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Abstract. Pseudorandom generators are fundamental to many theoretical and applied aspects
of computing. We show how to construct a pseudorandom generator from any one-way function.
Since it is easy to construct a one-way function from a pseudorandom generator, this result shows
that there is a pseudorandom generator if and only if there is a one-way function.
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1. Introduction. One of the basic primitives in the study of the interaction
between randomness and feasible computation is a pseudorandom generator. Intu-
itively, a pseudorandom generator is a polynomial time-computable function g that
stretches a short random string z into a long string g(x) that “looks” random to any
feasible algorithm, called an adversary. The adversary tries to distinguish the string
g(x) from a random string the same length as g(x). The two strings “look” the same
to the adversary if the acceptance probability for both strings is essentially the same.
Thus, a pseudorandom generator can be used to efficiently convert a small amount of
true randomness into a much larger number of effectively random bits.

The notion of randomness tests for a string evolved over time: from set-theoretic
tests to enumerable [K65], recursive, and finally limited time tests. Motivated by cryp-
tographic applications, the seminal paper [BM82] introduced the idea of a generator
which produces its output in polynomial time such that its output passes a general
polynomial time test. The fundamental paper [Yao82] introduced the definition of a
pseudorandom generator most commonly used today and proves that this definition
and the original of [BM82] are equivalent.

The robust notion of a pseudorandom generator, due to [BM82], [Yao82], should
be contrasted with the classical methods of generating random looking bits as de-
scribed in, e.g., [Knuth97]. In studies of classical methods, the output of the generator
is considered good if it passes a particular set of standard statistical tests. The lin-
ear congruential generator is an example of a classical method for generating random
looking bits that pass a variety of standard statistical tests. However, [Boyar89] and
[K92] show that there is a polynomial time statistical test which the output from this

*Received by the editors February 22, 1993; accepted for publication (in revised form) August 18,

1997; published electronically April 7, 1999.
http://www.siam.org/journals/sicomp/28-4/24470.html

TDepartment of Numerical Analysis and Computer Science, Royal Institute of Technology, S-
100 44 Stockholm 70, Sweden (Johanh@nada.kth.se). This research was supported by the Swedish
National Board for Technical Development.

*Department of Computer Science, University of California at San Diego, La Jolla, CA 92093
(Russell@cs.ucsd.edu). This research was supported by NSF grant CCR 88-13632.

§Computer Science Department, Boston University, 111 Cummington St., Boston, MA 02215
(Lnd@cs.bu.edu). This research was supported by NSF grants CCR-9015276 and CCR-9610455.

YInternational Computer Science Institute, University of California at Berkeley, 1947 Center
Street, Berkeley, CA 94704 (Luby@icsi.berkeley.edu). This research was supported by NSERC grant
A8092 and NSF grants CCR-9016468 and CCR-9304722.

1364



A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1365

generator does not pass.

The distinction between the weaker requirement that the output pass some par-
ticular statistical tests and the stronger requirement that it pass all feasible tests is
particularly important in the context of many applications. As pointed out by [BM82],
in cryptographic applications the adversary must be assumed to be as malicious as
possible, with the only restriction on tests being computation time. A pseudorandom
generator can be directly used to design a private key cryptosystem secure against all
such adversaries.

In the context of Monte Carlo simulation applications, a typical algorithm uses
long random strings, and a typical analysis shows that the algorithm produces a cor-
rect answer with high probability if the string it uses is chosen uniformly. In practice,
the long random string is not chosen uniformly, as this would require more random
bits than it is typically reasonable to produce (and store). Instead, a short random
string is stretched into a long string using a simple generator such as a linear congru-
ential generator, and this long string is used by the simulation algorithm. In general,
it is hard to directly analyze the simulation algorithm to prove that it produces the
correct answer with high probability when the string it uses is produced using such a
method. A pseudorandom generator provides a generic solution to this problem. For
example, [Yao82] shows how pseudorandom generators can be used to reduce the num-
ber of random bits needed for any probabilistic polynomial time algorithm and thus
shows how to perform a deterministic simulation of any polynomial time probabilistic
algorithm in subexponential time based on a pseudorandom generator. The results
on deterministic simulation were subsequently generalized in [BH89], [BFNWY96].

Since the conditions are rather stringent, it is not easy to come up with a natural
candidate for a pseudorandom generator. On the other hand, there seem to be a vari-
ety of natural examples of another basic primitive: the one-way function. Informally,
f is one-way if it is easy to compute but hard on average to invert. If P=NP, then
there are no one-way functions, and it is not even known if P # NP implies there
are one-way functions. However, there are many examples of functions that seem
to be one-way in practice and that are conjectured to be one-way. Some examples
of conjectured one-way functions are the discrete logarithm problem modulo a large
randomly chosen prime (see, e.g., [DH76]), factoring a number that is the product of
two large randomly chosen primes (see, e.g., [RSAT78]), problems from coding theory
(see, e.g., [McEI78], [GKL93]), and the subset sum problem for appropriately chosen
parameters (see, e.g., [IN96]).

The paper [BM82] is the first to construct a pseudorandom generator based on a
one-way function. They introduce an elegant construction that shows how to construct
a pseudorandom generator based on the presumed difficulty of the discrete logarithm
problem. The paper [Yao82] substantially generalizes this result by showing how to
construct a pseudorandom generator from any one-way permutation. (Some of the
arguments needed in the proof were missing in [Yao82] and were later completed by
[Leving7]. Also, [Levin87] conjectured that a much simpler construction would work
for the case of one-way permutations, and this was eventually shown in [GL89].)

There are several important works that have contributed to the expansion of
the conditions on one-way functions under which a pseudorandom generator can be
constructed. [GMT82] and [Yao82] show how to construct a pseudorandom generator
based on the difficulty of factoring, and this was substantially simplified in [ACGS88].
When f is a one-way permutation, the task of inverting f(x) is to find . In the case
when f is not a permutation, the natural extension of successful inversion is finding
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any z' such that f(a’) = f(z). The paper [Levin87] introduces one-way functions
which remain one-way after several iterations and shows them to be necessary and
sufficient for the construction of a pseudorandom generator. The paper [GKL93]
shows how to construct a pseudorandom generator from any one-way function with
the property that each value in the range of the function has roughly the same number
of preimages. This expanded the list of conjectured one-way functions from which
pseudorandom generators can be constructed to a variety of nonnumber theoretic
functions, including coding theory problems.

However, the general question of how to construct a pseudorandom generator from
a one-way function with no structural properties was left open. This paper resolves
this question. We give several successively more intricate constructions, starting with
constructions for one-way functions with a lot of structure and finishing with the
constructions for one-way functions with no required structural properties.

This paper is a combination of the results announced in the conference papers
[ILL89] and [H90].

1.1. Concepts and tools. Previous methods, following [BM82], rely on con-
structing a function that has an output bit that is computationally unpredictable
given the other bits of the output, but is nevertheless statistically correlated with
these other bits. [GL89] provide a simple and natural input bit which is hidden from
(a padded version of) any one-way function. Their result radically simplifies the pre-
vious constructions of pseudorandom generators from one-way permutations and in
addition makes all previous constructions substantially more efficient. We use their
result in a fundamental way.

Our overall approach is different in spirit from previous constructions of pseu-
dorandom generators based on one-way functions with special structure. Previous
methods rely on iterating the one-way function many times, and from each iteration
they extract a computationally unpredictable bit. The approach is to make sure that
after many iterations the function is still one-way. In contrast, as explained below in
more detail, our approach concentrates on extracting and smoothing entropy in par-
allel from many independent copies of the one-way function. Our overall construction
combines this parallel approach with a standard method for iteratively stretching the
output of a pseudorandom generator.

The notion of computational indistinguishability provides one of the main con-
ceptual tools in our paper. Following [GM84] and [Yao82], we say that two probability
distributions D and & are computationally indistinguishable if no feasible adversary
can distinguish D from £. In these terms, a pseudorandom generator is intuitively the
following: let g be a polynomial time computable function that maps strings of length
n to longer strings of length ¢,, > n. Let X be a random variable that is uniformly
distributed on strings of length n and let Y be a random variable that is uniformly
distributed on strings of length ¢,,. Then g is a pseudorandom generator if g(X) and
Y are computationally indistinguishable.

The Shannon entropy of a distribution is a good measure of its information con-
tent. A fundamental law of information theory is that the application of a function
cannot increase entropy. For example, because X has n bits of entropy, g(X) can also
have at most n bits of entropy (see Proposition 2.6). The work presented in this pa-
per focuses on a computational analogue of Shannon entropy, namely computational
entropy. We say the computational entropy of g(X) is at least the Shannon entropy of
Y if g(X) and Y are computationally indistinguishable. If g(X) is a pseudorandom
generator, the computational entropy of g(X) is greater than the Shannon entropy of
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its input X, and in this sense g amplifies entropy.

We introduce the following generalizations of a pseudorandom generator based
on computational entropy. We say that g(X) is a pseudoentropy generator if the
computational entropy of g(X) is significantly more than the Shannon entropy of X.
We say that ¢g(X) is a false-entropy generator if the computational entropy of g(X)
is significantly more than the Shannon entropy of g(X).

We show how to construct a false-entropy generator from any one-way function,
a pseudoentropy generator from any false-entropy generator, and finally a pseudo-
random generator from any pseudoentropy generator. (The presentation of these
results in the paper is in reverse order.)

We use hash functions and their analysis in a fundamental way in our construc-
tions. This approach has its roots in [GKL93]. In [GL89], it turns out that the easily
computable bit that is hidden is the parity of a random subset of the input bits, i.e.,
the inner product of the input and a random string. This random inner product can
be viewed as a hash function from many bits to one bit.

Due to its importance in such basic algorithms as primality testing, randomness
has become an interesting computational resource in its own right. Recently, various
studies for extracting good random bits from biased “slightly random” sources that
nevertheless possess a certain amount of entropy have been made; these sources model
the imperfect physical sources of randomness, such as Geiger counter noise and Zener
diodes, that would have to actually be utilized in real life. (See [Blum8&4], [SV86],
[V87], [VV85], [CG8Y], and [McIn&7].) One of our main technical lemmas (Lemma 4.8)
can be viewed as a hashing lemma which is used to manipulate entropy in various
ways: it can be viewed as a method for extracting close to uniform random bits from
a slightly random source using random bits as a catalyst.

