural barrier of relying on “almost regular” one-way functions (and in
particular imply a construction based on any exponentially-hard one-way function).

1 Introduction

Interactive hashing, introduced by Naor, Ostrovsky, Venkatesan and Yung [NOVY98], is a protocol that
allows a sender S to commit to a particular value while only reviling to a receiver R some predefined
information of this value. More specifically, S commits to a value y while only reviling to R the value
h, h(y), where h is some random hash function (we defer additional details on the choice of hash function).
The two security properties of interactive hashing are binding (namely, S is bounded by the protocol to
at most one value of y) and hiding (namely, R does not learn any impermissible information about y).
As in [NOVY98], we will consider in this paper interactive hashing where the hiding property is statistical

∗Dept. of Computer Science and Applied Math., Weizmann Institute of Science, Rehovot 76100, Israel. E-mail:
iftach.haitner@weizmann.ac.il.

†Incumbent of the Walter and Elise Haas Career Development Chair, Department of Computer Science, Weizmann Institute
of Science, Rehovot 76100, Israel omer.reingold@weizmann.ac.il Research supported by grant no. 1300/05 from the Israel
Science Foundation.

1

Electronic Colloquium on Computational Complexity, Report No. 96 (2006)

ISSN 1433-8092

(i.e., the protocol preserves the secrecy of y even against an all-powerful R), and the binding property is
computational (i.e., it assumes that S is computationally bounded).

Interactive hashing (in the flavor mentioned above) is closely related and to a large extent motivated by the
fundamental notion of statistical commitment (i.e., statistically-hiding computationally-binding commitment
schemes). In statistical commitments we again have a protocol between a sender S and a receiver R.
However, here the sender S commits to y without reviling any information about y. Statistical commitments
can be used as a building block in constructions of statistical zero-knowledge arguments [BCC88, NOVY98]
or certain coin-tossing protocols [Blu82, Lin03]. More generally, they have the following advantage over
computationally hiding commitment schemes when used within protocols in which certain commitments are
never revealed: in such a scenario, it need only be infeasible to violate the binding property during the period
of time the protocol is run, whereas the committed values will remain hidden forever (i.e., regardless of how
much time the receiver invests after completion of the protocol).

The relation between interactive hashing and statistical commitments goes beyond the similarity in
definitions. On one hand, interactive hashing can easily be implemented using commitment schemes (simply
commit to y using the commitment scheme and revile whatever information needed on y in the clear). On
the other hand, one of the main applications of interactive hashing protocols is for constructing statistical
commitment schemes. Indeed, interactive hashing is a major component in all known constructions of
statistical commitment that are based on the existence of one-way permutations or on (special forms of)
one-way functions.

Naor et. al. [NOVY98] use their interactive-hashing protocol (from now on the NOVY protocol) in
order to construct statistical commitments based on any one-way permutation. Haitner et. al. [HHK+05]
make progress by using the NOVY protocol to construct statistical commitments based on regular one-
way functions and also on the so called approximable-size one-way functions. Interactive hashing is also
used by several other cryptographic protocols [OVY93, OVY92]. In addition, interactive-hashing is used
in “information theoretic setting” (i.e., no hardness assumptions are assumed) such as [CCM98, DHRS04,
CS06, NV06]. Very recently, interactive hashing was used in the breakthrough result of Nguyen et al.
[NOV06] to construct statistical zero-knowledge arguments for NP based on any one-way function. This
result leaves open the question of constructing statistical commitments based on any one-way functions (a
task that seems more feasible given the result of [NOV06]). Indeed, one of our major motivations for looking
into interactive hashing is indeed the construction of statistical commitment schemes based on any one-way
functions. However, before discussing our results and their applications let us look closer into interactive
hashing.

1.1 Interactive hashing in the setting of one-way permutations

Consider the following two-party protocol between a sender S and a receiver R: The sender chooses a random
element x ∈ {0, 1}n and sets y = f(x), where f : {0, 1}n → {0, 1}n is a one-way permutation. Next, the
receiver selects a random pairwise independent two-to-one hash function h : {0, 1}n → {0, 1}n−1 and sends
its description to S. Finally, S sends z = h(y) back to R. Note that if both parties follow the protocol, then
the following “binding” property is guaranteed: It is not feasible for S to find a second element x′ ∈ {0, 1}n

such that f(x′) #= f(x) but h(f(x′)) = h(f(x)) = z, although (exactly one) such element x′ does exist. The
reason is that the task of finding such x′ can easily be shown to be equivalent in hardness to inverting f on
a random output element (the latter task is assumed to be hard by the one-wayness of f). Furthermore,
we are guaranteed to have the following “hiding“ property: Let y1 and y2 be the two preimages of z w.r.t.
h. Given R’s view of the communication (i.e., given the values h and z), it is indistinguishable whether the
random element chosen by S is x1 = f−1(y1) or x2 = f−1(y2). In this sense S has committed to a bit (which
indicates if it can produce the inverse of y1 or that of y2). This bit is statistically hidden from R.

What happens, however, if S selects x only after seeing h? In such a case, it is quite plausible that S would
be able to “cheat” by producing x, x′ ∈ {0, 1}n such that f(x) #= f(x′) but h(f(x′)) = h(f(x)) = z.1 The
NOVY interactive hashing protocol prevents exactly such cheating. For that it employs a specific family

1Assume for example that the one-way permutation equals the identity function on the set T of all strings that start with
n/4 zeros (where n is the input length). Now given a hash function h all the cheating sender has to do is to find a collision
y1 "= y2, where y1, y2 ∈ T , such that h(y1) = h(y2). Such a collision is likely to exist by the birthday paradox, and for many
families of hash functions finding such a collision is very easy.

2

of hash functions such that each one of its functions h can be decomposed into n − 1 Boolean functions
h1, . . . , hn−1 (where h(x) = h1(x), . . . , hn−1(x)).2 In the NOVY protocol, instead of sending h at once as
described above, R sends a single Boolean function hi in each round. In return, the honest sender sends a bit
zi = hi(f(x)). What about a cheating sender? Intuitively, a cheating sender has a significantly smaller leeway
for cheating as it can no longer wait in selecting x till it receives the entire description of h. Still, it is highly
non-trivial to argue (formally or even intuitively) that restricting the sender by adding interaction in this
manner is sufficient in order to prevent the sender from cheating. Perhaps surprisingly, Naor et. al. [NOVY98]
have shown that their protocol has the binding property even against a cheating verifier (namely, even a
cheating verifier cannot produce x, x′ ∈ {0, 1}n such that f(x) #= f(x′) but h(f(x′)) = h(f(x)) = z).

1.2 Interactive hashing in the sparse case

The NOVY interactive hashing protocol applies to one-way permutations and easily implies the existence of
statistical commitments from any one-way permutation. How about constructing statistical commitments
from, say, regular one-way functions (one-way functions where every output value has the same number of
preimages)? In such a case we would like to interactively hash a value y (a random output of the one-way
function) which is uniformly distributed in some subset L of {0, 1}n (rather than uniformly distributed in all
of {0, 1}n as in the case of one-way permutations). What is the difficulty in directly hashing a value y that
is taken from a set L that is sparse in {0, 1}n? The NOVY-theorem guarantees that when hashing y with
h : {0, 1}n %→ {0, 1}n−1 the sender is committed to a single value y (as shown in [NOV06] this holds even if
the output of h is a bit shorter). However, when h outputs so many bits then most likely h(y) completely
determines y and statistical hiding is lost.

Facing the aforementioned difficulty, Haitner et. al. [HHK+05] first make the following observation: the
NOVY protocol is still meaningful even when hashing a value y which is taken from a distribution that
is “dense” in {0, 1}n (a bit more formally we would like the distribution to be sufficiently close to having
min-entropy n − O(log n)). In particular, if the one-way function is poly-to-one (i.e., each output has at
most polynomial number of preimages in the image set of f), then the NOVY-protocol can be applied as
is to give some weak form of statistical commitments that can later be amplified to full-fledge statistical
commitments. To handle any regular one-way function, [HHK+05] applies additional layer of hashing to
reduce to the dense case. This implies a construction of statistical commitments from any regular one-way
function. [HHK+05] also gives a construction of statistical commitments from one-way functions where the
size of the set of preimages of any output value y can be approximated (the so called approximable-size
one-way functions). Intuitively this is obtained by a simple reduction of such functions to “almost regular”
one-way functions. Interactive hashing in the sparse case arises in other works as well, most notably in the
construction of statistical zero-knowledge arguments from any one-way function [NOV06].

1.3 Our Results and Applications

We introduce an alternative proof for the NOVY protocol, which relies in parts on the original proof due to
[NOVY98] (the NOVY proof) but still seems to us significantly simpler. The proof follows a simple intuition
that is sketched below in this section. Moreover, the parameters achieved by our proof are an improvement
compared with the original ones. In our proof, given an algorithm A that breaks the binding property
with probability εA we get an algorithm that inverts the one-way permutation in comparable time and with
inverting probability ε2A ·poly(n). This is a substantial improvement and is much closer to natural limitations
of the proof technique (see discussion in Section 5). 3

In addition to being simpler and more security preserving, the new proof implies a more general interactive
hashing theorem. The new theorem applies to every family of hash functions that is a product of Boolean
families of pairwise independent hash functions (and not only to the special family of two-to-one hash
functions used by [NOVY98]). More importantly, the new theorem directly applies to the “sparse case”: Let
f : {0, 1}n → {0, 1}!(n) be an efficiently computable function, let L ⊆ {0, 1}!(n). As mentioned above, when
hashing a value y ∈ L, the NOVY proof only promises binding when using a hash function that outputs

2For more details on the definition of this family of hash functions see Section 4.
3We note that independently of our work, [NOV06] recently presented an ε3

A
· poly(n) reduction. See discussion below for

more detail on their work.

