Limits on the Efficiency of One-Way
Permutation-Based Hash Functions

Jeong Han Kim
Daniel R. Simon
Microsoft Research
One Microsoft Way
Redmond WA 98052 USA
email: jehkim@microsoft.com,
dansimon@microsoft.com

Prasad Tetali
School of Mathematics
Georgia Tech
Atlanta, GA 30332-0160
email: tetali@math.gatech.edu

February 3, 1999

Technical Report
MSR-TR-99-06

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052



Limits on the Efficiency of One-Way
Permutation-Based Hash Functions

Jeong Han Kim
Daniel R. Simon
Microsoft Research
One Microsoft Way
Redmond WA 98052 USA
email: jehkim@microsoft.com,
dansimon@microsoft.com

Prasad Tetali
School of Mathematics
Georgia Tech
Atlanta, GA 30332-0160
email: tetali@math.gatech.edu

February 3, 1999

Abstract

Naor and Yung show that a one-bit-compressing universal one-
way hash function (UOWHEF) can be constructed based on a one-way
permutation. This construction can be iterated to build a UOWHF
which compresses by en bits, at the cost of en invocations of the one-
way permutation. We show that this construction is not far from
optimal, in the following sense: there exists an oracle relative to
which there exists a one-way permutation with inversion probabil-
ity 2=7(") (for any p(n) € w(logn)), but any construction of an n-bit-
compressing UOWHEF requires ©(\/n/p(n)) invocations of the one-way



permutation, on average. (For example, there exists in this relativized
world a one-way permutation with inversion probability n=«(), but
no UOWHEF that invokes it fewer than Q(y/n/logn) times.) Thus any
proof that a more efficient UOWHLF can be derived from a one-way
permutation is necessarily non-relativizing; in particular, no provable
construction of a more efficient UOWHF can exist based solely on
a “black box” one-way permutation. This result can be viewed as
a partial justification for the practice of building efficient UOWHFs
from stronger primitives (such as collision-intractable hash functions),
rather than from weaker primitives such as one-way permutations.

Key words: Oracle, relativization, cryptography, complexity the-
ory

1 Introduction

A universal one-way hash function (UOWHEF) is a family of length-decreasing
functions such that for any input x, it is computationally infeasible to find
a collision with a (a second input giving the same output) under a function
chosen randomly from the UOWHF family. UOWHF's were introduced by
Naor and Yung ([NY89]), who proved that they can be constructed given
any one-way permutation, and that moreover they suffice for constructing
a number of cryptographic tools, including digital signature schemes. Later
Rompel ([Rom90]) showed how to construct a UOWHEF from any one-way
function (not necessarily a permutation). One drawback of the constructions
in [NY89] and [Rom90] is their inefficiency; they require at least one invo-
cation of a one-way permutation for every bit of length decrease effected by
the hash function. (This efficiency can easily be improved to one invocation
per logn bits of length decrease, but it is not obvious how to improve it
further.) As a result, UOWHF's based on one-way functions or one-way per-
mutations (or their equivalents, such as block ciphers) are not widely used in
practice; instead, collision-intractable hash functions such as MD5 ([Riv92])
and SHA-1 ([NIST94]) are typically used.

It is natural to ask if more efficient provable constructions of UOWHF's
based on one-way permutations are possible. Here, we answer that question
in the negative, showing that the construction of [NY89] is not far from op-
timal, in the following sense: there exists an oracle relative to which there
exists a one-way permutation with inversion probability 277" but any con-



struction of an en-bit-compressing UOWHE (that is, one that maps n-bit

inputs to (1 — e)n-bit outputs, for some constant ¢) requires Q(y/n/p(n))
invocations of the one-way permutation. In particular, a one-way permu-
tation whose inversion probability is only known to be n~() can only be
used to construct a UOWHEF relative to this oracle if the UOWHF invokes
the one-way permutation at least Q(y/n/logn) times on average. Thus any
proof that a more efficient UOWHF can be derived from a one-way permu-
tation is necessarily non-relativizing; in particular, no provable construction
of a more efficient UOWHEF can exist based solely on a “black box” one-
way permutation. This result can be viewed as a partial justification for
the practice of building efficient UOWHF's from stronger primitives (such as
collision-intractable hash functions—see [BR97]), rather than from weaker
primitives such as one-way permutations (as was first proposed in [NY89]).