1.2. Outline. An outline of the paper is as follows.

In section 2 we give notation, especially as related to probability distributions
and ensembles. In section 3, we define the basic primitives used in the paper and a
general notion of reduction between primitives. We spend a little more time on this
than is conventional in papers on cryptography, since we want to discuss the effects
of reductions on security in quantitative terms.

Section 4 introduces the basic mechanisms for finding hidden bits and manipulat-
ing entropy with hash functions. The main result of the section is a reduction from a
false-entropy generator to a pseudorandom generator via a pseudoentropy generator.

In section 5, we present a construction of a pseudorandom generator from a one-
way function where preimage sizes can be estimated. Although such one-way func-
tions are very common, and so this is an important special case, the main reason for
including this is to develop intuition for general one-way functions.

Section 6 presents the most technically challenging construction: that of a false-
entropy generator from any one-way function. Combined with section 4, this yields
the main result of the paper: the construction of a pseudorandom generator from any
one-way function.

In section 7, we present a somewhat more direct and efficient construction of
a pseudorandom generator from any one-way function. This section uses the ideas
from sections 4, 5, and 6, but avoids some redundancy involved in combining three
generic reductions. Section 8 concludes by placing our results in the context of modern
cryptographic complexity.

2. Basic notation. N is the set of natural numbers. If S is a set, then #95 is
the number of elements in S. If S and T are sets, then S \ T is the set consisting of
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all elements in S that are not in 7. If a is a number, then |a| is the absolute value of
a, [a] is the smallest integer greater than or equal to a, and log(a) is the logarithm
base two of a.

Let z and y be bit strings. We let (z,y) denote the sequence x followed by y, and
when appropriate we also view this as the concatenation of z and y. If z € {0,1}",
then w; is the ith bit of z, xg; ;3 is (z4,...,2;5), and 2@y is (X1 D Y1, .., Ty S Yn)-

An m x n bit matrix z is indicated by = € {0,1}"*". We write ; ; to refer to
the (7, j)-entry in z. We can also view x as a sequence © = (x1,...,Z;,) of m strings,
each of length n, where in this case x; is the ith row of the matrix, or we can view x
as a bit string of length mn, which is the concatenation of the rows of the matrix.

The ® operation indicates matrix multiplication over GF[2]. If = € {0,1}" ap-
pears to the left of ®, then it is considered to be a row vector, and if it appears to the
right of ®, it is considered to be a column vector. Thus, if x € {0,1}™ and y € {0,1}",
then x @y = > | x; - y; mod 2. More generally, if z € {0,1}**™ and y € {0, 1}™*",
then x @ y is the £ x n bit matrix, where the (7, j)-entry is r ® ¢, where r is the ith
row of x and c is the jth column of y.

2.1. Probability notation. In general, we use capital and Greek letters to
denote random variables and random events. Unless otherwise stated, all random
variables are independent of all other random variables.

A distribution D on a finite set S assigns a probability D(z) > 0 to each = € S,
and thus ) _¢D(xz) = 1. We say a random variable X is distributed according
to D on S if for all x € S, Pr[X = z] = D(z), and we indicate this by X €p S.
We write D : {0,1}%" to indicate that D is supported on strings of length ¢,. We
sometimes, for convenience, blur the distinction between a random variable and its
distribution. If X; and X5 are random variables (that are not necessarily indepen-
dent), then (X;]|Xs = x2) denotes the random variable that takes on value z; with the
conditional probability Pr[X; = 21| X3 = x2] = Pr[X; = 21 A X3 = x2]/ Pr[Xs = 24].

If f is a function mapping S to a set T, then f(X) is a random variable that
defines a distribution &, where for all y € T, E(y) = >, c5 ¢( D(x). We let f(D)
indicate the distribution &.

We let X €;; S indicate that X is uniformly distributed in S; i.e., for all x € S,
Pr[X = z] = 1/4S. We let U,, indicate the uniform distribution on {0,1}"; i.e., X is
distributed according to U,, if X €, {0,1}™.

We sometimes want to indicate a random sample chosen from a distribution, and
we do this by using the same notation as presented above for random variables except
that we use lowercase letters; i.e., x €p S indicates that = is a fixed element of S
chosen according to distribution D.

If X is a real-valued random variable, then E[X] denotes the expected value X.
If E is a probabilistic event, then Pr[E] denotes the probability that event E occurs.

DEFINITION 2.1 (statistical distance). Let D and & be distributions on a set S.
The statistical distance between D and &£ is

Li(D,€) = Y |Pr[D(x)] — PrlE(2)]] /2.

TeS

z)=y

PROPOSITION 2.2. For any function f with domain S and for any pair of distri-
butions D and € on S, L1(f(D), f(£)) < L1(D,E).

2.2. Entropy. The following definition of entropy is from [S48].
DEFINITION 2.3 (information and entropy). Let D be a distribution on a set
S. For each x € S, define the information of x with respect to D to be Ip(x) =
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—log(D(x)). Let X €p S. The (Shannon) entropy of D is H(D) = E[Ip(X)]. Let Dy
and Dy be distributions on S that are not necessarily independent, and let X; €p, S
and X9 €p, S. Then the conditional entropy of D1 with respect to Do, H(D1|D2), is
EIzEDQS[H(X1|X2 = 3?2)]

We sometimes refer to the entropy H(X) of random variable X, which is equal to
H(D). We sometimes refer to the conditional entropy H(X;|X2) of X; conditioned
on Xo, which is equal to H(D;|D3).

The following variant definition of entropy is due to [Renyi70].

DEFINITION 2.4 (Renyi entropy). Let D be a distribution on a set S. The Renyi
entropy of D is Hren(D) = —log(Pr[X = Y]), where X €p S and Y €p S are
independent.

There are distributions that have arbitrarily large entropy but have only a couple
of bits of Renyi entropy.

PROPOSITION 2.5. For any distribution D, Hren(D) < H(D).

We sometimes use the following proposition implicitly. This proposition shows
that a function cannot increase entropy in a statistical sense.

PROPOSITION 2.6. Let f be a function and let D be a distribution on the domain
of f. Then H(f(D)) < H(D).

The following definition characterizes how much entropy is lost by the application
of a function f to the uniform distribution.

DEFINITION 2.7 (degeneracy of f). Let f : {0,1}" — {0,1}% and let X €y
{0,1}™. The degeneracy of f is D, (f) = H(X|f(X)) = H(X) - H(f(X)).

2.3. Ensembles. We present all of our definitions and results in asymptotic
form. Ensembles are used to make the asymptotic definitions, e.g., to define primitives
such as one-way functions and pseudorandom generators, and to define the adversaries
that try to break the primitives. In all cases, we use n € N as the index of the ensemble
and, implicitly, the definition and/or result holds for all values of n € N.

In our definitions of ensembles, the input and output lengths are all polynomially
related. To specify this, we use the following.

DEFINITION 2.8 (polynomial parameter). We say parameter k, is a polynomial
parameter if there is a constant ¢ > 0 such that for alln € N,

1

cnt

<k, <cnf.

We say k,, is a P-time polynomial parameter if in addition there is a constant ¢’ > 0
such that, for all n, k, is computable in time at most ne.

In many uses of a polynomial parameter k,, k, is integer valued, but it is some-
times the case that k,, is real valued.

DEFINITION 2.9 (function ensemble). We let f : {0,1}» — {0,1}* denote a
function ensemble, where t,, and £, are integer-valued P-time polynomial parameters
and where f with respect to n is a function mapping {0,1}n to {0,1}n. If f is
injective, then it is a one-to-one function ensemble. If f is injective and €, = t,,
then it is a permutation ensemble. We let f: {0,1}t x {0,1}» — {0,1} denote a
function ensemble with two inputs. In this case, we sometimes consider f as being a
function of the second input for a fived value of the first input, in which case we write
fz(y) in place of f(x,y).

DEFINITION 2.10 (P-time function ensemble). We say f : {0,1}» x {0,1}% —
{0,1}™ 4s a T),-time function ensemble if f is a function ensemble such that, for all
x €{0,1}, for all y € {0,1}*~, f(x,y) is computable in time T,,. We say f is a P-
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time function ensemble if there is a constant ¢ such that, for alln, T,, < cn®. We say
f is a mildly nonuniform P-time function ensemble if it is a P-time function ensemble
except that it has an additional input a, called the advice, that is, an integer-valued
polynomial parameter that is not necessarily P-time computable.

These definitions generalize in a natural way to functions with more than two
inputs. Sometimes we describe functions that have variable length inputs or outputs;
in these cases we implicitly assume that the string is padded out with a special blank
symbol to the appropriate length.

In some of our intermediate reductions, we use certain statistical quantities in
order to construct our new primitive. For example, we might use an approximation
of the entropy of a distribution in our construction of a pseudoentropy generator.
Although in many cases these quantities are not easy to approximate, the number
of different approximation values they can take on is small. This is the reason for
the definition of a mildly nonuniform P-time function ensemble in the above defini-
tion. In all the definitions we give below, e.g., of one-way functions, false-entropy
generators, pseudoentropy generators, and pseudorandom generators, there is also an
analogous mildly nonuniform version. In Proposition 4.17, we show how to remove
mild nonuniformity in the final construction of a pseudorandom generator.

DEFINITION 2.11 (range and preimages of a function). Let f : {0, 1} — {0, 1}
be a function ensemble. With respect to n, define

range; = {f(z): x € {0,1}"}.

For each y € rangey, define

preg(y) = {z € {0,1}" : f(z) = y}.

DEFINITION 2.12 (regular function ensemble). We say function ensemble f :
{0,1}" — {0,1} is o,-regular if fpres(y) = o, for all y € range;.

DEFINITION 2.13 (Dy). Let f: {0,1}" — {0,1}* be a P-time function ensem-
ble. For z € rangey, define the approximate degeneracy of z as

D;(z) = [log(tpres(2))] -

Notice that D(z) is an approximation to within an additive factor of 1 of the
quantity n — Iyx)(2). Furthermore, E[Ds(f(X))] is within an additive factor of 1 of

the degeneracy of f. If f is a o,,-regular function then, for each z € rangey, D r(z) is
within an additive factor of 1 of log(oy,), which is the degeneracy of f.

DEFINITION 2.14 (probability ensemble). We let D : {0, 1} denote a probability
ensemble, where £, is an integer-valued P-time polynomial parameter and where D
with respect to n is a probability distribution on {0,1}¢".