3

almost n bits. However, in such a case y is likely to be completely determined by h(y) and statistical hiding
cannot be guaranteed. Our theorem applies even when hashing to roughly 'log(|L|)(bits. In particular,
when h is taken from a family of hash functions H : {0, 1}!(n) → {0, 1}#log(|L|)$ that is a product of 'log(|L|)(
families of pairwise independent Boolean hash functions, we can show that a close variant of the NOVY
protocol possesses the following binding property: If f is hard to invert on the uniform distribution over
L, then any sender S∗ (even one which arbitrarily deviates from the protocol) cannot find two elements
x, x′ ∈ f−1(L) such that f(x) #= f(x′) but h(f(x)) = h(f(x′)) = z (where z is the value determined by the
protocol as h(y)).

Applications of The New Theorem The statistically-hiding commitment due to [HHK+05] can be
described as follows: First, the output of the regular one-way function, f , is hashed (non-interactively)
using an n-wise independent hash functions e into domain of size about |Im(f)| to construct a new one-way
function g = e ◦ f . In the next step, the two parties invoke the NOVY interactive-hashing protocol w.r.t. g.
Finally, S sends (b⊕〈g(x), r〉 mod 2) to R, where r is a random string chosen by R. Using the properties of
the NOVY protocol, [HHK+05] proved that this protocol is a “weak” statistical commitment scheme that
can be amplified to full fledge statistical commitment. The new interactive hashing theorem can obtain a
similar result more directly. Instead of applying the interactive hashing protocol to g one can now apply it
directly to f and interactively hash f(x) into a string of length 'log(|Im(f)|)(−O(log(n)). Next, as before,
S sends (b⊕〈f(x), r〉 mod 2) to R, where r is some random string chosen by R. By the properties of the new
interactive-hashing protocol w.r.t. Im(f), it easily follows that S is committed to b, whereas a semi-honest
receiver does not learn “too much” about b (i.e., it has some noticeable uncertainty about the value of b).
The weak hiding of this scheme can easily be amplified and the scheme can be protected against a malicious
receiver (see [HKKM04, Theorem 4]). We therefore obtain a full-fledged statistical commitment scheme.

Haitner et. al. obtained statistical commitment based on regular one-way functions and on one-way
functions where the size of the set of preimages of any output value y can be approximated (the so called
approximable-size one-way functions). This is a natural milestone when extending results that were previ-
ously only known based on one-way permutations (see for example [GKL93, AGGM06]). In a subsequent
work [HR06], we use the new interactive hashing theorem to go beyond this natural barrier and provide a con-
struction of statistical commitments based one-way functions that seem very different than regular functions
and do not seem to imply almost regular one-way functions by any simple transformation. Loosely, these
are functions where the preimage size of an output value y can be non-trivially upper bounded. This means
that (1) The bound is in fact a good approximation with some non-negligible probability (but can most of
the times be a wild over-estimate), and (2) The bound may be false (i.e., an under estimate) only with some
small (though still non-negligible) probability. This somewhat technical notion is interesting both because
it substantially relaxes previous requirements, but in addition it implies some interesting corollaries. For ex-
ample, based on this result we obtain a construction of statistical commitments from any exponentially-hard
one-way function (i.e., a function that cannot be inverted in polynomial time with probability better than
2−Cn for some constant C > 0). Note that this is a non-structural property (unlike being a permutation or
being regular).

Related Work We note that independently of our work, Nguyen, Ong and Vadhan [NOV06] give a new
proof for the NOVY protocol. Their proof follows the proof of [NOVY98] more closely than ours but
still introduces various simplifications and parameter improvements. The main goal of the new proof is
to generalize the protocol such that it allows hashing with a hash function that is poly-to-one rather than
two-to-one as in [NOVY98]. In other words, they analyze the NOVY protocol with n− " rounds where " may
be as large as O(log n) rather than n − 1 rounds in [NOVY98]. For a comparison between the parameters
obtained by [NOVY98], [NOV06] and this paper, see Remark 3.10.

Relations Following [NOV06]) we state our protocol, and proof, in the more general setting of binary
relations rather than functions. For instance, given a binary relation W that is hard to satisfy (i.e., given
y it is hard to find x such that (x, y) ∈ W), we prove that following our interactive-hashing protocol, S
cannot find two pairs (x0, y0), (x1, y1) ∈ W such that both y0 and y1 are consistent with the protocol, but

4

y0 #= y1. Note that since every function, f , defines the natural binary relation (x, f(x))), any result w.r.t.
binary relations implies an equivalent result w.r.t. functions.

Cheating Receiver In the new interactive hashing theorem, the hiding property of a cheating receiver
is specified only with respect to a semi-honest receiver. A malicious receiver can learn h(y) where h is not
necessarily uniformly distributed. In fact, h can be determined adaptively based on partial knowledge of
h(y) (specifically, hi is selected after learning the first i − 1 bits of h(y)). The NOVY protocol provides a
cheating receiver exactly the same power in selecting h. Nevertheless, when y is selected uniformly in {0, 1}n

and h is two-to-one, then regardless of how the receiver selects h there is one bit of knowledge on y that
remains completely hidden from the receiver (i.e., given z = h(y) there are two possibilities to the value of y,
the hidden bit specifies which of these two values is the right one). In the general case, when y is distributed
over a sparse subset, one should take more care in estimating the power of a cheating receiver. We note that
in various settings, one can assume without loss of generality that receiver is semi-honest. In particular, this
is the case for statistical commitments (see [HKKM04, Theorem 4]).

1.4 Proof Idea

We discuss our proof in the most basic setting where f : {0, 1}n → {0, 1}n is a one-way permutation and
L = {0, 1}n (the general case is not much different). Our protocol consists of m rounds, where n−O(log(n)) ≤
m ≤ n. In each round, R selects a random Boolean pairwise-independent hash function hi and S replies with
hi(f(x)). Let A be an algorithm that plays the sender’s role in the protocol and at the end of the protocol
outputs two elements x1, x2 ∈ {0, 1}n. Assume that with some noticeable probability ε > 0, it holds that
f(x1) #= f(x2) and both f(x1) and f(x2) are consistent with the protocol’s transcript. It is easy to use A
in order to construct an algorithm that inverts f with probability ε

2n : Given input y, the algorithm chooses
the hash functions at random and returns one of the two values A’s outputs.

Let’s imagine that instead we are trying to invert f on the following distribution: The first k
def
= m −

log(1
ε) − C log(n) (for some constant C > 0) Boolean hash functions, h1, . . . , hk, are chosen at random and

only then a random element, y, is drawn from set of all the elements inside {0, 1}n that are consistent
with A’s answers on h1, . . . , hk. We call the distribution induced on (y, h1, . . . , hk) by the above process
Duni. On the average, A has probability ε to cheat even when conditioned on h1, . . . , hk being selected.
Therefore (since, with high enough probability, the number of y’s consistent with A’s answers on h1, . . . , hk

is about nC

ε), in this setting the naive algorithm, which selects the rest of the hash functions at random

and returns one of A’s answers, inverts f with probability close to ε2

nC . In addition, a more careful analysis
yields that the success probability of this inverting algorithm does not depend on inverting too few elements.
More specifically, the subset of y’s that are consistent with A’s answers on h1, . . . , hk such that the naive

algorithm inverts on them with “high enough” probability is of relative size
√
ε2nC/nC

ε = ε2

nC/2 . 4

Let’s try to emulate the above setting on a random y ∈ {0, 1}n. To do so, we choose the first k hash
functions one by one, each time we keep sampling until we find an hash function that its value on y is
consistent with A’s answer (if the answer is inconsistent, we “rewind” A to its state before it was asked the
last “faulty” hash function). We call Dsrc the distribution the above process induces on (y, h1, . . . , hk).

We would conclude the proof of the binding property if we could prove that the statistical difference
between Duni and Dsrc is smaller than ε2

nC (recall that this is the inverting probability of the naive algorithm
on Duni). Unfortunately, we cannot prove such a strong bound. We mange to prove, however, that save but

a small number of elements in the support of Duni (which have total probability mass smaller than ε2

nC/2),
the probability mass that each element has under Duni is within a constant factor from its mass under Dsrc.
It easily follows that we can invert y with noticeable probability over Dsrc, which directly implies that we
can invert f (again, with noticeable probability) on the uniform distribution over {0, 1}n.

4Loosely, let T we the set of y’s that A is likely to output their inverse (according to f). A random selection of h1, . . . , hk

separates every two elements in T with probability 1− 2−k. So unless the size of T is large enough (essentially
√

ε · 2k), one of
the two values A output will be forced to be the inverse of an element outside of T . This will contradict the assumptions that
values outside of T are only inverted with small probability.

5

1.5 Paper Organization

In Section 3, we generalize the definition of interactive-hashing, present our new construction and prove that
it satisfies the new definition. In Section 4 we argue that the new proof can also be applied to the original
NOVY protocol (that uses very specific hash functions). Discussion and further issues appear in Section 5.