The method used in the proof is similar to that of [Sim98]; a random
permutation oracle is used as the one-way permutation, and is shown to
be one-way even in the presence of a collision-finding oracle. In this case,
however, the collision-finding oracle must be much weaker, since an oracle
that finds collisions in all one-way-permutation-based UOWHFs—including
known, provable constructions—would hence necessarily be able to invert the
underlying one-way permutation. Instead, a combinatorial argument is used
to show that a particular weak collision-finding oracle can find collisions in
any UOWHF that makes insufficient use of a one-way permutation.

2 Definitions

We review here some basic definitions.

Definition 1 A ¢(n)-one-way permutation f is a family {f.} of polynomial-
time computable permutations on n-bit strings such that for any non-uniform
polynomial-size circuit family C = {C,} the probability that C,, outpuls x on
input fo(x) for a uniformly chosen x € {0,1}" is at most g(n). (For any
n-bit @, f(x) is used to denote f,(x).)

Definition 2 ([NY89/)A universal one-way hash function family is a family
H={H, :{0,1}" = {0,1}"") m(n) < n} of polynomial-time computable
functions such that for any non-uniform polynomial-size circuit family C =



{C,}, the probability is n==") that C,, given input (h,x) with h € {0,1}2(")
(p a polynomial) and x uniformly chosen from their domains, oulputs ay # x

such that Hy ,(y) = Hp ().

3 The Main Result

The intuition underlying the theorem and proof is as follows: consider a
generic construction of a UOWHF H = {H},} from a (black-box) one-way
permutation f that compresses an n-bit input to (1 — ¢)n bits (for example,
an iterated version of the one presented in [NY89]). The “colliding set” S(x)
of inputs colliding with a given n-bit @ under Hj, is therefore of size 27"
(on average). Suppose that f is invertible (by some inverting algorithm) on
some tiny fraction of its inputs—say, 277" (where p(n) € w(logn)). Since
f can be an arbitrary one-way permutation, we can assume that the set
R of invertible inputs to f is not chosen optimally for the security of H;
let us say, then, that this “chosen set” R is generated by selecting inputs
uniformly at random. Moreover, since we make no a priori assumptions
about the collision-intractability or invertibility of H, we must assume that
if an element s of colliding set S(x), when input into Hp,, causes f to be
computed only on elements of chosen set R, then an adversary can reverse the
computation of Hy, ,(s) (since each of its invocations of f is invertible), and
recover s. Hence if such a member of S(x) exists, then there is no assurance
that the adversary cannot find it, invert it, and thus find a collision with .

Recasting this intuition in relativized terms, consider an oracle A which
accepts queries in the form of either n-bit strings or pairs containing an n-bit
string and a description of a circuit with n-bit-input oracle gates. Given an
n-bit string x, A will compute f(z) for some fixed random permutation f.
Given a string-circuit description pair (z,C'), it will treat the oracle gates in
the circuit as queries to compute f (i.e., as “f-queries”) and select a random
“chosen set” R of {0,1}" (independently for each distinct pair (x,C')) of
size roughly 2777(") (where p(n) € w(logn)). A will then return an s (if it
exists) such that (1) C(x) = C(s) (i.e., s € S(x)), and (2) every f-query
in the computation of C(s) has an input which is in R. (The randomness
can ultimately be removed from the oracle, of course, but the argument is
simpler if A is assumed to be randomized.)

This oracle will never invert a random f on a random input with better



than 279®() probability, as long as it’s only queried polynomially many
times, since it only ever reveals any information about a random fraction
2-0((") of the input-output pairs. Hence f remains a one-way permutation
even in the presence of this oracle. The question is whether there exists
a choice of —that is to say, a UOWHF construction—which minimizes
the probability that A will find an s. Equivalently, C' must minimize the
probability that the randomly chosen set R will “cover” (that is, include all
the f-queries in the computation of C' when the input is) at least one member
of colliding set S(x). We will call this probability the cover probability of x
under C'.