DEFINITION 2.15 (P-samplable probability ensemble). We let D : {0,1}% denote
a probability ensemble that, with respect to n, is a distribution on {0,1}' that can
be generated from a random string of length r,, for some ry; i.e., there is a function
ensemble f : {0,1}™ — {0,1}* such that if X €y {0,1}" then f(X) has the distri-
bution D. We say D is a T,-samplable probability ensemble if, for all x € {0,1}"™,
f(x) is computable in time T,,. We say D is P-samplable if f is a P-time function
ensemble, and D is mildly nonuniformly P-samplable if f is a mildly nonuniform
P-time function ensemble.
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DEFINITION 2.16 (copies of functions and ensembles). Let k,, be an integer-valued
P-time polynomial parameter. If D : {0,1}" is a probability ensemble, then D :
{0,1}¢n*n s the probability ensemble where, with respect to parameter n, D*» consists
of the concatenation of k, independent copies of D. Similarly, if f : {0,1}™ —
{0,1}¢ is a function ensemble, then fkn . {0,1}mnkn — [0, 1}k is the function
ensemble where, for y € {0, 1}Fnxmn,

o) = (Fn), - F )

3. Definitions of primitives and reductions. Primitives described in this
paper include one-way functions and pseudorandom generators. The primitives we
describe can be used in cryptographic applications but are also useful as described
in the introduction in other applications. In the definition of the primitives, we need
to describe what it means for the primitive to be secure against an attack by an
adversary. We first introduce adversaries and security and then describe the basic
primitives that we use thereafter.

3.1. Adversaries and security. An adversary is, for example, trying to invert
a one-way function or trying to distinguish the output of a pseudorandom generator
from a truly random string. The time—success ratio of a particular adversary is a mea-
sure of its ability to break the cryptographic primitive. (Hereafter, we use “primitive”
in place of the more cumbersome and sometimes misleading phrase “cryptographic
primitive.”) The security of a primitive is a lower bound on the time-success ratio of
any adversary to break the primitive.

In the constructions of some primitives, we allow both private and public inputs.
A public input is part of the output of the primitive and is known to the adversary
at the time it tries to break the primitive. When we construct one primitive based
on another, the constructed primitive often has public inputs. At first glance it could
seem that these public inputs are not useful because an adversary knows them at the
time it tries to break the constructed primitive. On the contrary, public inputs turn
out to be quite useful. Intuitively, this is because their value is randomly chosen,
and the adversary cannot a priori build into its breaking strategy a strategy for all
possible values.

The private input to a primitive is not directly accessible to the adversary. The
security parameter of a primitive is the length of its private input. This is because
the private input to the primitive is what is kept secret from the adversary, and thus
it makes sense to measure the success of the adversary in terms of this.

DEFINITION 3.1 (breaking adversary and security). An adversary A is a function
ensemble. The time—success ratio of A for an instance f of a primitive is defined as
R:, = T,/spn(A), where t,, is the length of the private input to f, T, is the worst-
case expected running time of A over all instances parameterized by n, and sp,(A) is
the success probability of A for breaking f. In this case, we say A is an R-breaking
adversary for f. We say f is R-secure if there is no R-breaking adversary for f.

A mildly nonuniform adversary for a mildly nonuniform P-time function ensem-
ble f that has advice a,, is a function ensemble A which is given a,, as an additional
input. The success probability and time—success ratio for a mildly nonuniform adver-
sary is the same as for uniform adversaries.

The definition of the success probability sp,(A) for f depends on the primitive
in question; i.e., this probability is defined when the primitive is defined. Intuitively,
the smaller the time—success ratio of an adversary for a primitive, the better the
adversary is able to break the primitive, i.e., it uses less time and/or has a larger
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success probability.

The above definitions are a refinement of definitions that appear in the literature.
Previously, an adversary was considered to be breaking if it ran in polynomial time and
had inverse polynomial success probability. The advantage of the definition introduced
here is that it is a more precise characterization of the security of a primitive. This
is important because different applications require different levels of security. For

some applications polynomial security is enough (e.g., Ry, = t,'°) and for other
applications better security is crucial (e.g., Ry, = 210%2(“), or even better Ry, =
2vin),

3.2. One-way function.

DEFINITION 3.2 (one-way function). Let f : {0,1}» — {0,1}% be a P-time
function ensemble and let X € {0,1}t». The success probability of adversary A for
inverting f is

spn(A) = Prf(A(f(X))) = F(X)].

Then f is an R-secure one-way function if there is no R-breaking adversary for f.

A function cannot be considered to be “one-way” in any reasonable sense in case
the time to invert it is smaller than the time to evaluate it in the forward direction.
Thus, for example, if there is an O(t,,)-breaking adversary for f, then it is not secure
at all. On the other hand, an exhaustive adversary that tries all possible inputs to
find an inverse is t5 @, 2t»_breaking. Thus, the range of securities that can be hoped
for falls between these two extremes.

3.3. Pseudorandom generator. The following definition can be thought of
as the computationally restricted adversary definition of statistical distance. The
original idea is from [GM84] and [Yao82].

DEFINITION 3.3 (computationally indistinguishable). Let D : {0,1}% and & :
{0,1}%n be probability ensembles. The success probability of adversary A for distin-
guishing D and & is

spa(4) = | Pr[A(X) = 1] - Pr{A(Y) = 1],

where X has distribution D and Y has distribution £. D and £ are R-secure compu-
tationally indistinguishable if there is no R-breaking adversary for distinguishing D
and €.

The following alternative definition of computationally indistinguishable more
accurately reflects the trade-off between the running time of the adversary and its
success probability. In the alternative definition, success probability is defined as
sph (A) = (spn(A))2. This is because it takes 1/sp/,(A) trials in order to approximate
spn(A) to within a constant factor.

DEFINITION 3.4 (computationally indistinguishable (alternative)). This is ex-
actly the same as the original definition, except the success probability of adversary
A'is spl,(4) = (spn(4))2.

In all cases except where noted, the strength of the reduction is the same under
either definition of computationally indistinguishable, and we find it easier to work
with the first definition. However, there are a few places where we explicitly use the
alternative definition to be able to claim the reduction is linear-preserving.

Strictly speaking, there are no private inputs in the above definition, and thus
by default we use n as the security parameter. However, in a typical use of this
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definition, D is the distribution defined by the output of a P-time function ensemble
(and thus D is P-samplable), in which case the length of the private input to this
function ensemble is the security parameter. In some circumstances, it is important
that both D and £ are P-samplable; e.g., this is the case for Proposition 4.12.

The paper [Yao82] originally gave the definition of a pseudorandom generator as
below, except that we parameterize security more precisely.

DEFINITION 3.5 (pseudorandom generator). Let g : {0,1}» — {0,1}% be a
P-time function ensemble where ¢, > t,. Then g is an R-secure pseudorandom
generator if the probability ensembles g(Uy,,) and U,, are R-secure computationally
indistinguishable.

The definition of a pseudorandom generator only requires the generator to stretch
the input by at least one bit. The following proposition provides a general way to
produce a pseudorandom generator that stretches by many bits from a pseudorandom
generator that stretches by at least one bit. This proposition appears in [BH89] and
is due to O. Goldreich and S. Micali.

PROPOSITION 3.6. Suppose g : {0,1}" — {0,1}"*! is a pseudorandom generator
that stretches by one bit. Define g (z) = g(x), and inductively, for all i > 1,

g (@) = (99D (@) (1, 1) 9 (@) sty

Let k,, be an integer-valued P-time polynomial parameter. Then g% is a pseudoran-
dom generator. The reduction is linear-preserving.

In section 3.6 we give a formal definition of reduction and what it means to be
linear-preserving, but intuitively it means that ¢®*») as a pseudorandom generator is
almost as secure as pseudorandom generator g.

3.4. Pseudoentropy and false-entropy generators. The definitions in this
subsection introduce new notions (interesting in their own right) which we use as
intermediate steps in our constructions.

The difference between a pseudorandom generator and a pseudoentropy generator
is that the output of a pseudoentropy generator doesn’t have to be computationally
indistinguishable from the uniform distribution; instead it must be computationally
indistinguishable from some probability ensemble D that has more entropy than the
input to the generator. Thus, a pseudoentropy generator still amplifies randomness
so that the output randomness is more computationally than the input randomness,
but the output randomness is no longer necessarily uniform.

DEFINITION 3.7 (computational entropy). Let f : {0,1}» — {0,1}* be a P-
time function ensemble and let s, be a polynomial parameter. Then f has R-secure
computational entropy s, if there is a P-time function ensemble f’ : {0,1}""» —
{0,1}% such that f(Uy,) and f'(U,n, ) are R-secure computationally indistinguishable
and H(f' (Up,,)) > sn.

DEFINITION 3.8 (pseudoentropy generator). Let f : {0,1}t» — {0,1}%" be a P-
time function ensemble and let s,, be a polynomial parameter. Then f is an R-secure
pseudoentropy generator with pseudoentropy s, if f(Us, ) has R-secure computational
entropy ty + Sn.

If f is a pseudorandom generator, then it is easy to see that it is also a
pseudoentropy generator. This is because f(U;, ) and Uy, are computationally indis-
tinguishable and by definition of a pseudorandom generator, ¢,, > t,. Consequently,
HU,) = ¢, > t, + 1; ie., f is a pseudoentropy generator with pseudoentropy at
least 1.

A false-entropy generator is a further generalization of pseudoentropy generator.
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A false-entropy generator doesn’t necessarily amplify the input randomness; it just
has the property that the output randomness is more computationally than it is
statistically.

DEFINITION 3.9 (false-entropy generator). Let f : {0,1}*» — {0,1}% be a P-
time function ensemble and let s,, be a polynomial parameter. Then f is an R-secure
false-entropy generator with false entropy s, if f(Us,) has R-secure computational
entropy H(f(U,)) + Sn.-

Note that, in the definition of computational entropy, the function ensemble f’
that is computationally indistinguishable from f is required to be P-time computable.
This is consistent with the definition of a pseudorandom generator, where the distri-
bution from which the pseudorandom generator is indistinguishable is the uniform
distribution. There is also a nonuniform version of computational entropy, where f’
is not necessarily P-time computable, and corresponding nonuniform versions of a
pseudoentropy generator and false-entropy generator. It turns out to be easier to
construct a false-entropy generator f, where f’ is not necessarily P-time computable
from a one-way function, than it is to construct a false-entropy generator f, where f’ is
P-time samplable. Using this approach and a nonuniform version of Proposition 4.12,
[ILL89] describes a nonuniform reduction from a one-way function to a pseudorandom
generator. However, a uniform reduction using Proposition 4.12 requires that f’ be
P-time computable. Thus, one of the main difficulties in our constructions below is
to build a false-entropy generator f, where f’ is P-time computable.