2 Preliminaries

2.1 Notation

For k ∈ N, we denote by [k] the set {1, . . . , k}. We denote the concatenation of the strings x and y by x ◦ y.
Given a set L, we denote by x ← L the experiment in which x is uniformly chosen from L. Let D be a
distribution over the set L, the support of D is defined as: sup(D) = {x ∈ L : D(x) > 0}. We denote the
probability of L′ ⊆ L w.r.t. D as D(L′) = Prx ← D[x ∈ L′]. Given a function f : {0, 1}∗ → {0, 1}∗ and
a set L ⊆ {0, 1}∗, we denote the image of f on L as f(L) = {f(x) : x ∈ L}. We denote the running time
of an algorithm A by TA, where ppt stands for polynomial-time algorithm. Given two interactive Turing
machines A and B, we denote the protocol they define by 〈A, B〉 and denote the following experiment by
(oA | oB) ← 〈A(iA), B(iB)〉: The protocol 〈A, B〉 is invoked with inputs iA and iB and the outputs of the
parties are assigned to oA and oB respectively.

2.2 Families of Pairwise-Independent Hash Functions

Definition 2.1 (Efficient family of pairwise-independent hash functions) Let H be a family of functions
mapping strings of length "(n) to strings of length m(n). We say that H is an efficient family of pairwise
independent hash functions (following [CW77]) if the following holds: 5

1. H is polynomially samplable (in n).

2. There exists a polynomial-time algorithm that given x ∈ {0, 1}!(n) and a description of h ∈ H outputs
h(x).

3. For every distinct x1, x2 ∈ {0, 1}!(n) and every y1, y2 ∈ {0, 1}m(n), we have:

Prh ← H[h(x1) = y1
∧

h(x2) = y2] = 2−2m(n).

It is well known ([CW77]) that there exists an efficient family of pairwise-independent hash functions for
every choice of " and m whose elements description size is O(max {"(n), m(n)}).

The following standard lemma (see for example, [Gol01, Lemma 4.3.1]) states that a random pairwise
independent hash function partitions a given set into (almost) equal size subsets.

Theorem 2.2 Let H be a family of pairwise independent hash functions mapping strings of length " to
strings of length m, let L ⊆ {0, 1}m and let " = |L|

2m . Then for every α ∈ {0, 1}m and δ > 0

Prh ← H[||{x ∈ L : h(x) = α}|− "| > δ"] < 1
δ2! .

As in [NOVY98], our interactive-hashing protocol selects and evaluates an hash function incrementally.
Therefore, the protocol is designed for hash functions that are product of hash functions defined next.

Definition 2.3 (Product Hash Family) Let H be a family of functions mapping strings of length "(n) to
strings of length m(n) and let k(n) ∈ N. The k-product-family of H, denoted H×k(n), is a family of functions
mapping strings of length "(n) to strings of length k(n) · m(n) which is defined as follows: The members of
H are all possible tuples h of k(n) functions from H. For every such tuple h = (h1, . . . , hk(n)) and every

x ∈ {0, 1}!(n) we define h(x) = (h1(x), . . . , hk(n)(x)).

5The first two properties, regarding the efficiency of the family, implicitly assume an ensemble of families (one family for
every value of n). For simplify of presentation, we only refer to a single family.

6

3 The New Interactive Hashing Theorem

In this section we present our extended definition for an interactive-hashing protocol and give a revised
construction and new proof that match this definition.

3.1 Defining a New Notion of Interactive Hashing

We choose (following [NOV06]) to state our definitions in the setting of binary relations. This generalizes
the original definition due to [NOVY98], which concentrates on the particular relations that are naturally
defined by one-way permutations (see Corollary 3.14). In particular, the underlying relation is not necessarily
efficiently computable or even not efficiently verifiable. Moreover, the relation is not necessarily defined over
all strings of a given length, but might rather be defined over some small subset of the strings.

Notation: Let W be a binary relation over and let y ∈ {0, 1}∗, we denote the set {z ∈ {0, 1}∗ : W (z, y) = 1}
by Wy .

Definition 3.1 (Interactive-Hashing) Let H be a family of hash functions mapping strings of length "(n)
to strings of length m(n). A polynomial-time protocol 〈S,R〉 is an H-interactive-hashing protocol if the
following hold:

• The inputs of S are a string y ∈ {0, 1}!(n) and the security parameter 1n. Following its interaction, S
outputs y.

• The input of R is the security parameter 1n. Following its interaction, R outputs (h, z) ∈ H×{0, 1}m(n).

• Functionality - For every y ∈ {0, 1}!(n), letting (y, (h, z)) = 〈S(1n, y),R(1n)〉 it holds that h(y) = z.

The security of interactive-hashing protocol has two aspects. Binding the sender to y and concealing some
information regarding y from R. In this paper we focus on security w.r.t. polynomially-bounded sender and
unbounded receiver, the complementary setting where the receiver is polynomially-bounded and the sender
is unbounded, called Information Theoretic interactive-hashing, is not treated by this paper (for details on
the information theoretic setting see for example [CCM98, DHRS04, CS06]).

We start by formalizing the binding property.

Definition 3.2 (BndBreakL,W) Let L ⊆ {0, 1}!(n), let W be a binary relation and let H be a family of
hash functions mapping strings of length "(n) to strings of length m(n). The Boolean function BndBreakL,W

is defined such that for any inputs oS = ((x0, y0), (x1, y1)) and oR = (h, z) ∈ H × {0, 1}m(n), the value
BndBreakL,W(oS , oR) is one iff y0 and y1 are distinct elements inside L such that h(y0) = h(y1) = z,
x0 ∈ Wy0 and x1 ∈ Wy1 .

Definition 3.3 (Binding) Let L, W and H be as in Definition 3.2 and let 〈S,R〉 be an H-interactive-hashing
protocol. We say that 〈S,R〉 is binding w.r.t. L and W if for every ppt A that plays the role of S in the
protocol and outputs two pairs of elements, the following is negligible:

Pr(oA|oR)←〈A(1n),R(1n)〉[BndBreakL,W(oA, oR)]

where the probability is taken over the random coins of A and R.

The following definition states that the only information that an honest receiver acquires through the
protocol about y is its hash value for a uniformly chosen hash function.

Definition 3.4 (Secrecy preserving w.r.t. semi-honest receiver) Let H be a family of hash functions mapping
strings of length "(n) to strings of length m(n) and let 〈S,R〉 be an H-interactive-hashing protocol. For
y ∈ {0, 1}!(n), we denote by viewS

R(1n, y) the distribution of R’s view when interacting with S(y, 1n) (this
view simply consists of the sequence of messages R receives from S and its random coins), where this
distribution is taken over the random coins of S and R. We say that 〈S,R〉 is secrecy-preserving (w.r.t.
semi-honest receiver) if there exists a polynomial-time simulator Sim, such that for every y ∈ {0, 1}!(n) the
distributions viewS

R(1n, y) and
(
Sim(1n, h, h(y))

)
h ← H

are identical.

7

Remark 3.5 Some level of hiding can be guaranteed by our protocol even against malicious R. Specifically,
the protocol hides any information regarding the index of y among all the preimages of z = h(y) w.r.t. h. In
the setting of [NOVY98] this information is quite meaningful and is also easy to construct. This is because
y is chosen uniformly in {0, 1}!(n) and regardless of the way the receiver selects h, there are exactly two
possible preimages of z. The two preimages can be found easily and therefore the relative index of y is easy
to construct. In the most general setting, however, we encounter two problems: Firstly, a malicious R may
be able to force the existence of only a single preimage of z w.r.t. h that lies in L. Secondly, it may be difficult
to find the preimages of z that lie in L.

We note that in several cryptographic applications of interactive hashing (e.g., statistically-hiding bit
commitment, see [HKKM04, Theorem 4]), any protocol that is secure against an honest receiver can be
complied into a protocol that is secure against a malicious receiver.

3.2 The Construction

Construction 3.6 (Interactive Hashing) Let m(n) ∈ N and let H be a family of efficiently computable
Boolean functions defined over strings of length "(n). The parties of the protocol are S and R, where the
inputs of S are 1n and an "(n) bits string y, and R’s input is 1n.

1. For i = 1 to m(n):
(a) R chooses uniformly at random hi ∈ H and sends its description to S.
(b) S sends zi = hi(y) back to R.

2. S locally outputs y.
3. R outputs (h, z) = (h1, . . . , hm(n), z1, . . . , zm(n)).

The following lemma is immediate from Definitions 3.1 and 3.4.

Lemma 3.7 Let H be the m(n)-product-family of H, then 〈S,R〉 is a secrecy-preserving H-interactive-
hashing protocol.

3.3 The Main Theorem - Binding

Theorem 3.8 Let W be a binary relation and let L ⊆ {0, 1}!(n). Let H be an efficient family of pairwise
independent Boolean hash functions defined over string of length "(n) and let 〈S,R〉 be as in Construction
3.6. Then there exists an oracle algorithm M (.) such that for any algorithm A, the running-time of MA is
O(log(n)TA(n) + m log(n)TH(n)) (where TH(n) is an upper bound of the sampling and computing time of
H) and for large enough n,

Pry ← L[MA(y) ∈ Wy] ∈ Ω(2m′(n)

|L| · εA(n)2

n8),

where εA(n)
def
= Pr(oA|oR)←〈A(1n),R(1n)〉[BndBreakL,W(oA, oR)] and m′(n)

def
= min {m(n), 'log(|L|)(}.

Remark 3.9 We point out that M (.) does not need to know W or εA.

Remark 3.10 (Comparing the parameters to [NOVY98] and [NOV06]) For L = {0, 1}n and

m = n − 1, the success probability of MA is Ω(εA(n)2

n8), where the running-time is still O(log(n)TA(n) +
m log(n)TH(n)). We point that the same success probability and running-time apply also for the NOVY
protocol (see Section 4 for details). This is an improvement in parameters compared with the analysis in
[NOV06, Lemma B.2]. There the algorithm runs in time O(nTA(n)+mnTH(n)) and breaks f with probability

Ω(εA(n)3

n6). Finally, in the [NOVY98, [Lemma 2] analysis, the algorithm runs in time O(nTA(n)+mnTH(n))

(same as in [NOV06]) and only guarantees to break f with probability Ω(εA(n)10

n8).