For example, suppose that the inputs to the f-queries in C' are distinct—
or at least independently distributed—over {0, 1}" for each distinct input to
C'. Then a simple probability calculation shows that the cover probability of
a randomly chosen = under C' is high unless there are Q(n/p(n)) f-queries,
on average, in the computation of C' on an input in S(x). (After all, there
are on average 27" members of S(); in order for none of them to be covered
by R, the probability that each one is covered must be very small—meaning
that there must be many f-queries for each member.)

Of course C need not be constructed so that f-queries are independently
distributed for different circuit inputs. For example, if the same f-queries
are used for all the circuit inputs in S(x), then the probability that they are
all covered is n=() unless that set of common f-queries is of size at least
n*M) . On the other hand, there is another way to find the inverse of some
f-queries: by using the fact that = is known, and hence any f-queries that
are used in the computation of C'(x) are also known to an adversary trying
to find a collision with . We will therefore modify A so that these invertible
input-output pairs (which make up a set we will denote by Q(x)) are added
to the chosen set R, along with the randomly chosen ones. (Note that adding
these values—which can be computed anyway for a random « in polynomial
time—doesn’t alter the one-wayness of f.)

Thus the modified A, given an n-bit string =, will compute f(z) for
some fixed random permutation f, and given a string-circuit description pair
(x,C), it will treat the oracle gates in the circuit as queries to compute f (“f-
queries”), select a chosen set R C {0,1}", of size roughly 2"~7(*) uniformly
at random, and return an s (if it exists) such that (1) s € S(x), and (2)
every f-query in the computation of C'(s) has an input which is in the set
R'= RU Q(x). We will prove that any choice of C' will with non-negligible



probability (over choices of A and ) result in at least one other member
of S(x) being covered by R’, unless the expected number of f-queries made

during the computation of C'(s) for a random s € S(x) is Q(y/n/p(n)). We
will not use the fact that €' happens to be a computational circuit; rather,
we will treat it as simply a mapping that associates each input s € S(x) with
a set of f-queries, and show the result combinatorially.

Theorem 3 There exists an oracle A relative to which 1) there exist 27°®().
one-way permutations, but 2) any universal one-way hash function which
compresses its input by a constant factor ¢ (that is, from n bits to (1 —e)n

bits) must invoke a one-way permutation an expected Q(y/n/p(n)) times.

Proof The structure of the proof is as follows: we first describe the sep-
arating oracle A formally and in detail, then show that it does not
significantly help any algorithm attempting to invert the random per-
mutation f on a random input. We then show how to convert the
question of the existence of efficient UOWHFs relative to A into a
purely combinatorial question about the existence of certain types of
arrangements of colored balls in bins. Finally we prove a lemma in this
combinatorial setting which, by the previous reduction, implies a lower
bound on the efficiency of UOWHF's relative to A. The proof of this
lemma is based in turn on the well-known “sunflower lemma” of Erdos

and Rado ([ER60]).

Oracle description. The oracle A will “contain” a permutation f
on strings of length n, and accept queries of the form (x, ('), where
(' is a circuit description. The circuit described may contain special
“f-gates” which denote a request to the oracle (“f-query”) to compute
f on the gate’s input, as well as oracle gates (“A-gates”) which denote
submission of the gate’s input as a normal query of A (“A-query”).
Given such a circuit description, the oracle first verifies that the output
length is at most a multiple 1 — ¢ (for some fixed constant ) of the
input length. If so, it first selects a random chosen set R C {0,1}"
by including each string independently with probability 277", and
outputs both C(z) (the output of C on input ) and a value «’ chosen
uniformly from the set of possible inputs to C' (not including z itself)
for which the following two conditions hold: (1) C' produces the same
output on both # and «’; and (2) when computing C'(2), all inputs



to f-gates are either members of R or else also inputs to an f-gate
during the computation of C' on input z. If this set is empty, then A
outputs only C'(x). Finally, A appends to its output the f-output set
Q(C, ) of all the input-output pairs for all the f-queries made during
the computation of C'(x). (A also outputs the f-output set Q(C,a’), if
it exists). We define A to select each chosen set R permanently for a
particular pair (x, (), so that repeated A-queries with the same input
always produce the same output; A therefore computes a well-defined
function.