3.5. Hidden bits. In the construction of a pseudorandom generator from a one-
way function, one of the key ideas is to construct from the one-way function another
function which has an output bit that is computationally unpredictable from the
other output bits (it is “hidden”) and yet statistically somewhat predictable from the
other output bits. This idea is used in the original construction of a pseudorandom
generator from the discrete logarithm problem [BM82] and has been central to all
such constructions since that time.

DEFINITION 3.10 (hidden bit). Let f : {0,1}» — {0,1}*» and b : {0,1}!» —
{0,1} be P-time function ensembles. Let D : {0,1}'» be a P-samplable probability
ensemble, let X €p {0,1}", and let 3 €y {0,1}. Then b(X) is R-secure hidden given
F(X) if (f(X),b(X)) and (f(X),3) are R-secure computationally indistinguishable.

3.6. Reductions. All the results presented in this paper involve a reduction
from one type of primitive to another.

We make the following definitions to quantify the strength of reductions. The
particular parameterization of security and the different quantitative measures of the
security-preserving properties of a reduction are derived from [Luby96], [HL92].

Intuitively, a reduction constructs from a first primitive f on inputs of length ¢,, a
second primitive ¢(f) on inputs of length t,.. The reduction also specifies an oracle TM
M) such that if there is an adversary A for breaking ¢(/), then M4 is an adversary
for breaking f. How much security is preserved by the reduction is parameterized by S.

DEFINITION 3.11 (reduction). Let t, and t], be polynomial parameters and let
S: N xRT — RT. An S-reduction from primitive 1 to primitive 2 is a pair of oracles
g and M) so that the following hold:

e For each P-time function ensemble f : {0,1}t» — {0,1}*~ that instantiates
primitive 1, g\ : {0, l}t; — {0, l}z/n instantiates primitive 2.

o ¢\ is a P-time function ensemble, and on inputs of length t,
calls to f on inputs of length t,.

e Suppose A is an adversary with time—success ratio Rg; for ¢\ on inputs

it only makes



A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1375

of length t,,. Define Ry, = S(n, " ) Then M™ is an adversary with
time—success ratio Ry, for f on mputs of length t.,
To discuss the security—presemmg properties of the Teductzon, we compare how well
A breaks ¢\ with how well M breaks f on inputs of similar size. We say the
reduction is
e linear-preserving if Ry = N9 . O(RY),

e poly-preserving if Ry = N®) 'RIO(N)O(U;

e weak-preserving if Ry = N9 R?vo(l)o(l).

A mildly nonuniform reduction has the same properties except that ) and M)
are both allowed access to an integer-valued polynomial parameter a,, that depends on
f. The same notions of security preservation apply to mildly nonuniform reductions.

f can always be broken in time exponential in ¢,,. Therefore, if R;% > 2t or even

Q(1) Q1) .
;, > 2t =2n in the case of a weak-preserving reduction, M) can ignore the

oracle and break f by brute force. Therefore, we can assume without loss of generality
that R}, < 2'».

Obv1ous from the definition of reduction are the following propositions that say
that security is preserved by reductions and that reductions can be composed.

PROPOSITION 3.12. If (¢©), M) is a (mildly nonuniform) S-reduction from
primitive 1 to primitive 2 and f is a (mildly nonuniform) P-time function ensemble
that instantiates primitive 1 with security Ry , then g is a (mildly nonuniform)
P-time function ensemble that instantiates primitive 2 with security Rg,ﬂ .

ProrosiTION 3.13. If (g1 7Ml(')) is a (mildly nonuniform) Si-reduction from

primitive 1 to primitive 2, and if (gg),M(')) is a (mz'ldly nonuniform) Ss-reduction

from primitive 2 to primitive 3, then (g, (95) Ml( : )) is a (mildly nonuniform) S-

reduction from primitive 1 to primitive 3, where S(N, R) = Sa(N, S1(N, R)).

Although we phrase our definitions in terms of asymptotic complexity, one can
easily interpret them for fixed length inputs in the context of an actual implementa-
tion, just as one does for algorithm analysis.

Clearly, in standard situations, ¢}, > t,, and Ry, > R}, , and the closer these two
inequalities are to equalities the more the security of f is transferred to g. We now
describe how the slack in these inequalities affects the security-preserving properties
of the reduction.

The number of calls M4) makes to A is invariably either a constant or depends
polynomially on the time-success ratio of A, and thus R;, is at most polynomial in
R}, . The slackness in this inequality turns out not to be the major reason for a loss
in securlty in the reduction; instead the loss primarily depends on how much larger
t) is than t,. If ¢/, is much larger than ¢,, then R; is much larger as a function of
t, than Rl’f, is as a function of ¢/,. We can formalize this as follows.

PROPOSITION 3.14.

o Ift =t,, M) runs in time polynomial in n (not counting the running time
of A), and sp,(M™) = sp, (A)/n®D), then the reduction is linear-preser-
ving.

. If t’ = O(tn), M™ runs in time polynomial in R;%, and sp,(MW) =

( )/nP®) | then the reduction is poly-preserving.

° If t/ O(l)

spe ) (A)/n®W) | then the reduction is weak-preserving.

, M runs in time polynomial in R, , and sp,(M)) =
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It is important to design the strongest reduction possible. The techniques de-
scribed in this paper can be directly used to yield poly-preserving reductions from
regular or nearly regular (with polynomial time computable degree of regularity) one-
way functions to pseudorandom generators [Luby96], and this covers almost all the
conjectured one-way functions. However, the reduction for general one-way functions
is only weak-preserving.

4. Hidden bits, hash functions, and computational entropy.

4.1. Constructing a hidden bit. How do we go about constructing a function
such that one of its output bits is computationally unpredictable yet statistically cor-
related with its other output bits? The following fundamental proposition of [GL89]
(strengthened in [Levin93]) provides the answer.

PROPOSITION 4.1. Let f : {0,1}" — {0,1}% be a one-way function. Then X ®R
is hidden given (f(X), R), where X, R €4 {0,1}™. The reduction is linear-preserving
with respect to the alternative definition of computationally indistinguishable.

Proposition 4.1 presents an elegant, simple, and general method of obtaining a
hidden bit from a one-way function. We need the following stronger proposition of
[GL89] (see also [Levin93]) in some of our proofs.

PROPOSITION 4.2. There is an oracle TM M with the following properties: Let
A be any adversary that accepts as input n bits and outputs a single bit. Then M)
on input parameter b, > 0 outputs a list L of n-bit strings with the following property:
For any fized x € {0,1}"™, if it is the case that

|Pr[A(R) = 2 ® R] — Pr[A(R) # 2 ® R]| > 6.,

where R € {0,1}", then, with probability at least 1/2, it is the case that x € L. (The
probability here depends only on the values of the random bits used by M) .) The
running time of MY is polynomial in n, 1/6,, and the running time of A. Also, the
number of n-bit strings in L is bounded by O(1/62).

The following proposition is an immediate consequence of Proposition 4.1 and
Definition 3.10.

PROPOSITION 4.3. Let f : {0,1}" — {0,1}*» be a one-way function. Then
(f(X),R,XOR) and (f(X), R, 8) are computationally indistinguishable, where X, R €y
{0,1}™ and B €y {0,1}. The reduction is linear-preserving with respect to the alter-
native definition of computationally indistinguishable.

4.2. One-way permutation to a pseudorandom generator. We describe
a way to construct a pseudorandom generator from any one-way permutation which
is substantially simpler (and has stronger security-preserving properties) than the
original construction of [Yao82]. The construction and proof described here is due to
[GL8&9].

PROPOSITION 4.4. Let f : {0,1}" — {0,1}" be a one-way permutation. Let
x,r € {0,1}" and define P-time function ensemble g(x,r) = (f(z),r,x @ r). Then g
is a pseudorandom generator. The reduction is linear-preserving with respect to the
alternative definition of computationally indistinguishable.

Proof. Let X,R €, {0,1}", and 8 €y {0,1}. Because f is a permutation,
(f(X), R, () is the uniform distribution on {0,1}*"*1. By Proposition 4.3, g(X, R)
and (f(X), R, 3) are computationally indistinguishable, where the reduction is linear-
preserving with respect to the alternative definition of computationally indistinguish-
able. O

Proposition 4.4 works when f is a permutation because
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(1) f(X) is uniformly distributed and hence already looks random;
(2) for any x € {0,1}"™, f(x) uniquely determines x. So no entropy is lost by the
application of f.

For a general one-way function neither (1) nor (2) necessarily holds. Intuitively, the
rest of the paper constructs a one-way function with properties (1) and (2) from
a general one-way function. This is done by using hash functions to smooth the
entropy of f(X) to make it more uniform and to recapture the entropy of X lost by
the application of f(X).

Proposition 4.4 produces a pseudorandom generator that only stretches the input
by one bit. To construct a pseudorandom generator that stretches by many bits,
combine this with the construction described previously in Proposition 3.6.

4.3. One-to-one one-way function to a pseudoentropy generator. We
now describe a construction of a pseudoentropy generator from any one-to-one one-
way function. This construction, together with Theorem 4.14, yields a pseudorandom
generator from any one-to-one one-way function. The overall construction is different
in spirit than the original construction of [GKL93|: it illustrates how to construct
a pseudoentropy generator in a particularly simple way using [GL89]. Although the
assumptions and the consequences are somewhat different, the construction is the
same as described in Proposition 4.4.

PROPOSITION 4.5. Let f: {0,1}" — {0,1}» be a one-to-one one-way function.
Let z,r € {0,1}" and define P-time function ensemble g(z,r) = {f(x),r,x©r). Then
g is a pseudoentropy generatorwith pseudoentropy 1. The reduction is linear-
preserving with respect to the alternative definition of computationally indistinguish-
able.

Proof. Let X, R €4 {0,1}™ and 8 €, {0,1}. Proposition 4.3 shows that g(X, R)
and (f(X), R, 3) are computationally indistinguishable, where the reduction is linear-
preserving with respect to the alternative definition of computationally indistinguish-
able. Because f is a one-to-one function and £ is a random bit, H(f(X), R, ) = 2n+1,
and thus ¢g(X, R) has pseudoentropy 1. 0

Note that it is not possible to argue that g is a pseudorandom generator. For
example, let f(x) = (0, f'(z)), where f’ is a one-way permutation. Then f is a one-
to-one one-way function and yet g(X, R) = (f(X), R, X ® R) is not a pseudorandom
generator, because the first output bit of g is zero independent of its inputs, and thus
its output can easily be distinguished from a uniformly chosen random string.