The following corollaries follow Lemma 3.7 and Theorem 3.8.

8

Definition 3.11 Let W be a relation and let L ⊆ {0, 1}!(n). We say that W is hard-to-satisfy on L if for
any ppt A the probability Pry ← L[A(y) ∈ Wy] is negligible in n.

Corollary 3.12 Let L, m, H, W and 〈S,R〉 be as in Theorem 3.8. If W is hard-to-satisfy on L and
m > log(|L|) − O(log(n)), then the protocol 〈S,R〉 is a computationally-binding, secrecy-preserving (w.r.t.
honest-receiver) H-interactive hashing protocol w.r.t. L and W .

Definition 3.13 Let f : {0, 1}n → {0, 1}!(n) be an efficiently computable function and let L ⊆ {0, 1}!(n).
We say that f is hard to invert over L if for any ppt A the probability Pry ← L[A(y) ∈ f−1(y)] is negligible
in n.

Corollary 3.14 Let L, m, H and 〈S,R〉 be as in Theorem 3.8. Let f be hard to invert over L, and let W
be the binary relation defined by f (i.e., x ∈ Wy iff f(x) = y). If m > log(|L|)−O(log(n)), then the protocol
(S,R) is a computationally-binding secrecy-preserving (w.r.t. honest-receiver) H-interactive-hashing protocol
w.r.t. L and W .

The Proof of Theorem 3.8. For simplicity we drop the dependency on n whenever it is clear from the
context. We assume w.l.o.g. that m′ = m, since any adversary that violates the binding of the m-round
protocol, can violate with the same probability the binding of the protocol with m′ < m rounds. We denote
by Ar the restriction of A to some fixed random coins r ∈ {0, 1}TA and use throughout the proof the following
random variables: For k ∈ [m] and (r, hs) ∈ {0, 1}TA ×H×k, let ACom(r, hs) ∈ {0, 1}k be Ar’s answers when
questioned by hs and let Consist(r, hs) =

{
y ∈ L : ∀i ∈ [k] hs

i(y) = ACom(r, hs)i

}
(i.e., the set of y’s that

are consistent with A’s answers). Finally, we assume w.l.o.g. that for any sequence of questions h ∈ H×m,
Ar outputs two pairs of elements ((x0, y0), (x1, y1)) and denote them by ADec(r, h). For some value of
ofs ∈ {0, . . . , m − 1} that will be specified below, we consider the following algorithm for satisfying W on
L:

MA(y):
1. Choose uniformly at random r ∈ {0, 1}TA .
2. Let hs ← Searcher(r, y).
3. Return Inverter(r, h, ys).

where the algorithms Searcher and Inverter are defined as follows:

Searcher(r, y):
1. Fix A’s random coins to r.
2. For k = 1 to m − ofs:

(a) Do the following 2 log(n) times:
i. Set a value for hk uniformly at random in H.

ii. If ACom(r, (h1, . . . , hk))k = hk(y), break the inner loop.
3. Return (h1, . . . , hm−ofs).

Inverter(r, h, ys):
1. Fix A’s random coins to r.
2. Choose uniformly at random he ∈ H×ofs.
3. Set ((x0, y0), (x1, y1)) ← ADec(r, (hs, he)).

4. Return x0 with probability half and x1 otherwise.

Remark 3.15 The value ofs will depend in our proof on εA. This seems to contradict Remark 3.9 that
M (.) does not need to know εA. Nevertheless, ofs can instead be selected at random with only a factor m

9

decrease in the success probability of MA. More interestingly, setting ofs = 0 will also guarantee MA the
succuss probability claimed in the theorem. The only affect of decreasing ofs to zero is that he will be selected
by the rewinding method of Searcher rather than uniformly at random by Inverter. For every value he that
satisfies y ∈ Consist(r, (hs, he)), we have that the probability of selecting it with the rewinding technique is
only larger than the probability of uniformly selecting it. A value of he such that y #∈ Consist(r, (hs, he)) will
not contribute in our analysis to the success probability of MA.

It follows that the distinction between Searcher and Inverter is not necessary for the proof. Still,
following [NOVY98], we find this distinction very useful for pedagogical reasons.

Given that we use the proper data structure to support the rewinding action, it follows that the running time
of MA is O(log(n)TA(n) + m log(n)TH(n)), as stated in the theorem. As a first step in proving correctness,

we show that Pry ← L[MA(y) ∈ Wy] ∈ Ω
(

2m(n)

|L| · εA(n)3

n6

)
, since this proof has somewhat nicer abstraction

than the one proving the stronger bound claimed in the theorem. In Section 3.7, we present the modifications
needed for the stronger result.

We would like to set the value of ofs to 26 log(n) + 2log(1
εA

)3 + C, where C ∈ N is some universal

constant determined by the analysis. For that we need to assume that m > 26 log(n) + 2log(1
εA

)3 + C. If

m ≤ 6 log(n) + 2log(1
εA

) + C, then we can set ofs = m and conclude the proof of the theorem directly as
follows:

Pr
y ← L

[MA(y) ∈ Wy] (1)

=
1

|{0, 1}TA| · |L|
∑

y∈L,r∈{0,1}TA

Pr
h ← H×m

[Inverter(r, h, y) ∈ Wy]

≥
1

|{0, 1}TA| · |L|
·
1

2

∑

y∈L,r∈{0,1}TA

Pr
h ← H×m,((x0,y0),(x1,y1)) ← ADec(r,h)

[
x0 ∈ Wy

∨
x1 ∈ Wy

]

≥
εA

|L|

∈ Ω

(
2m

|L|
·
ε3A
n6

)
.

We conclude that we can set ofs = 26 log(n) + 2log(1
εA

)3 + C, and assume that m > ofs.
We consider the following distributions:

Definition 3.16

• Duni
def
=
(
r, h, y

)
r ← {0,1}TA ,h ← H×(m−ofs),y ← Consist(r,h)

,

• Dsrc
def
=
(
r, h, y

)
r ← {0,1}TA ,y ← L,h ← Searcher(y,r)

.

Given that y is uniformly chosen in L, then Dsrc is the distribution that Inverter is invoked upon
through the execution of MA. Thus, the probability that Inverter satisfies W over Dsrc equals to the
success probability of MA. On the other hand, it is rather easy to show that the probability that Inverter
satisfies W over Duni is noticeable (as a function of εA). Intuitively, this is because the distribution of h
in Duni is uniform and this is also the distribution of h that A encounters when interacting with R. In
fact, Lemma 3.19 states that the probability that Inverter satisfies W over Duni is well spread: Even if we
ignore the contribution to the success probability of some sufficiently small number of values in the support
of Duni, this success probability will remain noticeable. To sum up, we know that Inverter does well in
satisfying W over Duni and our goal is to show that it also does well over Dsrc. To this end, Lemma 3.26
will show that the distributions Duni and Dsrc are “not too far” from each other (in a sense defined below).
This will indeed allow us to complete our proof.

10

3.4 Most Pairs are Balanced

We start the formal proof by showing that in each step of the protocol the number of elements inside L that
are consistent with the transcript so far is w.h.p. (regardless of A’s answers) not faraway from the expected
value.

Definition 3.17 For i ∈ {0, . . . , m}, the pair (r, h) ∈ {0, 1}TA ×H×i is balanced if

|L|
3 · 2i

≤
∣∣Consist(r, h)

∣∣ ≤
3 · |L|

2i
.

Claim 3.18 For every i ∈ {0, . . . , m},

Pr(r,h) ← {0,1}TA×H×i [(r, h) is balanced] ≥ 1 − 6n22i

|L| .

Proof: We say that h ∈ H is good w.r.t. the pair (r, h), if it partitions Consist(r, h) into two (almost) equal

size parts. That is, if
∣∣Consist(r, (h, h))

∣∣ ∈
[
|Consist(r,h)|

2 (1 − 1
n),

|Consist(r,h)|
2 (1 + 1

n)

]
. Note that if for a given

pair (r, h) ∈ {0, 1}TA ×H×k it holds that ∀i ∈ [k − 1] the function hi is good w.r.t. (r, h1,...,i−1), then (r, h)

is balanced. By Theorem 2.2 it follows that Prh∈H[h is not good w.r.t. (r, h)] <
2|Consist(r,h)|

n2 . Therefore, we
can lower bound the probability that a pair is balanced as follows:

Pr
(r,h) ← {0,1}TA×H×i

[(r, h) is not balanced]

≤
i∑

k=1

Pr
(r,h) ← {0,1}TA×H×k

[
hk is not good w.r.t. (r, h1,...,k−1) | (r, h1,...,k−1) is balanced

]

≤
i−1∑

k=0

3n22k

|L|

≤
6n22i

|L|
. !

3.5 Analyzing the Success Probability of Inverter on Duni.

As mentioned above, it is rather easy to prove (much like the proof for the case that m = ofs) that the

success probability of Inverter over Duni is at least Ω(2m

|L| ·
ε2

A
n6). Proving that, however, does not suffice to

deduce that the success probability of Inverter over Dsrc is also high. The reason is that potentially the
success probability of Inverter over Duni could stem from a relatively few elements that have significantly
smaller probability mass w.r.t. Dsrc than w.r.t. Duni. To overcome this problem, we prove that the success
of Inverter is sufficiently high even if we flatten this probability such that the contribution of any single
element is small. Having that, we are guaranteed that the success probability of Inverter is high w.r.t. any
distribution that assigns about the same mass to most elements in sup(Duni) (and as we show later, Dsrc

satisfies this property). More formally, for every (r, hs) ∈ {0, 1}TA ×H×(m−ofs) we let

εr,hs

def
= Pr

(oA|oR=(h,∗))←〈Ar(1n),R(1n)〉
[BndBreakL,W(oA, oR) | h1,...,m−ofs = hs],

That is, εr,hs is the cheating probability of A conditioned on (r, hs). We define the weight of y ∈ Consist(r, hs)
by

w(r, hs, y)
def
=

1

2
· Pr
(oA=((∗,y0),(∗,y1))|oR=(h,∗))←〈Ar(1n),R(1n)〉

[BndBreakL,W(oA, oR)
∧

y ∈ {y0, y1} |h1,...,m−ofs = hs].