We will consider the permutation f and the chosen sets R to be chosen
randomly. More precisely, we define for every n a family { A, } of oracles
of this type “containing” a permutation f : {0,1}" — {0,1}", with
each using a table of the necessary length to determine its choices for
every possible query circuit of size up to n*"), and prove that for any
polynomial-size circuit C', an A chosen uniformly at random from this
family will find a collision with a random x with constant probability
(over choices of A and x). It follows that this statement also holds
for any distribution on polynomial-size (in n) circuits generated by
selecting an H}, ,, uniformly at random from a UOWHF family H.

In fact, let Ay be the set of choices defining A apart from those made
in defining the permutation f. We can therefore consider a random
A as being constructed by choosing first an A; and then an f, both
uniformly at random. However, A; may actually be chosen optimally
for each €' and z; hence this theorem implies the existence of an Ay
such that the resulting A finds a collision for x with constant probability
(over the choice of f).

Non-invertibility of f. We will first show that f remains a one-
way permutation relative to A; in fact, we will show that polynomially
many queries to A reveal a negligible amount of information, even to a
computationally unbounded adversary, about a y chosen uniformly at
random, given its image f(y) under the randomly chosen permutation
f. The intuitive reason for this is clear: A reveals no distinguishing
information about preimage-image pairs in f whose preimages are not
in either a (relatively small) chosen set or an f-output set for some
A-query. Since the union of all chosen sets with all the f-output sets
(for polynomially many queries) still forms a negligible fraction of all

7



possible inputs, the probability is overwhelming that a random preim-
age y will fall outside this union; in that case, its image could equally
well be any of the images not already paired with a preimage in the
union.

Lemma 4 Let the following be chosen uniformly at random: a permu-
tation f; a set Ay of choices (apart from the permutation f) for an
instance of the oracle A described above; and an input y into f. Then
given the image f(y), and the results of polynomially many A-queries
chosen adaptively by an arbitrary computationally unlimited adversary,
the optimal guess fory is correct only with probability 2= (assum-

ing p(n) € w(logn)).

Proof Consider an oracle B which accepts inputs in the same form
as A’s (that is, in the form (z,C)), but simply returns the entire
chosen set R for that query (as determined by Ay), together with
R’s members’ images under f, as well as C'(x) and its associated
f-output set. (That is, rather than select an z’, B simply supplies
all the necessary information for a computationally unlimited ad-
versary to select its own 2’.) Consider also an arbitrary computa-
tionally unlimited adversary given the image f(y) of the preimage
y chosen uniformly at random, and choosing polynomially many
A-queries adaptively in order to guess y with optimal probability
of correctness. Note that although the adversary’s B-queries can
themselves contain nested B-queries, it is always possible to order
all of the queries so that earlier ones are not dependent on the
results of later ones.

Now suppose that none of the B-queries before a particular B-
query B; has resulted in an f-query with input y. Let S; be
the union of the chosen sets for all B-queries before B;, together
with the set of all inputs into f-queries made prior to B;. Let
F' be the set of all permutations on {0,1}" which are identical
to f on S;. Since S; is still only a fraction 279®(") of the set
of possible inputs into f, the set of possible values of y is still
27(1 — 279 Moreover, all those possible values are equally
likely, since the results of the B-queries are the same regardless
of which element of F' (which contains equally many functions for



each possible value of y) is the correct one. Hence the probability
that S;4;, contains y is 279®(") Extending the same reasoning,
the probability that y is ever contained in a chosen set or the input
to an f-query after polynomially many B-queries is 2-0®(") [t
follows that the same holds for A.

Conversion to a combinatorial setting. We will now show that
relative to a randomly chosen A, a collision can be found for a given in-
put in any UOWHF construction if it averages fewer than Q(y/n/p(n))
f-queries per input and compresses the input by some constant factor
¢. All that is required in that case is to show that for any circuit C,
there is a constant probability (over the choices of A and random input
x) that at least one value in the colliding set of # under C' generates
f-queries in €' that are all in either the chosen set or the f-output set
for the A-query (z,C'). If such an input value exists, then A will output
it on input (z,C), and C will therefore not be useful in constructing a

UOWHF relative to A.