4.4. Universal hash functions. The concept of a universal hash function, in-
troduced in [CW79], has proved to have a far-reaching and broad spectrum of appli-
cations in the theory of computation.

DEFINITION 4.6 (universal hash functions). Let h: {0,1}¢ x {0,1}" — {0,1}™
be a P-time function ensemble. Recall from Definition 2.9 that for fized y € {0,1}%",
we view y as describing a function hy(-) that maps n bits to m,, bits. Then h is a
(pairwise independent) universal hash function if, for all x € {0,1}", 2/ € {0,1}™ \
{z}, and for all a,a’ € {0,1}™",

Pr(hy(z) = a) and (hy (z') = a’)] = 1/2%™",

where Y €y {0,1}%.

Intuitively, a universal hash function has the property that every distinct pair x
and z’ are mapped randomly and independently with respect to Y.

In all of our constructions of function ensembles using universal hash functions,
the description of the hash function y is viewed as a public input to the function
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ensemble and thus is also part of the output. The following construction of a universal
hash function is due to [CWT79].
DEFINITION 4.7 (matrix construction). Let

h: {0, 1} DM 5 L0 13 — {0, 1}

be the following P-time function ensemble: For x € {0,1}" and y € {0,1}(nF+1)xmn
hy(z) = (2,1) ©y.

We concatenate a 1 to = in the above definition to cover the case when = =
0™. Hereafter, whenever we refer to universal hash functions, one can think of the
construction given above. However, any universal hash function that satisfies the
required properties may be used. We note that there are more efficient hash functions
in terms of the number of bits used in specification. One such example is using Toeplitz
matrices (see for example [GL89] or [Levin93]). A Toeplitz matrix is a matrix that is
constant on any diagonal, and thus to specify an n x m Toeplitz matrix we can specify
values for the m 4+ n — 1 diagonals. This is the simplest bit-efficient construction of a
universal hash function, so we adopt it as the default for the remainder of the paper.

4.5. Smoothing distributions with hashing. The following lemma is a key
component in most of the subsequent reductions we describe.

LEMMA 4.8. Let D : {0,1}"™ be a probability ensemble that has Renyi entropy at
least m,,. Let e, be a positive-integer-valued parameter. Let h : {0,1}% x {0,1}" —
{0,1}™=2¢n be a universal hash function. Let X €p {0,1}", Y €y {0,1}, and
Z €y {0,1}™n=2¢n . Then

Li((hy (X),Y),(2,Y)) < 27 FD,

This lemma is a generalization of a lemma that appears in [S83]. There, D is the
uniform distribution on a set S C {0,1}™ with S = 2™~. The papers [McIn87] and
[BBR&S8] also proved similar lemmas. For the special case of linear hash functions,
this lemma can be derived from [GL89] by considering unlimited adversaries. A
generalization to a broader class of hash functions appears in [IZ89].

The lemma can be interpreted as follows: the universal hash function smooths
out the Renyi entropy of X to the almost uniform distribution on bit strings of length
almost m,,. The integer parameter e,, controls the trade-off between the uniformity of
the output bits of the universal hash function and the amount of entropy lost in the
smoothing process. Thus, we have managed to convert almost all the Renyi entropy of
X into uniform random bits while maintaining our original supply of random bits Y.

Proof Let £ = {,, e = e,, m = my,, and s = m — 2¢. For all y € {0,1}*,
a € {0,1}*, and = € {0,1}", define X(hy(z) = a) =1 if hy(z) = ¢ and 0 otherwise.
We want to show that

EY Z |EX[X(hY(X) = a)] _2—s| /2 S 2—(6-‘,—1).
a€{0,1}s
We show below that for all a € {0,1}°,
By [[Ex[X(hy (X) = a)] —27°|] <276+,

and from this the proof follows.
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For any random variable Z, E[|Z|?] > E[|Z]]? by Jensen’s inequality. Letting
Z =E[X(hy(X) =a)] — 277, we see that it is sufficient to show for all a € {0,1}%,

Ey[(Ex[X(hy (X) = a)] = 27%)%] < 27204¢),

Let X’ €p {0,1}". Using some elementary expansion of terms and rearrangements
of summation, we can write the above as

Ex x/[BEy[(X(hy (X) = a) = 27°)(X (hy (X') = a) = 27°)]].

For each fixed value of X to x and X’ to z/, where x # z’, the expectation with
respect to Y is zero because of the pairwise independence property of universal hash
functions. For each fixed value of X to z and X’ to 2/, where z = 2/,

E[(X(hy(z) =a) —27%)}] =27%(1 —27%) <275,

Because the Renyi entropy of D is at least m, it follows that Pr[X = X'] < 27™.
Thus, the entire sum is at most 2~ %) which is equal to 272(5%€) by the definition
of s. a
In this lemma, D is required to have Renyi entropy at least m,. In many of our
applications, the distribution in question has at least Renyi entropy m,,, and thus the
lemma applies because of Proposition 2.5. For other applications, we need to work
with Shannon entropy. The following technical result due to [S48] allows us to convert
Shannon entropy to Renyi entropy by looking at product distributions.
PRrOPOSITION 4.9. Let k,, be an integer-valued polynomial parameter.
o Let D : {0,1}™ be a probability ensemble. There is a probability ensemble
£ :{0,1}n satisfying
— Hpen(€) > k,H(D) — nk2/?,
— Ly (€, Dkn) < 27k
o Let Dy : {0,1}™ and Dy : {0,1}™ be not necessarily independent probability
ensembles; let D = (D1, Ds). There is a probability ensemble £ : {0, 1}27*n
with € = (E1, &), satisfying the following:
— For every value By € {0,1}™ such that Prg,[E1] > 0, Hren(E2|81 =
Ey) > kyH(Do|Dy) — nki/?.
— Ly (€, Dkn) < 27k
COROLLARY 4.10. Let k,, be an integer-valued P-time polynomial parameter.
o Let D : {0,1}" be a probability ensemble, let m,, = k,H(D) — ani/?’, and
let h : {0,1}P» x {0,1}™*» — {0,1}™" be a universal hash function. Let
X' €prn {0,1}nX" and let Y € {0,1}P». Then

Li((hy (X)), Y), U, +p,) < gl—kL/S

e Let Dy : {0,1}" and Dy : {0,1}™ be not necessarily independent probabil-
ity ensembles, and let D = (Dy1,D3). Let my,, = k,H(D2|D1) — 2nk:3/3.
Let h : {0,1}P» x {0,1}"» — {0,1}™ be a universal hash function. Let
(X}, X5) €prn {0,1}Fn %20 and let Y €y {0,1}Pn. Then

Ly ((hy (X3), Y, X1), (U, 490 X1)) < 27507

Proof. For the proof, combine Proposition 4.9, Lemma 4.8, Proposition 2.2, and
Proposition 2.5. 1]
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4.6. Pseudoentropy generator to a pseudorandom generator. Let f :
{0,1}™ — {0,1}*" be a pseudoentropy generator with pseudoentropy s,,. In this sub-
section, we construct a pseudorandom generator based on f. We first start with two
preliminary propositions. The following proposition is the computational analogue of
Proposition 2.2.

PROPOSITION 4.11. Let D : {0,1}™ and & : {0,1}" be two probability ensembles
and let f : {0,1}" — {0,1}" be a P-time function ensemble. Let D and € be computa-
tionally indistinguishable. Then f(D) and f(&) are computationally indistinguishable.
The reduction is linear-preserving.

The following proposition first appeared in [GM84].

PROPOSITION 4.12. Let k,, be an integer-valued P-time polynomial parameter.
Let D : {0,1}* and & : {0,1}* be P-samplable probability ensembles. Let D and £
be computationally indistinguishable. Then D*» and EF» are computationally indis-
tinguishable. The reduction is weak-preserving.

More precisely, there is a probabilistic oracle TM M with the following properties:
If Ais an R}, -breaking adversary for distinguishing DF» and ¥, then M) is an
R, -breaking adversary for distinguishing D and &£, where R, is essentially equal to
knR;Zk It is crucial that D and £ are P-samplable because the sampling algorithms
are used by M. The reduction is only weak-preserving because distinguishing D*» and
Ekn with respect to private inputs of length nk,, only translates into distinguishing D
and &£ on private inputs of length n.

We now give the construction of a pseudorandom generator g from a pseudo-
entropy generator f.

CONSTRUCTION 4.13. Let f:{0,1}" — {0,1}" be a P-time function ensemble
and let s, be a P-time polynomial parameter. Let k, = ([(2m, +1)/s,])% and j, =
Lkn(n 4+ s,) — 2mnk72/3j. Let h: {0,1}Pn x {0,1}fnmn — {0,1}I" be a universal hash
function. Let u € {0,1}*»>" 4 € {0,1}P~, and define P-time function ensemble
glu,y) = (hy (), ).

THEOREM 4.14. Let f and g be as described in Construction 4.13. Let f be a
pseudoentropy generator with pseudoentropy s,. Then g is a pseudorandom generator.
The reduction is weak-preserving.

Proof. Let f': {0,1}"» — {0,1}™ be the P-time function ensemble that wit-
nesses the pseudoentropy generator of f as guaranteed in Definition 3.7 of computa-
tional entropy; i.e., f/(X’) and f(X) are R-secure computationally indistinguish-
able and H(f'(X')) > n + s,, where X €y {0,1}" and X’ €, {0,1}"». Let
U ey {0,1}*n W ey {0,1}*m and Y € {0,1}’». By Proposition 4.12,
fFn(U) and f' Fn (W) are computationally indistinguishable. From Proposition 4.11,
it follows that g(U,Y) = (hy (f*(U)),Y) and (hy (f'*"(W)),Y) are computationally
indistinguishable. Because H(f'(X’)) > n + s,, by choice of k,, and j,, using Corol-
lary 4.10, it follows that Ly ((hy (f"**(W)),Y),U;, 4p.) < 27%'°. Thus, it follows
that g(U,Y) and U, 1p, are computationally indistinguishable. Note that by choice
of k,, the output length j, + p, of g is longer than its input length nk, + p,. 0

4.7. False entropy generator to a pseudoentropy generator. Let f :
{0,1}™ — {0,1}* be a false-entropy generator with false entropy s,. In this sub-
section, we construct a mildly nonuniform pseudoentropy generator based on f. An
idea is to extract D #(f(X)) bits of entropy out of X without compromising the false
entropy. (See section 2.3 for the definition of ﬁf) Let X €y {0,1}". The major
obstacles are that D 7 is not necessarily a P-time function ensemble and that f could
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be a very nonregular function, and thus the variance of D (f(X)) could be quite high
as a function of X, and we cannot guess its value consistently with accuracy.