11

Note that w(r, hs, y) is a lower bound on the probability that Inverter satisfies W on y conditioned on (r, hs).
Also note that εr,hs =

∑
y∈Consist(r,hs) w(r, hs, y). Finally, we define the decreased weight of (r, hs) as

wdec(r, hs, y)
def
= min

{ εA

2C/2n3
, w(r, hs, y)

}
,

where C > 0 is the same universal constant that appears in the definition of ofs. The following lemma
essentially implies that the success probability of Inverter over Duni w.r.t. the decreased weight is noticeable.

Lemma 3.19

Ex(r,h,ys) ← Duni
[wdec(r, hs, y)] ∈ Ω

(
2m

|L| ·
ε3

A
2Cn6

)
.

Proof: Let (r, hs) ∈ {0, 1}TA ×H×(m−ofs). We assume for simplicity a non-increasing order on the elements
of Consist(r, hs) according to their wights and denote by Consist(r, hs)i the ith element of Consist(r, hs) by this

order. The following claim states that the weight is not concentrated only on the first "r,hs

def
= '
√

2ofs−1εr,hs(

heaviest elements of Consist(r, hs).

Claim 3.20
∑|Consist(r,hs)|

i=!r,hs+1 w(r, hs, Consist(r, hs)i) ≥ εr,hs/4.

Proof: Let Z =
⋃!r,hs

i=1

{
Consist(r, hs)i

}
, by the pairwise independence of H it follows that,

Pr
(hm−ofs+1,...,hm) ← H×ofs

[∃y0 #= y1 ∈ Z s.t. ∀j ∈ {m − ofs+ 1, . . . , m} hj(y0) = hj(y1)]

≤
|Z|2

2ofs
≤

2ofsεr,hs

2 · 2ofs
= εr,hs/2.

Recall that A cheats with probability εr,hs . Since the probability that both y0 and y1 it returns are inside Z
is at most εr,hs/2, it follows that the probability that Ar cheats successfully while at least one of y0 and y1

is outside Z is at least εr,hs/2. Note that each event where Ar cheats successfully and outputs an element
yi = y, contributes half its probability to the total weight of y. Thus, the sum of weights of the elements
inside Consist(r, hs)\Z is at least εr,hs/4. !

Since εr,hs =
∑

y∈Consist(r,hs) w(r, hs, y) ≥
∑!r,hs

i=1 w
(
r, hs, Consist(r, hs)i

)
, it follows that

w(r, hs, Consist(r, hs)!r,hs) ≤ εr,hs

!r,hs
. We have set ofs to 26 log(n) + 2log(1

εA
)3 + C, therefore

2εr,hs

!r,hs
=

2εr,hs

#
√

2ofs−1εr,hs $
≤ εA

2C/2n3 . Thus,

∑

y∈Consist(r,hs)

wdec(r, hs, y) ≥
|Consist(r,hs)|∑

i=!r,hs +1

w(r, hs, Consist(r, hs)i) ≥ εr,hs/4. (2)

Thus,

Ex
(r,h,ys) ← Duni

[wdec(r, hs, y)]

=
1

|{0, 1}TA ×H×ofs|
·

∑

(r,hs,∗)∈sup(Duni)

∑
y∈Consist(r,hs) wdec(r, hs, y)
∣∣Consist(r, hs)

∣∣

≥
1

|{0, 1}TA ×H×ofs|
·

∑

(r,hs,∗)∈sup(Duni):|Consist(r,hs)|≤ 3|L|

2m−ofs

εr,hs

4
/(

3 |L|
2m−ofs

)

=
2m−ofs

12 |L|
·

1

|{0, 1}TA ×H×ofs|
·

∑

(r,hs,∗)∈sup(Duni):|Consist(r,hs)|≤ 3|L|

2m−ofs

εr,hs .

12

Claim 3.18 yields that Pr(r,hs,∗) ← Duni

[∣∣Consist(r, hs)
∣∣ > 3|L|

2m−ofs

]
∈ O
(

n22m−ofs

|L|

)
. Thus,

Ex
(r,h,ys) ← Duni

[wdec(r, hs, y)] ≥
2m−ofs

12 |L|
·
(

1 −O(
n22m−ofs

|L|
)

)
· εA ∈ Ω

(
2m

|L|
·

ε3A
2Cn6

)
. !

3.6 Analyzing the Success Probability of Inverter on Dsrc.

We would have liked to claim that Duni is statistically close to Dsrc and thus, the proof would immediately
follow Lemma 3.19. Unfortunately, we can only prove that the two distributions are at statistical distance
that is much bigger than the success probability of Inverter on Duni. Hence, we need to refine our approach
by considering a different measure of distance. We call an element y ∈ sup(Duni) “good”, if Dsrc(y)

Duni(y) is not
too far from one. We prove that the total mass of the non-good elements in the support of Duni is small.
Thus, the probability that a good element is drawn from Duni on which Inverter does well is noticeable.
Having that, we deduce that Inverter also does well on Dsrc. Let us turn to a more formal discussion.

The Proximity Measure.

Definition 3.21 Let D1 and D2 be two distributions over a set Z, let ε ∈ [0, 1] and let a ≥ 1. We say that
D1 (ε, a)-approximates D2, if there exists a subset Z ′ ⊆ Z such that the following holds:

1. D1(Z ′) ≤ ε.

2. For every x ∈ sup(D1)\ Z ′ it holds that 1
a ≤ D1(x)

D2(x) ≤ a. 6

The following propositions show that the proximity measure “behaves” similarly to the standard statistical
distance measure. Since the proofs of following propositions are rather immediate, they are omitted from
this version. The first proposition enables us to use hybrid arguments when proving the proximity between
distributions.

Proposition 3.22 (Transitivity) Let D1, D2 and D3 be distributions over a set Z, let ε1, ε2 ∈ [0, 1] and
let a1, a2 ≥ 1. Assuming that D1 (ε1, a1)-approximates D2 and that D2 (ε2, a2)-approximates D3, then D1

(ε1 + a1ε2, a1a2)-approximates D3.

Proposition 3.23 (Average) Let
{
Di

1

}m

i=1
and
{
Di

2

}m

i=1
be two distributions ensembles over some set Z

such that for every i ∈ [m] it holds that Di
1 (εi, a)-approximates Di

2. Let P be some distribution over [m]
and for every j ∈ {0, 1} let Dj be the distribution over Z defined as Dj(x) =

∑m
i=1 P (i)Di

j(x). Then D1

(ε, a)-approximates D2, where ε = Exi ← P [εi].

Proposition 3.24 (Extension) Let D1 and D2 be two distributions such that D1 (ε, a)-approximates D2 and
let P : (sup(D1)∪ sup(D2)) → {0, 1}∗ be a random process such that for every x0 #= x2 ∈ sup(D1)∪ sup(D2)
it holds that Pr[P (x0) = P (x2)] = 0, then P (D1) (ε, a)-approximates P (D2).

The following proposition is where the usefulness of the new proximity measure lies, since it implies that
the expected value of any predicate over two distributions that are close to each other is similar.

Proposition 3.25 (Evaluation) Let D1 and D2 be two distributions such that D1 (ε, a)-approximates D2.
Let δ > 0 and let P : sup(D1) ∪ sup(D2) → [0, δ], then Exx ← D2 [P (x)] ≥ 1

a (Exx ← D1 [P (x)] − εδ).

Lemma 3.26 Duni

(
O(2m

|L| ·
ε2

A
2Cn3), 81

)
-approximates Dsrc.

6Actually, for the purpose of this paper, it would suffice to require that 1
a
≤ D1(x)

D2(x) . We chose to use the symmetric definition

since it seems more natural to us.

13

Proof: We “bridge” between Duni and Dsrc using the following hybrid distributions. For every hs ∈ H×k,
we define the hybrid algorithm Searcherhs

(r, y) that sets its first k hash functions to hs and then continues
as the original Searcher algorithm does. For any 0 ≤ k ≤ m − ofs let

Dk def
=
(
r, (hs, he), y

)
r ← {0,1}TA ,hs ← H×k,y ← Consist(r,hs),he ← Searcherhs (r,y)k+1,...,m−ofs

.

Note that D0 is equal to Dsrc and that Dm−ofs is equal to Duni. The following lemma states that every
neighboring distributions are close to each other.

Lemma 3.27 For every 0 ≤ k < m−ofs, let "k = |L|
3·2k and let δk = Pr(r,hs) ← {0,1}TA×H×k [(r, hs) is not balanced].

Then, Dk+1
(
δk + 160·n3

!k
, (1 + 4

n)
)
-approximates Dk.

Before proving Lemma 3.27, we use it to prove Lemma 3.26.
Proof: (of Lemma 3.26) By combining Lemma 3.27 and Proposition 3.22, we have that Duni(
81(
∑m−ofs−1

k=0 (δk + 160·n3

!k
), 81
)
-approximates Dsrc. Claim 3.18 yields that δk < 2n2

!k
and therefore

∑m−ofs−1
k=0 (δk+

160·n3

!k
) ∈ O(n3

!m−ofs
). Thus, Duni

(
O(2m

|L| ·
ε2

A
2Cn3), 81

)
-approximates Dsrc. !