The proof is purely combinatorial, treating (' as an arbitrary function
with arbitrary f-queries. If C' compresses the input by en bits, then
a randomly chosen input x will with non-negligible probability collide
with at least 2°" other inputs under C'. Consider these 2" inputs
as colors, each of which is assigned to at most k balls; these are in
turn placed arbitrarily (by an adversary, say) in one of 2" buckets
(representing the 2" possible values which the inputs can take on).
We will show that with high probability an f-output set of all the
buckets containing at least one ball of a particular randomly chosen
color, together with a chosen set of randomly chosen buckets selected
independently with probability 277(") will contain all the balls of at

least one other color, for k € O(y/n/p(n)) and p € w(logn).

It follows that given a circuit C' which averages O(y/n/p(n)) f-queries
per input, a randomly chosen x that collides with at least 2°" other
inputs under ', and a random chosen set of inputs selected indepen-
dently with probability 277(") A will with non-negligible probability
output an 2’ that collides with 2. (Note that if C' averages fewer than
z f-queries per input, and compresses by en bits, then a randomly
chosen input into C' will with probability at least 2/3 cause at most



3z f-queries, and with probability at least 1 — 2°*/2 collide with at
least 2°*/2 other inputs. Hence the only effect of variable numbers of
f-queries and variable-size colliding sets is to alter some constants.)

Combinatorial lemma. The following lemma proves the required
result:

Lemma 5 For a set of balls of 2°" different colors, with k or fewer balls
per color, placed arbitrarily into 2" buckets, let R be a set of buckets
chosen by including each bucket with probability 277" and let Q) be
the set of all buckets containing a ball of color ¢ (where ¢ is chosen
uniformly at random). Then there exvists a constant § > 0 such that
with constant probability (over the choices of R and ¢) QQ U R contains

all the balls of some color other than ¢, as long as k < d+/n/p(n).

Proof The proof uses the “sunflower” theorem of Erdos and Rado:

Lemma 6 (“sunflower lemma”; [ER60]) Let A = {Ay, ..., A} be
a collection of sets such that for all 1 # 5 and 1 # 7', AiNA; =
A, N Ay (we call such a collection a sunflower of size (). Let
f(k,0) be the minimum cardinality for a collection of sets of size
at most k such that it is guaranteed to contain as a subcollection

a sunflower of size (. Then f(k, () < (£ —1)kk!.

Now, set { = vyp~* + 1 (for some constant v), and let “bucket
set” A; be the set of buckets containing a ball of color :. Then
each arbitrary collection of o = ’ykp_k2k! bucket sets contains
a sunflower of size ¢, by the above lemma. We can thus form
sunflowers out of disjoint collections of bucket sets until fewer than
o bucket sets remain. The probability that ¢’s bucket set (call it
D) is not within one of the sunflowers is at most o /25" € 270(")
(assuming a judicious choice of § in Lemma 5). And if D is in one
of the sunflowers, then the common intersection of all the bucket
sets in D’s sunflower is guaranteed to be in QU R, and the sets are
moreover disjoint apart from the common intersection. Hence the
probability that a given bucket set from D’s sunflower is contained
in () U R is independent of whether any of the others is as well.
That probability is bounded below by p*; hence, the probability

10



that no bucket set is covered is at most (1 — p*)¢ < a for some
constant & < 1 (assuming a judicious choice of 7).

4 The Oracle Separation and “Black Box”
Constructions

The oracle A presented above can be used to show that any construction of a
UOWHF which assumes only a generic p(n)-one-way permutation, treating
it as a “black box” (i.e., an oracle) for the purposes of the construction,

and compresses by a factor €, must necessarily average at least Q(y/n/p(n))
invocations of the one-way permutation during its computation. Consider,
for instance, an oracle F' which, for a given size input of which the first half
of the input bits are ones, outputs the result of A on the latter half of the
input, and otherwise, computes the one-way permutation f described above
(which remains a one-way permutation even in the presence of A). A simple
permutation-preserving trick (mapping inputs of the form (11...12,z, ..., 2),
for suitably many repetitions of x, to (11...12, A(x)), and vice versa, for every
x) can be used to turn F' into a permutation oracle II; II preserves F’s “one-
wayness” (as long as most inputs still result in a simple computation of f) as
well as F’s feature of offering callers complete access to A (using polynomially
larger-sized inputs). It follows that any proof of a more efficient UOWHF
from a one-way permutation must implicitly assume that the permutation
oracle is not Il (which can be used to find collisions in any hash function
with insufficiently many calls to the one-way permutation). Hence the proof
cannot apply to an absolutely arbitrary one-way permutation.