Let k,, be an integer-valued P-time polynomial parameter and let U €, {0, 1}F»x™,
The intuition behind the following construction is that the false entropy of f*» is ki,
times that of f and that the degeneracy of f*» is k, times that of [. Furthermore,
if k, is large enough then, with high probability with respect to U, D s« (f*(U)) is
close to the degeneracy of f*». Thus we use a universal hash function h to extract
roughly the degeneracy of f*~(U) bits of entropy out of U without compromising the
false entropy of f*»(U).

CONSTRUCTION 4.15. Let f:{0,1}" — {0,1}** be a P-time function ensemble.
Let s, be a P-time polynomial parameter and assume for simplicity that s,, < 1. Let
e, be an approximation of H(f(X)) to within an additive factor of s,,/8, where X €y
{0,1}". Fiz k, = [(4n/s,)?] and j, = [kn(n —e,) — 20ka/®]. Let h : {0,1}P x
{0,1}k» — {0,1}9" be a universal hash function. For u € {0,1}f»*" and r €
{0,1}P | define P-time function ensemble

g(en’ u, T‘) = <fkn (u)7 hr(u)’r>'

LEMMA 4.16. Let f and g be as described in Construction 4.15. Let f be a false-
entropy generator with false entropy s,,. Then g is a mildly nonuniform pseudoentropy
generator with pseudoentropy 1. The reduction is weak-preserving.

Proof. Let Z € {0,1}7». First, note that H(X|f(X)) =n —H(f(X)) =n —e,.
From this and Corollary 4.10 (letting X; = f(X), X2 = X in the corollary), it follows
that Ly (g(e,, U, R, ), (f*(U), Z, R)) < 2=%"".

We now prove that g(e,, U, R) has computational entropy at least p,, + nk, + 1.
Let D : {0,1}*» be the P-samplable probability ensemble such that D and f(X) are
computationally indistinguishable and such that

H(D) = H(f(X)) + sn.

Since D and f(X) are computationally indistinguishable, (f*=(U),Z, R) and
(DFn | Z, R) are computationally indistinguishable by Proposition 4.12, which together
with the first claim implies that g(e,,U, R) and (D* Z, R) are computationally in-
distinguishable. Now,

H(Dkna Z, R) > ky, - (H(f(X)) + Sn) + Jn+DPn = kn(en + 75n/8) + Jn + Pn,

and because by choice of k,, and j, this is at least p,, + nk, + 1. Thus g has compu-
tational entropy at least p, + nk, + 1, and the lemma follows. 1]

4.8. Mildly nonuniform to a uniform pseudorandom generator.

PROPOSITION 4.17. Let a,, be any value in {0,. .., k,}, where k,, is an integer-
valued P-time polynomial parameter. Let g : {0,1}M°8F)1 5 10,1} — {0,1}%" be a
P-time function ensemble, where £, > nky,. Let 2’ € {0,1}*»*" and define P-time
function ensemble g'(x') = @ g(i,2}). Let g be a mildly nonuniform pseudorandom
generator when the first input is set to a,,. Then ¢’ is a pseudorandom generator.
The reduction is weak-preserving.

Proof. Let X € {0,1}", X’ € {0,1}**" and Z €, {0,1}*". Suppose there is
an adversary A that has distinguishing probability

spa(A) = [Pr[A(g/(X")) = 1] - Pr[A(Z) = 1]|.



1382 J. HASTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

We describe an oracle TM M such that, for all i = 1,...,k,, M (i) has sp,(A)
distinguishing probability for g(i, X) and Z. For all i, the running time for M) (4)
is the running time for A plus the time to compute the output of g on k, — 1 inputs.
This works with respect to all ¢, in particular when ¢ = a,, from which the result
follows.

For each i = 1,...,k,, M (i) works as follows. On input u (and 7), M) (;)
randomly generates x,...,2; ;, % q,...,7 €y {0,1}" and computes v =
©j2ig(j, *;) ® u. Then M) (4) runs A on input v and outputs A(v). By the na-
ture of @, if u is chosen randomly according to Z, then M(4) (i) = 1 with probability
Pr[A(Z) = 1], whereas if u is chosen randomly according to g(i, X), then M () = 1
with probability Pr[A(¢'(X’)) = 1]. Thus, for each value of i, M) (3) has distin-
guishing probability sp,,(A) for ¢g(i, X) and Z. |

Note that it may be the case that, for most fixed values of i € {1,...,k,}, 9(¢, X)
is completely predictable. On the other hand, even if there is a value a,, for each n
such that g(a,, X) is pseudorandom, the value of a,, may not be P-time computable.
This is exactly the case when the lemma is useful; i.e., it is useful to transform the
mildly nonuniform pseudorandom generator g into a pseudorandom generator g’.

Note that in the given construction the length of the output of ¢’ on inputs of
length nk,, is ¢, > nk,, and thus g’ stretches the input to a string of strictly greater
length.

This reduction is only weak-preserving, and the reason is the usual one; i.e., the
breaking adversary for ¢’(X’) on inputs of length nk,, is transferred into a breaking
adversary for g(i, X) on inputs of length only n.

If g in Proposition 4.17 does not satisfy the property that ¢, > nk,, then for
each fixed ¢ we can use Proposition 3.6 to stretch the output of g(i,z) (viewed as a
function of x) into a string of length longer than nk, and then exclusive-or together
the stretched outputs.

4.9. Summary. Putting together the results in this section, we have

e a reduction from a one-way permutation to a pseudorandom generator
(from subsection 4.2);

e a reduction from a one-to-one one-way function to a pseudorandom genera-
tor(combining subsections 4.3 and 4.6);

e a reduction from a pseudoentropy generator to a pseudorandom generator
(from subsection 4.6);

e a reduction from a false-entropy generator to a pseudorandom generator
(combining subsections 4.7, 4.6, and 4.8).

5. Extracting entropy from one-way functions. In this section we show
how to construct a pseudoentropy generator from any one-way function f with the
additional property that the number of inverses of f can be computed in polynomial
time; i.e., the function D ¢ is a P-time function ensemble. Combined with the results
summarized in subsection 4.9, this gives a construction of a pseudorandom generator
from a one-way function with this property.

One of the reasons for giving the first construction is because it illustrates some of
the additional ideas needed for our construction of a false-entropy generator from any
one-way function. A general one-way function f does not necessarily have the property
that D ¢ is a P-time function ensemble, and considerably more effort is needed to
construct a pseudorandom generator from it. In the next section, we describe how to
construct a false-entropy generator from any one-way function. Combined with the
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results summarized in subsection 4.9, this gives a construction of a pseudorandom
generator from any one-way function.

5.1. One-way function with approximable preimage sizes to a pseu-
doentropy generator. To see where we get into trouble with the construction given
in Proposition 4.5, suppose f : {0,1}" — {0,1}¢" is a 2"/*-regular one-way function,
and let X, R €y {0,1}™ and B €, {0,1}. Then, although (f(X),R,X ® R) and
(f(X), R, 3) are computationally indistinguishable, H(f(X), R, X ® R) is only about
™n/4 + 1, and thus we have lost about n/4 bits of the input entropy through the ap-
plication of f. Similarly, although X ® R is hidden given (f(X), R), it is also almost
completely statistically uncorrelated.

The way to overcome these problems is to create a new function which is the
original one-way function concatenated with the degeneracy of the function number
of bits hashed out of its input to regain the lost entropy. Then Proposition 4.5 can
be applied to the new function to obtain a pseudoentropy generator. We first show
how to construct a pseudoentropy generator in the case when Dy is a P-time function
ensemble.

CONSTRUCTION 5.1. Let f : {0,1}" — {0,1}*» be a P-time function ensemble
and suppose that Dy is a P-time function ensemble. Let h : {0,1}P» x {0,1}" —
{0,1}"*2 be a universal hash function. For x € {0,1}" and y € {0,1}P~, define
P-time function ensemble

f(@,y) = <f(17)7hy(x)g,...,ﬁf(f(z))m}vy>~

LEMMA 5.2. Let f and f' be as described in Construction 5.1.
(1) Let f be a one-way function. Then f’ is a one-way function. The reduction
is poly-preserving.
(2) Let X € {0,1}" and Y €y {0,1}P~. Then H(f'(X,Y)) > n+ p, — 1/2.
Proof of Lemma 5.2(1). Suppose adversary A inverts f'(X,Y’) with probability
6y, in time T,,. We prove that the following oracle TM M using A on input z = f(z)
finds 2" € pre;(z) with probability at least 83 /128 when z €4 {0,1}".

Description of M@ (z).

Compute D¢(z).

Choose a €14 {0,1}Pr(=)+2,

Choose y €4 {0,1}P~.

If A(z, a,y) outputs z’ with f(z’) = 2z then output z’.

Let jn = 2[log(2/6,)]. For all z € range;, for all y € {0,1}", define random
variable

Bey = hy(W){L...,ﬁf(z)—jn}a

where W €y pres(z). Then the probability that there is a v € {0,1}**7» such that
Ainverts f on input (f(X), (Bx),y,7),Y) is at least 6,,.

Fix z € range;, and let 3. €y {0, l}ﬁf(z)_j". By Lemma 4.8,

L1(<ﬂz,Ya Y>v <ﬁ;’Y>) S 6n/2

Therefore, the probability that there is a v € {0,1}?*J» such that A inverts f on
input (f(X), (B} x),7),Y) is at least 6, /2. If we choose v €y {0, 1}2*in | we have
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that the probability that A inverts f(X) on input (f(X), (6}()(), v),Y) is at least

bp 83
2 = 128

9—(2+7n) .

Note that this is the input distribution in the call to A within M (4). Note also that

the run time of MY is dominated by the time to run A. Thus, the time-success
ratio of MY for inverting f is about 1287T;,/63.

Proof of Lemma 5.2(2). Fix z € range; and let x,2’ € pre;(z) such that = # 2'.
From the properties of a universal hash function,

- 1
_ _ o—(Dys(z)+2
Prlhy ()1, B, (42y = v (1)1 B (oy4zy) = 2772 < 1 fpre;(2)”

By calculating the Renyi entropy it follows that
5
H(f'(X,Y)) > —log <4 : 2‘”*”") =n+pn +2 —log(5).