Proof: (of Lemma 3.27) Note that the only difference between Dk and Dk+1 is their method of selecting y
and hk+1. Therefore, in the proof we concentrate on the induced distributions on these values only. For any
(r, hs) ∈ {0, 1}TA ×H×k, we define

• D0
r,hs

def
= (y, h)y ← Consist(r,hs),h ← Searcherhs (r,y)k+1

.

• D1
r,hs

def
= (y, h)h ← H,y ← Consist(r,(hs,h)).

The proof of Lemma 3.27 will follow from the next Lemma.

Lemma 3.28 Let (r, hs) ∈ {0, 1}TA ×H×k be balanced, then D1
r,hs (160·n3

!k
, (1 + 4

n))-approximates D0
t,hs.

By the extension and average properties of the proximity measure (Propositions 3.24 and 3.23), it fol-

lows from Lemma 3.28 that conditioned on any particular (r, hs) that is balanced, Dk+1
(

160·n3

!k
, (1 + 4

n)
)
-

approximates Dk. Since the probability that (r, hs) is not balanced is δk, the proof of Lemma 3.27 indeed
follows. It therefore remains to prove Lemma 3.28.

Proof: (of Lemma 3.28) Consider the Boolean matrix T |Consist(r,hs)|×|H|, where T (y, h) = 1 iff ACom(r, (hs, h))k+1 =
h(y) and zero otherwise. We identify the indices into T with the set Consist(r, hs) × H. The distribution
D1

r,hs can be described in relation to T as follows: Choose a random column of T and draw the index of a

random one entry from this column (where a “one entry” is simply an entry of the matrix that is assigned

the value one). To argue about this process, let us compare the matrix T with the matrix T̂ |Consist(r,hs)|×|H|,
where T̂ (y, h) = h(y). Note that T can be derived from T̂ by flipping all values in some of its columns
(where the column which corresponds to h is flipped whenever ACom(r, (hs, h))k+1 = 0). By the pairwise
independence of H, it follows that most columns of T̂ are balanced (have about the same number of zeros
and ones) and thus the same holds for T . Hence, the mass that D1

r,hs assigns to most one entries of T is

close to 1
|H| ·

2

|Consist(r,hs)| .

The distribution D0
t,hs can also be described in relation to T as follows: Choose a random row of T and

for 2 log(2) times draw a random entry from this raw. If a one entry is drawn, then choose its index and
stop drawing, otherwise select the index of the last drawn entry. Using again the pairwise independent of H,
we can prove that most rows of T are balanced. It follows that w.h.p. a one entry is drawn from T . Hence,
the mass that D0

r,hs assigns to most one entries in T is also close to 1
|H| ·

2

|Consist(r,hs)| . Since the support of

D1
r,hs and the indices set of one entries in T are the same, the proof of the claim follows.

Let us turn to a more formal discussion. We define

HBad def
=

{

h ∈ H : Pr
y ← Consist(r,hs)

[T (h, y) = 1] /∈ [
1

2
· (1 −

1

n
),

1

2
· (1 +

1

n
)]

}

.

14

The following claim, whose proof is immediate by the pairwise independence of H (see Theorem 2.2), states
that the relative size of HBad is small.

Claim 3.29 Prh ← H[h ∈ HBad] ≤ 2n2

!k
.

Similarly, we define

Y Bad def
=

{
y ∈ Consist(r, hs) : Pr

h ← H
[T (h, y) = 1] /∈ [

1

2
· (1 −

1

n
),

1

2
· (1 +

1

n
)]

}
.

The following claim states the size of Y Bad is small.

Claim 3.30
∣∣Y Bad

∣∣ < 54n3.

Proof: Let Y Bad
Law

def
=
{
y ∈ Consist(r, hs) : Prh ← H[T (h, y) = 1] < 1

2 · (1 − 1
n)
}
. We assume that

∣∣Y Bad
Law

∣∣ >
27n3 and derive a contradiction (the proof that

∣∣Y Bad\Y Bad
Law

∣∣ < 27n3 is analogous). Consider the matrix
T |Y Bad

Law
, the restriction of T to the rows Y Bad

Law . By definition, the rows of T |Y Bad
Law

have more zeros than ones.
Hence, the matrix T |Y Bad

Law
itself has more zeros than ones. On the other hand, by the pairwise independence

of H it follows that most columns of T |Y Bad
Law

are balanced (have about the same number of zeros of ones).
Therefore, T |Y Bad

Law
itself is balanced and a contradiction is derived. Formally, for h ∈ H let Th be the number

of ones in the h column, that is Th =
∑

y∈Y Bad
Law

T (y, h). We upper bound the expectation of Th as follows,

Ex
h ← H

[Th] = Ex
h ← H

[
∑

y∈Y Bad
Law

T (y, h)] =
∑

y∈Y Bad
Law

Ex
h ← H

[T (y, h)] <
∣∣Y Bad

Law

∣∣ (
1

2
−

1

2n
). (3)

Recall that T (h, y) = 1 if ACom(r, (hs, h))k+1 = h(y) and zero otherwise. Since the set Y Bad is large enough,
Theorem 2.2 yields that a random h splits w.h.p. the elements of Y Bad into two almost equals size according
to their consistency with A’s answer on h. That it, Prh ← H

[
Th <

∣∣Y Bad
Law

∣∣ · (1
2 − 1

3n)
]

< 9n2

|Y Bad
Law |

≤ 1
3n . Thus,

Ex
h ← H

[Th] (4)

≥
1

|H |
·

∑

h∈H:Th≥|Y Bad
Law |·(1

2−
1
3n)

∣∣Y Bad
Law

∣∣ · (
1

2
−

1

3n
)

> (1 −
1

3n
) ·
∣∣Y Bad

Law

∣∣ (
1

2
−

1

3n
)

>
∣∣Y Bad

Law

∣∣ (
1

2
−

1

2n
),

and a contradiction is derived. !

The next claim concludes the proof of Lemma 3.28 by presenting a set that actualizes the stated proximity
distance between D1

r,hs and D0
r,hs .

Claim 3.31 Let Z
def
=
{
(y, h) ∈ const(r, hs) ×H : y ∈ Y Bad

∨
h ∈ HBad

}
, then

1. D1
r,hs(Z) ≤ 160·n3

!k
.

2. For every (y, h) ∈ sup(D1
r,hs)\Z, it holds that

D1
r,hs (y,h)

D0
r,hs (y,h)

∈ [1
1+ 4

n
, 1 + 4

n].

Proving Claim 3.31.1. Consider the partitioning of Z into Z1
def
= const(r, hs) ×HBad and Z2

def
= Y Bad ×

(H\HBad). Since PrD1
r,hs

[Z1] ≤ Prh ← H[HBad], Claim 3.29 yields that PrD1
r,hs

[Z1] ≤ 2n2

!k
. Claim 3.30

yields that for any h ∈ H, it holds that Pr(y,h′) ← D1
r,hs

[y ∈ Y Bad | h′ = h] ≤ 54n3

|Consist(r,(hs,h))| . Recall that

for any h ∈ H\HBad, it holds that
∣∣Consist(r, (hs, h))

∣∣ > (1 − 1
n)

|Consist(r,hs)|
2 . Since (r, hs) is balanced, it

15

follows that
∣∣Consist(r, (hs, h))

∣∣ > (1 − 1
n) !k

2 . Thus, for any h ∈ H\HBad, it holds that Pr(y,h′) ← D1
r,hs

[y ∈

Y Bad | h′ = h] ≤ 1
(1− 1

n)
· 2·54n3

!k
≤ 150n3

!k
and therefore, PrD1

r,hs
[Z2] ≤ 150n3

!k
. We conclude that PrD1

r,hs
[Z] =

PrD1
r,hs

[Z1] + PrD1
r,hs

[Z2] ≤ 160·n3

!k
. !

Proving Claim 3.31.2. For (y, h) ∈ sup(D1
r,hs)\Z, it holds that D1

r,hs(y, h) = PrD1
r,hs

[h] ·PrD1
r,hs

[y | h] =
1

|H| ·
1

|{y′∈Consist(r,hs):T (y′,h)=1}| . Since h /∈ HBad, it follows that D1
r,hs(y, h) ∈ [γ

1+ 1
n

, γ
1− 1

n
], where γ =

1
|H|

2

|Consist(r,hs)| . Similarly, we have that D0
r,hs(y, h) = 1

|Consist(r,hs)| · PrD0
r,hs

[h | y]. Calculating the value of

PrD0
r,hs

[h | y], however, is a bit more subtle. Conditioned on y, it might be that the entry drawn from T is

zero. Thus, the conditional probability of h is not the uniform one over {h′ ∈ H : T (y, h′) = 1}. Still, since
y /∈ Y Bad, we have that the conditional probability that T (y, h′) #= 1 is in o(1

n). (Recall the description
D0

r,hs : For 2 log(n) rounds a random entry is selected from the y row of T , only if all the selected entries

are zeros, then a zero entry is chosen). Therefore, the conditional probability of h is close to uniform over
{h′ ∈ H : T (y, h′) = 1} and thus, D0

r,hs(y, h) = 1

|Consist(r,hs)| ·
1

|{h′∈H:T (y,h′)=1}| ·(1±o(1
n)). Using again the fact

that y /∈ Y Bad, it follows that D0
r,hs(y, h) ∈ [

γ−o(1
n)

1+ 1
n

,
γ+o(1

n)

1− 1
n

] and we conclude that
D1

r,hs (y,h)

D0
r,hs (y,h)

∈ [1
1+ 4

n
, 1+ 4

n]. !