Note that we are modeling the one-way permutation primitive here as
a single oracle answering arbitrary-length queries. It is common for “black
box” constructions based on abstract primitives to represent the primitive
as a family of oracles with fixed input and output lengths, rather than as
a single oracle; this is normally reasonable because such constructions are
typically relativizing, meaning that the constructions are no less provable
in the presence of longer-length oracles in the same family. A black-box
construction with a non-relativizing proof that did not permit the presence
of longer-length oracles could, in principle, exist (although it is difficult even
to imagine one); however, it would say nothing of practical significance, since

11



any feasible instantiation of the one-way permutation would necessarily be
implementable for any length which is polynomial in the original one. Hence
the conclusions drawn here based on the model of the one-way permutation
as a single oracle still apply to all practically relevant constructions.

5 Conclusions and Open Problems

The Q(y/n/p(n)) bound obtained here may well not be optimal; a natural
conjecture would be that any bound of the form Q(n/w(p(n))) would hold.
More careful analysis might yield a bound closer to the conjectured one. A
more carefully constructed oracle might also allow for a provability result in
the manner of [IR89], in which it is shown that any provable construction
of a key exchange protocol based solely on a one-way permutation would
automatically vield a proof that P # N P.

The result here differs from most previous oracle separations of crypto-
graphic primitives in that it focuses on the efficiency, rather than the secu-
rity, of potential constructions. (Another exception can be found in [Rud91],
which separates relativized key exchange protocols by efficiency in terms
of number of communication rounds.) There are several other primitives,
such as digital signatures and pseudorandom generators, which are known
to be provably constructible from one-way functions, but for which no truly
efficient one-way-function-based constructions have been found. Perhaps rel-
ativized methods may shed light on the question of whether the known con-
structions of such primitives can be made efficient enough to be practical.

References

[BR97] M. Bellare and P. Rogaway, “Collision-Resistant Hashing: Towards
Making UOWHF's Practical”, Proc. CRYPTO 97, 1997.

[Dam87] 1. Damgard, “Collision-Free Hash Functions and Public-Key Sig-
nature Schemes”, Proc. EUROCRYPT 87, 1987.

[Dam89] I. Damgard, “A Design Principle for Hash Functions”, Proc.
CRYPTO ’89, 1989.

12



[DPS0]

[ER60]

[TR89)]

[Mer89]

[NISTO4]

[INYS9]

[Riv92]

[Rom90]

[Rud91]

[Sim98]

D. Davies and W. Price, “The Application of Digital Signatures
Based on Public-Key Cryptosystems”, Proc. 5th International
Computer Communications Conference, 1980.

P. Erdos and R. Rado, “Intersection theorems for systems of sets”,

J. London Math. Soc. 85 (1960), pp. 85-90.

R. Impagliazzo and S. Rudich, “Limits on the Provable Conse-
quences of One-Way Permutations”, Proc. 21st Annual Sympo-
sium on Theory of Computing, 1989, pp. 44-61.

R. Merkle, “One Way Hash Functions and DES”, Proc. CRYPTO
’89, 1989.

National Institute of Standards and Technology, NIST FIPS PUB
186, “Digital Signature Standard”, U.S. Department of Commerce,
1994.

M. Naor and M. Yung, “Universal Hash Functions and their Cryp-
tographic Applications”, Proc. 21st Annual Symposium on Theory
of Computing, 1989.

R. Rivest, “The MD5 Message Digest Algorithm”, RFC 1321,
1992.

J. Rompel, “One-Way Functions Are Necessary and Sufficient for
Digital Signatures”, Proc. 22nd Annual Symposium on Theory of
Computing, 1990.

S. Rudich, “The Use of Interaction in Public Cryptosystems”,
Proc. CRYPTO 91, 1991.

D. Simon, “Finding Collisions on a One-Way Street: Can Secure

Hash Functions Be Based on General Assumptions?”, Proc. EU-
ROCRYPT 98, 1998.

13