The result follows since log(5) < 5/2. d

COROLLARY 5.3. Let f, h, and [’ be as described in Construction 5.1. Let
r € {0,1}" and define P-time function ensemble g(x,y,r) = (f'(x,y),r,x ©r). Let f
be a one-way function. Then g is a pseudoentropy generator with pseudoentropy 1/2.
The reduction is poly-preserving.

Proof. The proof is the same as the proof of Proposition 4.5. Let X, R €, {0, 1}",
Y €4, {0,1}P~, and 8 €, {0,1}. From Lemma 5.2 (1) and Proposition 4.3 it follows
that g(X,Y, R) and (f'(X,Y), R, ) are computationally indistinguishable, where the
reduction is poly-preserving. From Lemma 5.2 (2) it follows that H(f'(X,Y), R, 5) >
2n + pp, + 1/2. On the other hand, the input entropy to ¢g(X,Y, R) is 2n + p,, and
thus it follows that ¢g has pseudoentropy 1/2. 0

THEOREM 5.4. A pseudorandom generator can be constructed from a one-way
function f where ﬁf is a P-time function ensemble. The reduction is weak-preser-
ving.

Proof. For the proof, combine Construction 5.1 with Construction 4.13, and use
Corollary 5.3 and Theorem 4.14. 0

The following theorem, an easy corollary of Theorem 5.4, was previously obtained
by [GKL93] using a different construction and proof techniques.

THEOREM 5.5. Let f : {0,1}" — {0,1}* be a o,-reqular one-way function,
where oy, is a P-time polynomial parameter. Then a pseudorandom generator can be
constructed from f. The reduction is weak-preserving.

Proof. Note that in this case Df(f(z)) = [log(c,)] for all z € {0,1}". Fur-
thermore, [log(oy,)] € {0,...,n}. Using this, combining Construction 5.1 with Con-
struction 4.13, and using Corollary 5.3 and Theorem 4.14 yield a mildly nonuniform
pseudorandom generator. Then Proposition 4.17 shows how to construct a pseudo-
random generator from this. ]

Based on the ideas presented above, [Luby96, Theorems 10.1 and 9.3] gives ver-
sions of Theorems 5.4 and 5.5 where the reduction is poly-preserving when the security
parameter is P-time computable.
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6. Any one-way function to a false-entropy generator.

6.1. Finding determined hidden bits. The final step in the general con-
struction of a pseudorandom generator from a one-way function is to construct a
false-entropy generator from any one-way function. This is the technically most diffi-
cult part of this paper. This construction uses some of the ideas from Construction 5.1.
Let

(6.1) f: {0’ 1}" N {O, 1}Zn
be a one-way function and let
(6'2) h: {O, 1}7’" X {0, 1}” N {0’ 1}n+ [og(2n)]

be a universal hash function. Similar to Construction 5.1, for z € {0,1}", i €
{0,...,n—1}, and r € {0,1}P~, define P-time function ensemble

(6.3) fi(xiyr) = (f(x), he () (1, it Nog(2n) ]} 6 T)-

Note that from Lemma 5.2, the restricted function f(x,Dy(f(x)),r) is an almost
one-to-one one-way function, except that this is not necessarily a P-time function
ensemble since D ¢ may not be a P-time function ensemble, and this is the main
difficulty we must overcome.

Let X €y {0,1}", R €y {0,1}*™, Y €, {0,1}", and 8 € {0,1}. From the proof
of Lemma 5.2 and Corollary 5.3, we claim and formalize below that if ¢ < D/(f(X)),
then a time limited adversary cannot distinguish X ©Y from f given Y and f'(X, i, R).

Let

T = {{z, i)z € {0,1}",i € {0,..., Ds(f(2))}},
T = {(z,i)|z € {0,1}",i € {Dy(f(2)) + 1,...,n— 1}}.

LEMMA 6.1. Let W = (X,I) ey T, R € {0,1}*™ Y ¢, {0,1}", and § €,
{0,1}. Let f be a one-way function. Then

(f'(W,R),X ®@Y,Y) and (f'(W,R),3,Y)

are computationally indistinguishable. The reduction is poly-preserving.

Proof. Let A be an R/-breaking adversary for distinguishing the two distributions.
Then A is also an R/-breaking adversary for hidden bit X ® Y given (f/(W,R),Y).
Then, from Proposition 4.2, there is an oracle TM M’ such that M’ is an R/-
breaking adversary for inverting f’(W, R), where R”(n) = n®1) . R/(n)°1). Finally,
we use the same idea as in Lemma 5.2; i.e., the success probability of M'(Y) on
input (f(z),a,i,R) for a € {0,1}+1°eM)] ig at least inverse polynomial in the
success probability of M'(Y) on input f’(x,i, R) for each fixed (z,i) € 7. Consider
the following oracle TM N: N4 on input f(x) chooses i € {0,...,n—1}, a €y
{0, 1)+ M@ and r € {0,1}P» and runs M’ on input (f(z),a,i,r). Since
Pr[(z,i) € T] > 1/n when i €y {0,...,n — 1}, it follows that N4(f(X)) produces an
inverse with probability at least 1/n times the probability M’(4)(f'(W, R)) produces
an inverse. O

Ifi > ﬁf(f(X)), then X is almost completely determined by f'(X,4, R), and
thus X @Y is almost completely determined by f/(X,i, R) and Y.
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The interesting case is when ¢ = D ;(f(X)), in which case, from Lemma 6.1, the
adversary is unable to distinguish X ® Y from § given Y and f/(X,i, R), and yet
from Lemma 5.2(2), X ®Y is almost completely determined by f'(X,4, R) and Y. Tt
is from this case that we can extract a little bit of false entropy.

6.2. Construction and main theorem. We now describe the construction of
a false-entropy generator g based on f’. Let

(6.4) kn > 125n3.

Part of the construction is to independently and randomly choose k, sets of in-

puts to f’ and concatenate the outputs. In particular, let X’ €5 {0,1}F»*" I’ ¢y

{0, 1} xTog(m)1 " R </ {0, 1}Fn*Pn . Part of the construction is then e (X',I',R).
Let I €4 {0,...,n — 1}, let

(6.5) pn = Pr[I < Ds(f(X))],
and let
(6.6) M = knpn — 2k2/3.

We show later that it is sufficient to have an approximation of p,, to within an additive
factor of 1/n for the entire construction to work. We need this to be able to claim
that g described below is mildly nonuniform. For now we assume we have the exact
value of p,,. Let Y’ € {0,1}*2X" The value of k, is chosen to be large enough so
that with high probability it is the case that I < ﬁf(f(X]’)) for at least m,, of the k,
possible values of j, and in this case, from Lemma 6.1, X ]’ ® Yj’ looks like a random
bit to a time limited adversary given Y} and f'(X7, I}, R}).

The problem is that we don’t know for which set of m,, values of j the bit X;©Y/
looks random to a time limited adversary. Instead, the idea is to hash m,, bits
out of all k,, such bits and release the hashed bits. The intuition is that these m,
hashed bits will look random to a time limited adversary, even though there are really
at most (p, — 1/n)k, bits of randomness left in these k, bits after seeing Y’ and
fF (X', I’ R"), and thus there are approximately m, — (pn — 1/n)k, ~ n2 bits of
false entropy. Let

(6.7) B {0,1}7n x {0,1}F» — {0,1}™n
be a universal hash function, let U €, {0,1}P», and define P-time function ensemble
(68) g(p’ﬂ?XlJY/vIlaR/aU)

= (Wu((X]0Y],....X} OV, ). [ (X I'R),UY").

THEOREM 6.2. Let f be a one-way function and g be as described above in (6.1)—
(6.8). Then g is a mildly nonuniform false-entropy generator with false entropy 10m?.
The reduction is weak-preserving.

Proof. Let Z €14 {0,1}™, and let

D= (Wy((X| OV, ..., X} oY), /(X' I'R),UY"),
£=1(Z "™ (X', I'R),UY").
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Note that D is the distribution of the output of g, and £ is the same except that
the m,, output bits of h’ have been replaced by random bits. Lemma 6.4 shows that
H(£) > H(D) + 10n%. Corollary 6.6 shows that if f is a one-way function, then we
have that D and £ are computationally indistinguishable, where the overall reduction
is weak-preserving. 0

What remain to prove Theorem 6.2 are the proofs of Lemmas 6.4 and 6.5 of
the next subsection. (Corollary 6.6 follows immediately from Lemmas 6.5 and 6.1.)
Before we turn to this, we state the main result of this paper based on Theorem 6.2.

THEOREM 6.3. There are one-way functions iff there are pseudorandom genera-
tors.

Proof. That pseudorandom generators imply one-way functions follows from
[Levin87]. The converse now follows from Theorem 6.2 and the results are summarized
in subsection 4.9. O

6.3. The main lemmas.

LEMMA 6.4. H(E) > H(D) + 10n2.

Proof. The entropy of D and £ excluding the first m,, bits is exactly the same.
The additional entropy in the first m,, bits of £ is equal to m,. An upper bound on
the additional entropy in the first m,, bits of D is the additional entropy in (X] ®
Y{,..., X}, ©Y] ). Foreachje {1,...,k,} where I < ljf(f(XJ’)), the amount of
entropy added by X; ® Yj’ is at most 1. On the other hand, under the condition

that [ > f)f(f(Xé)), X} ©Y] is determined by (f'(X}, I}, R}),Y]) with probability
at least 1 — 1/2n, and thus the additional entropy under this condition is at most
1/2n. Since I} < Df(f(XJ’)) with probability p,, — 1/n, it follows that the additional
entropy added by X ® Y] is at most p, — 1/2n. Therefore, the additional entropy in

the first m,, bits of D is at most k,(p, — 1/2n) =m, + 2]672/3 —k,/2n < m,, — 10n?

by choice of k,,. ]
LEMMA 6.5. Let A be an adversary with distinguishing probability

8, = Pr[A(D) = 1] — Pr[A(€) = 1]

for D and €. (We_assume without loss of generality that Pr[A(D) = 1] > Pr[A(€) =
1) Let W = (X, 1) €4 T, R €, {0,1}*™ Y €, {0,1}", and B €y {0,1}. There is
an oracle TM M such that MY) distinguishes between

(f'(W,R),X ®Y,Y) and (f'(W,R),3,Y)

with probability at least 6,/(16k,). The running time of MY is polynomial in the
running time of A.