Putting It All Together

Recall that Pr[Inverter(r, h, y) ∈ Wy] ≥ w(r, h, y). We therefore have that Pry ← L[MA(y) ∈ Wy] =
Pr(r,h,y) ← Dsrc

[Inverter(r, h, y) ∈ Wy] ≥ Ex(r,h,y) ← Dsrc
[wdec(r, h, y)]. We can now relate this expectation

to an expectation over the distribution Duni (on which we have a better handle). For that we use Lemma 3.26
regarding the proximity of the distributions Dsrc and Duni and the evaluation property of the proximity
measure (Proposition 3.25). Recalling that by its definition wdec(r, h, y) ≤ εA

2C/2n3 , we can deduce that

Pr
y ← L

[MA(y) ∈ Wy] ≥
1

81

(

Ex
(r,h,y) ← Duni

[wdec(r, h, y)] −O((
2m

|L|
·

ε2A
2Cn3

) ·
εA

2C/2n3
)

)

.

Finally, Lemma 3.19 yields that,

Pr
y ← L

[MA(y) ∈ Wy] ≥
1

81

(
Ω(

2m

|L|
·

ε3A
2Cn6

) −O(
2m

|L|
·

ε3A
2

3
2Cn6

)

)
∈ Ω(

2m

|L|
·
ε3A
n6

),

for large enough C. !

3.7 Achieving Ω(2m

|L| ·
ε2
A

n8).

Since the success probability of MA is at most the success probability of Inverter over Duni (at least by
our proof’s method) and since the latter is at most εA

2ofs , in order to get a better bound on MA’s success
probability, we have to consider smaller values for ofs. Following the same lines as the proof of Lemma 3.26,

we could prove that for any value of ofs, it holds that Duni

(
O(2m

|L| · n
32−ofs, 81

)
-approximates Dsrc (where

Duni and Dsrc are redefined w.r.t. the new value of ofs.). The problem is, however, that the value we have
previously chosen for ofs is the smallest value for which the “additive part” (i.e., the O(2m

|L| · n
32−ofs) part)

in the proximity gap between Duni and Dsrc does not overwhelm the success probability of Inverter on
Duni. Fortunately, by reexamining the proof of Lemma 3.26 w.r.t. ofs = 28 log(n) + log(1

εA
)3 + 13, we can

prove that the set that actualizes the proximity between Duni and Dsrc is rather evenly spread along the
possible pairs of (r, hs). That is, we have the following lemma.

Lemma 3.32 (Stronger version of Lemma 3.26) There exist a set T ⊆ sup(Duni) such that the following
holds:

1. For any (r, h, y) ∈ sup(Duni)\T it holds that 1
81 ≤ Dsrc(r,h,y)

Duni(r,h,y)
≤ 81.

16

2. Pr(r,h,∗) ← Duni

[∣∣Consist(r, hs) ∩ T
∣∣ > 54n4

]
∈ O(εA

n5).

The advantage of the above equation over Lemma 3.26, is that it guarantees that conditioned on almost
every choice of (r, hs), the distribution Duni approximates Dsrc well. In contrast to Lemma 3.26 that only
guarantees that Duni approximates Dsrc well on the average over the choice of (r, hs). In particular, the
above lemma allows us to relate the success probability of MA over Dsrc to the success probability of MA

over Duni conditioned on, almost, all values of (r, hs).
Before using Lemma 3.26 to derive Theorem 3.8 (rather than the weaker version of the previous section),

we first need to prove a different version of Lemma 3.19. Recall that Lemma 3.19 states that the success
probability of Inverter over Duni is noticeable, even if we ignore elements on which Inverter’s success
probability is higher than some threshold. The next lemma states that the success probability of Inverter
over Duni is noticeable, even if we ignore elements of some given set, T , whose relative part in all but εA

2 of

the pairs (r, hs) is not too big (keep in mind that the set of Lemma 3.26 is such a set).

Lemma 3.33 (New version of Lemma 3.19) Let T ⊆ sup(Duni) and let wT (x) = w(x) if x /∈ T and zero
otherwise. If Pr(r,h,∗) ← Duni

[∣∣Consist(r, hs) ∩ T
∣∣ > 54n4

]
< εA/2, then

Ex
(r,h,y) ← Duni

[
wT (r, hs, y)

]
∈ Ω(

2m

|L|
·
ε2A
n8

).

Proof: By a Markov argument it follows that the success probability of A is at least εA
2 , even if it is “forced”

to fail on every (r, hs) ∈ {0, 1}TA ×H×(m−ofs) such that εr,hs < εA
2 . Therefore, we assume w.l.o.g. that either

εr,hs = 0 or εr,hs ≥ εA
2 . The proof of the lemma follows by the next claim.

Claim 3.34 Let (r, hs) ∈ {0, 1}TA ×H×(m−ofs) and let V ⊆ Consist(r, hs) be a subset of size at most 54n4.
Then,

∑

y∈Consist(r,hs)\V

[w(r, hs, y)] ≥
εr,hs

4
.

The above Claim, whose proof we defer for now, yields that for any pair (r, h) such that
∣∣Consist(r, hs) ∩ T

∣∣ ≤
54n4, it holds that

∑

y∈Consist(r,h)

[wT (r, h, y)] ≥
εr,h

4
. (5)

Hence,

Ex
(r,h,y) ← Duni

[
wT (r, hs, y)

]

=
1

|{0, 1}TA ×H×ofs|
·

∑

(r,hs,∗)∈sup(Duni)

∑
y∈Consist(r,hs) wT (r, hs, y)
∣∣Consist(r, hs)

∣∣

≥
1

|{0, 1}TA ×H×ofs|
·
2m−ofs

3 |L|
∑

(r,hs,∗)∈sup(Duni):|Consist(r,hs)∩T |≤54n4,|Consist(r,hs)|≤ 3|L|

2m−ofs

∑

y∈Consist(r,hs)

wT (r, hs, y)

≥
2m−ofs

12 |L|
·

1

|{0, 1}TA ×H×ofs|
·

∑

(r,hs,∗)∈sup(Duni):|Consist(r,hs)∩T |≤54n4,|Consist(r,hs)|≤ 3|L|

2m−ofs

εr,h.

Recall that Lemma 3.28 states that Pr(r,h,∗) ← Duni

[∣∣Consist(r, hs) ∩ T
∣∣ > 54n4

]
∈ O(εA

n5) and that Claim

3.18 yields that Pr(r,hs,∗) ← Duni
[
∣∣Consist(r, hs)

∣∣ > 3|L|
2m−ofs] ∈ O

(
n22m−ofs

|L|

)
. Thus,

Ex
(r,h,y) ← Duni

[
wT (r, hs, y)

]
≥

2m−ofs

12 |L|
·
(

1 −O(
εA

n5
) −O(

n22m−ofs

|L|
)

)
· εA ∈ Ω(

2m

|L|
·
ε2A
n8

). !

17

Proof: (of Claim 3.34) Recall that w(r, h, ys) =
1
2 · Pr(oA=((∗,y0),(∗,y1))|oR=(h,∗))←〈Ar(1n),R(1n)〉[BndBreakL,W(oA, oR)

∧
y ∈ {y0, y1} | h1,...,m−ofs = hs]

and assume for simplicity some non-increasing order on the elements of Consist(r, hs). Claim 3.20 states

that
∑|Consist(r,hs)|

i=#
√

2ofs−1εr,hs$+1
w(r, hs, Consist(r, hs)i) ≥ εr,hs/2. We assume w.l.o.g. that εr,hs ≥ εA

2 . Therefore,
√

2ofs−1εr,hs >
√

2ofs−2εA > 54n4 and we conclude that
∑

y∈Consist(r,hs) \V w(r, hs, Consist(r, hs)i ≥ εr,hs

4 . !

Putting It All Together

Let T be the set whose existence is guaranteed by Lemma 3.32. Recall that Pr[Inverter(r, h, y) ∈ Wy] ≥
w(r, h, y). We therefore have that Pry ← L[MA(y) ∈ Wy] = PrX(r,h,y) ← Dsrc

[Inverter(r, h, y) ∈ Wy] ≥
Ex(r,h,y) ← Dsrc

[wT (r, h, y)]. Since Duni approximates Dsrc well on any element in T , it follows that

Pr
y ← L

[MA(y) ∈ Wy] ≥
1

81
Ex

(r,h,y) ← Duni

[wT (r, h, y)].

Finally, Lemma 3.33 yields that,

Pr
y ← L

[MA(y) ∈ Wy] ∈ Ω(
2m

|L|
·
ε2A
n8

). !

4 Applying Our New Proof to NOVY

The NOVY protocol is basically an instance of the protocol given in Construction 3.6, where the number of
rounds is set to n−1 and W is naturally defined by a one-way permutation (i.e., given a one-way permutation
f over strings of length n, then W consists on all the pairs (x, f(x)) where x ∈ {0, 1}n). The main difference
is that rather than using the same family of Boolean pairwise independent hash functions in each round, the
NOVY protocol uses a different family for each round. Specifically, the protocol’s ith family Hi is defined
by the set of all strings of the form 0i−11{0, 1}n−i, where for h ∈ Hi and x ∈ {0, 1}n the hash value h(x) is
defined as 〈h, x〉 mod 2.

We would like to apply Theorem 3.8 also to the NOVY protocol. We could do so directly if the families{
Hi
}n−1

i=1
would be guaranteed to be pairwise independent w.r.t. {0, 1}n. 7 The latter, however, does not

hold and therefore we have to refine our approach. Fortunately, the proof of the theorem does not require
that the families of Boolean hash function to be pairwise independent w.r.t. the initial set of inputs L (in
the NOVY case w.r.t. {0, 1}n), but rather to be pairwise independent w.r.t. the elements of the initial set
that are consistent with the protocol so far. It turns out that given that the initial set is {0, 1}n, the families
of Boolean hash functions used by NOVY are “enough” pairwise independent on the relevant set. Thus, the
proof of Theorem 3.8 can be also applied to the NOVY setting.

Let’s us turn to a more formal discussion. For every 0 ≤ k ≤ n − 2, h ∈ (H1 × · · · × Hk) and
z ∈ {0, 1}k, let Consist(h, z) be the set of elements inside {0, 1}n that are consistent with h and z (i.e.,{
y ∈ {0, 1}n : ∀i ∈ k hi(y) = zi

}
). By induction, it follows that for any possible pair (h, z) and element

y2 ∈ {0, 1}n−k, there exists a single element y1 ∈ {0, 1}k (which depends on y2 and on (h, z)) such that
y1◦y2 ∈ Consist(h, z). Hence, for any y ∈ Consist(h, z) there exists exactly one other element y′ ∈ Consist(h, z)
for which yk+2...,n = y′

k+2...,n. Thus, for any other element y′′ ∈ Consist(h, z), which is different than y and y′,
it holds that the random variables h(y) and h(y′′) (and also h(y′) and h(y′′)), where h is a random function
from Hk+1, are independent. Therefore, every subset Z ⊆ Consist(h, z) can be partitioned into two almost
equal size subsets (i.e., of difference in size at most one) such that Hk+1 is pairwise independent w.r.t. both
subsets. Through the proof of Theorem 3.8, we use the pairwise independence property of the hash functions
to prove that the following holds: Every fixed large enough subset Z ⊆ Consist(h, z) is partitioned w.h.p. by
a random Boolean hash function into two parts of almost the same size. 8 By the latter observation it holds

7Note that the proof of Theorem 3.8 does not require that the same family is used in each round.
8Actually, save but the proof of Claim 3.30, we only need this property w.r.t. Z = Consist(h, z). Note that by the above

observation about the structure of Consist(h, z), every h ∈ Hk+1 always partitions Consist(h, z) into two equal parts.

18

that with high enough probability such a partition also happens w.r.t. the family Hk+1. Thus, the proof of
Theorem 3.8 holds for the NOVY protocol as well.

5 Discussion and Further Research

One interesting question is to come with a reduction from interactive hashing to one-way permutation
that is even more security preserving. Particularly, is there such a reduction that is linearly-preserving
[HL92](i.e., where the time-success ratio of an adversary inverting the one-way permutation is only larger
by a multiplicative polynomial factor than the time-success ratio of an adversary breaking the interactive-
hashing protocol). There are three possible directions for an improvement: (1) Presenting a more secure
protocol than the NOVY protocol (or our variant), (2) Giving a better reduction from an adversary that
breaks the interactive hashing to one that breaks the one-way permutations, or (3) Improving the analysis
of the reduction mentioned in 2. Note that our improvement in parameters over the NOVY proof is mainly
in the third item (i.e., the analysis of the reduction). As we now argue, it seems that improving the analysis
in itself cannot imply a linear-preserving reduction.

Consider an algorithm M for inverting a one-way permutation that uses an adversary A of the NOVY
protocol in the following black-box manner: On y ∈ {0, 1}n, it keeps sampling random hash functions and
rewinding A, until it finds a series of n − 1 hash functions on which A’s answers is consistent with y. Then,
it returns one of A’s outputs as the candidate preimage of y. Assume that A operates as follows: For ε > 0,
it replies with random answers on the first n − log(1

ε) questions (hash functions) and then randomly selects
two distinct elements, y1, y2 ∈ {0, 1}n, that are consistent with the protocol so far. For the remaining hash
functions A does the following: if both y1 and y2 yield the same answer then it answers with this value,
otherwise, it selects randomly one of the elements and from now on answers according to this element. At
the end of the protocol A checks whether both y1 and y2 are consistent with the protocol. If the answer is
positive, it inverts f on both y1 and y2 and outputs the result (recall that the reduction does not assume
that A is efficient and therefore it is allowed for example to invert f using exhaustive search), otherwise it
outputs ⊥. Since H is a family of pairwise independent hah function, the random variables h(y1) and h(y2),
for a randomly chosen hash function h, are independent.9 Thus, the probability that A breaks the NOVY
protocol is exactly ε. On the other hand, in order for M to succeed, y has to be selected by A as one of
the elements in {y1, y2}. Since the number of elements the are consistent with the protocol after n − log(1

ε)
steps is 1/ε, it follows that this happens with probability 2ε. Given that y ∈ {y1, y2}, say that y = y1, M
has to choose in each step an hash function h for which A(h) = h(y) = h(y2). By the independence of h(y)
and h(y2), it follows that the probability that A(h) = h(y) #= h(y2) is exactly 1

4 . Therefore, the probability

that in all the last log(1
ε) steps it holds that A(h) = h(y) = h(y2), is at most (3

4)log(1
ε) < ε0.4. We conclude

that the overall success probability of MA is at most 2 · ε1.4.
We note that for the above case, it is easy to present and algorithm that inverts f , using black-box

access to A, with probability that is very close to ε. Nevertheless, it is possible that one can generalize
and strengthen the above argument to preclude any linearly-preserving black-box reduction from interactive
hashing to one-way permutation. Such a separation would be quite informative (an easier task would be to
rule out any black-box proof that the NOVY protocol is linearly preserving).

Presenting an interactive hashing protocol with fewer rounds is another challenging task. The number
of rounds in the NOVY and our protocols is quite high (i.e., θ(n)).10 Any substantial improvement over
this number would be very interesting. The complementary task would be to present a lower-bound on the
number rounds for any black-box reduction.

9As mentioned in Section 4, the hash functions used by the NOVY protocol are not exactly pairwise independent. However,
almost the same argument holds for the NOVY hash functions.

10It is easy to extend our analysis to a variant of our protocol that uses θ(log(n)) bits output hash functions rather than
Boolean hash functions. Therefore, the number of rounds in this modified protocol would be θ(n/log(n)). This was also recently
shown for a modification of the NOVY analysis [KS06]

19

References

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way
functions on NP-hardness. In ACM, editor, 38th IEEE FOCS, 2006.

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. J. Computer
and System Sciences, 37(2):156–189, 1988.

[Blu82] M. Blum. Coin flipping by phone. In IEEE COMPCOM, 1982.

[CCM98] Cachin, Crepeau, and Marcil. Oblivious transfer with a memory-bounded receiver. In FOCS:
IEEE Symposium on Foundations of Computer Science (FOCS), 1998.

[CS06] C. Crpeau and G. Savvides. Optimal reductions between oblivious transfers using interactive
hashing. In Advances in Cryptology - Eurocrypt ’06, Lecture Notes in Computer Science, 2006.

[CW77] I. Carter and M. Wegman. Universal classes of hash functions. In 9th ACM Symposium on
Theory of Computing, pages 106–112, 1977.

[DHRS04] Ding, Harnik, Rosen, and Shaltiel. Constant-round oblivious transfer in the bounded storage
model. In Theory of Cryptography Conference (TCC), LNCS, volume 1, 2004.

[GKL93] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators. SIAM
Journal of Computing, 22(6):1163–1175, 1993.

[Gol01] O. Goldreich. Randomized methods in computation - lecture notes. 2001.

[HHK+05] Haitner, Horvitz, Katz, Koo, Morselli, and Shaltiel. Reducing complexity assumptions for
statistically-hiding commitment. In EUROCRYPT: Advances in Cryptology: Proceedings of
EUROCRYPT, 2005.

[HKKM04] Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, and Ruggero Morselli. Reducing complexity
assumptions for statistically-hiding commitment. Cryptology ePrint Archive, Report 2004/341,
2004. http://eprint.iacr.org.

[HL92] A. Herzberg and M. Luby. Pubic randomness in cryptography. In Advances in Cryptology -
CRYPTO ’92, Lecture Notes in Computer Science, volume 740, pages 421–432. Springer, 1992.

[HR06] I. Haitner and O. Reingold. Statistically-hiding bit-commitment from exponentially hard one-
way functions. Manuscript in preparation, 2006.

[KS06] T. Koshiba and Y. Seri. Round-efficient one-way permutation based perfectly concealing bit
commitment scheme. ECCC, TR06-093, 2006.

[Lin03] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal of
Cryptology, 16(3):143–184, 2003.

[NOV06] M. Nguyen, S. Ong, and S. Vadhan. Statistical zero-knowledge arguments for NP from any
one-way function. Electronic Colloquium on Computational Complexity (ECCC), TR06-075,
2006.

[NOVY98] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for NP
using any one-way permutation. Journal of Cryptology, 11(2):87–108, 1998. preliminary version
in CRYPTO 92.

[NV06] M. Nguyen and S. Vadhan. Zero knowledge with efficient provers. In Proceedings of the 38th
ACM Symposium on Theory of Computing, 2006.

[OVY92] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Secure commitment against A
powerful adversary. In 9th Annual Symposium on Theoretical Aspects of Computer Science,
volume 577 of lncs, pages 439–448, Cachan, France, 13–15 February 1992. Springer.

20

[OVY93] Ostrovsky, Venkatesan, and Yung. Interactive hashing simplifies zero-knowledge protocol design.
In EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT, 1993.

21

http://eccc.hpi-web.de/

ECCC ISSN 1433-8092