The proof of Lemma 6.5 is the most technically involved in this paper. Before
proving this lemma, we give the main corollary to this lemma, and then we give some
motivation for the proof of the lemma.

COROLLARY 6.6. Let f be a one-way function. Then D and £ are computationally
indistinguishable. The reduction is weak-preserving.

Proof. For the proof, combine Lemma 6.1 with Lemma 6.5. 0

We now give some intuition to the proof of Lemma 6.5. The oracle TM M (4) will
use a nonstraightforward hybrid of distributions argument to be able to distinguish
the two distributions in the statement of the lemma. To give some intuition about
this nonstraightforward hybrid, we first describe a related straightforward hybrid
argument that we do not know how to implement efficiently.
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Consider the following distribution. For j € {1,...,k,}, let C; = 1 with probabil-
ity p», and C; = 0 with probability 1 —p,,. For all j, if C; = 1 then let <le7 I~J’> euT,
and if C; = 0 then let (X, 1) €, 7. Let R',Y', and U be as defined previously. If
these random variables are used to define a distribution using the same construction
as used to define D, with (X;,f;} replacing (X7, I7), then the distribution is D, ex-
cept that it is described in a slightly different way. Now, suppose this distribution is
altered as follows: if C); = 1, then change the jth input bit of hy from XJ’ ® Yj’ to
B; € {0,1}. Call this distribution D’.

From Lemma 6.1 intuitively it should be the case that a time limited adversary
should not be able to distinguish D from D’. On the other hand, it is not hard to see
using Lemma 4.8 that the statistical distance between D’ and £ is exponentially small
in n. Thus, if adversary A can distinguish between D and &, we should be able to
use this to distinguish (f'(W,R),X ®Y,Y) and (f/(W,R),3,Y) as in the statement
of Lemma 6.5.

The question is whether we can really prove that D’ is computationally indis-
tinguishable from D. Toward resolving this question, consider the following family
of hybrid distributions. For all j € {0,...,k,}, let FU) be the hybrid distribution
between D and £, which is the same as D’ up to position j and the same as D there-
after; i.e., it is the same as D except that for all ¢ < j, if C; = 1 then change the ith
input bit of hyy from X! ® Y/ to B; €4 {0,1}. Then F© = D and F*r) ~ €. Let
J ey {1,...,k,}. Then Ej[A(FVU=D) — A(FU))] = 6, /kn.

An inefficient oracle TM could work as follows on input (f’(w,r),b,y): the first
phase chooses j €y {1,...,k,} and chooses a sample from FO)If cj = 0, then
the oracle TM produces a random bit and stops. In the more interesting case, where
c; = 1, it replaces the inputs corresponding to the jth position in the sample according
to f/(w,r) and gy, and the jth input bit of h, is set to b €, {0,1}. Then the second
phase runs the adversary A on this input and outputs the bit produced by A. The
distinguishing probability for this oracle TM is &, /ky,. The problem is that this is
not an efficient oracle TM, because it may not be possible to efficiently uniformly
sample from 7 and 7 as required. However, it is possible to sample uniformly from
{0,1}" x {0,...,n — 1}: a p, fraction of the samples will be randomly distributed
in 7 and a 1 — p,, fraction of the samples will be randomly distributed in 7. This
simple idea is used to construct the efficient adversary described below.

The efficient adversary M4 described in detail in the proof of Lemma 6.5 pro-
ceeds in two phases similar to the inefficient oracle TM described above. The first
phase of M(4) consists of k,, stages, where stage j produces a coupled pair of distribu-
tions, DY) and £U), both of which are polynomially samplable. Each stage consists of
using adversary A and sampling from the distributions produced in the previous stage
to produce the pair of output distributions for the current stage. Initially, D) = D
and £©) = £, and it will turn out that D*n) ~ kn),

The first j — 1 positions in both DY) and £U) are already fixed in essentially the
same way in DU~ and £U-1 | and these positions will be fixed the same way in DY)
and £Y). To fill in position j in DY) and £U), many samples of (xj,1;) are drawn
uniformly from {0,1}" x {0,...,n — 1}, and then with high probability many of them
will be in 7 and many will be in 7. We cannot directly tell for each sample whether
it is in 7 or 7. Thus, we must use another criterion to decide which of the samples
to keep to fill in position j. The criterion employed is to use the sample for which the
distinguishing probability of A between D) and £ is highest when the jth position
is fixed according to the sample.
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Let 6U) = Pr[A(DYW) = 1] — Pr[A(EW)) = 1]. Because §(») = §,, and 6% ) ~ 0, it
follows that

Eic, 1,k (6970 = 89)] > 6, /K,

It is because of this discrepancy between the value of §¢) and §U—1) that f’ can be
inverted in the second phase.

Intuitively, stage j of the first phase works as follows. A bit ¢; is chosen randomly
to be one with probability p, and to be zero with probability 1 — p,,. In the distribu-
tion DY), the jth input (h,15,77%) to f’ Fn is chosen randomly, y’ is chosen randomly,
u is chosen randomly, and then the jth input bit of h’, is set to a random bit b; if
¢; = 1 and to the correct inner product bit if ¢; = 0. In the distribution EU) | the
jth input of f’ Fn is set the same way it is set in DY), and thus the two distributions
DU) and £U) are correlated. The choice of the jth inputs is done several times (¢jis
chosen only once at the beginning, i.e., it is not rechosen for each of the times) and
each time the distinguishing probability of A for D) and the corresponding £) is
approximated, and the choice that maximizes the difference between these accepting
probabilities determines how D) and £U) are finally set.

The second phase of M) chooses j € {1,...,k,} and then uses the pair of dis-
tributions DY) and £U) produced in the first stage. The idea is to choose a random
sample from both DY) and £U), modify portions of the DY) part according to the in-
put to M) run A on both the modified DY) sample and the £U) sample, and, based
on the outputs, produce a one bit output. The intuition is that the distinguishing
probability will be 6(), which on average over all j is at least 6, Jkn.

We now turn to the formal proof of Lemma 6.5.

Proof of Lemma 6.5. The oracle TM M) works as follows on input (' (w,r), b, y).

Phase 1. Define D©) =D and £©) = &£. Let B € {0,1}. Let p = 6,/(16k,)
and T = 64n?/p. Stage j = 1,...,k, works as follows: randomly choose ¢; € {0,1}
so that ¢; = 1 with probability p,. Choose &1,...,2, €y {0,1}" and i1y ir €y
{0,...,n—1}. For each m € {1,...,7}, define wy, = (&, %m> and let Dg_l)(wm) be
the same as DU~1 except that (X}, I}) is fixed to wy, and the jth input bit of A’ is
set to

Em ©Y] ifc; =0,
Bj 1fc]:1

Similarly, define £07 (w,,) to be the same as U1 except that (X}, I7) is fixed to
Wy, Let

857D (wm) = Pr{ADY ™Y (wm)) = 1] = PrIA(EY ™) (wm)) = 1].

Using A and sampling O(n/p?) times from Dgfl)(wm) and £U=1 (w,,), produce an

estimate Ag_l)(wm) so that
PH|AGD (wpn) — 697D ()| > p] < 277,

Let mg € {1,...,7} be the index for which Agfl)(wmo) is maximized. Set (/i) =

. . ‘ i
Wy, DY) = Dgfl)(wmo), £U) = €0V (w,,,) and go to the next stage.
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Phase 2. Pick j €y {0,...,k, —1}. Let DY (w,r,b,7) be the distribution D)
except that f'(X7 q, 1, Rjq) is set to f'(w,r) and the j + 1"st input bit of A’
is set to b and Y/ ;| is set to y. Let EW(w,r,y) be the same as £Y) except that
(X1, Ly Ry ) is set to f/(w,r) and Y], is set to y. Let 8 €y {0,1}, let D be
a sample of DY) (w,r,b,y), and let E be a sample of £U)(w,r,y). If A(D) = A(E),
then output § else output A(D).

We now prove that the oracle adversary M(4) as just described distinguishes
as claimed in the lemma. Let w = (z,i), d9)(w,r,b,y) = E[A(DY)(w,r,b,y))] and
e (w,r,y) = E[A(EY (w,7,y))]. Then

Pr{M@ (f'(w,r),b,9) = 1] = 1/2+ (d9 (w,7,b,y) — ¢ (w,r,y)) /2.
Also, it follows directly from the definitions that
E[dY(w, R,z ®Y,Y) — ¥ (w, R,Y)] = 85 (w)
and
E[d9 (w, R, 8,Y) — ¢ (w, R,Y)] = 67 (w).

Let ¢ = E[(S(()j)(W) — 65j)(W)]. Thus, the distinguishing probability of M) is

EMWY(#(W,R),X @Y,Y)] — E]MY (f' (W, R), 3,Y)]

= By[86” (W) — 6 (W))/2 = B, D)2,

where j €4 {0,...,k, — 1} in the last two expectations. To prove the lemma, it is
sufficient to show that E;[¢()]/2 > p or, equivalently,

(6.9) E Yoo D =20k, =6,/8.
7€{0,....k,—1}

The expectation here is over the random choices of M(4) in the first phase. Let
6U) = Pr[A(DY)) = 1] — Pr[A(EW) = 1]. We prove (6.9) by showing the following
below:
(a) E[6( )] < 27", The expectation is over the random choices of M) in the
first phase.
(b) E[6U) — §U+D] < ¢l 4 4p. The expectation is over random choices in the
7 + 1"st stage of Phase 1 conditional on any set of choices in the previous
stages.
From (a) and (b), and because §(%) = §,,, it follows that

6n)2 < 6, — E[6F)]

= Z E[6\) — sU+D)

< dknp+E > W
§€{0,....kn—1}
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=6,/4+E Yoo Y,

je{01~~~7kn_1}

and this proves the bound in (6.9). Thus, it suffices to prove (a) and (b) above.
Proof of (a). Since Pr[c; = 1] = py,, applying Chernoff bounds (e.g., see [MR95]),
we get that, with probability at least 1 — 277,

Z G5 > knPn — ki/g =mn + knz/g-

.....

LI(D<kn>,5<k >) <27, Thus, §kn) = E [A(D(k )] — [A(5< n)] <27

Proof of (b). Let W &, T, and recall that W €;; 7. Then, since the j + 1st
input of 1’ is always X7 ., © Y/ ; in D),

89 = pu B85 (W)] + (1 - pa) B8 (7))
= puB[6Y) (W)] + pu(Blsg” (W)] = BIs7 (W)]) + (1 = pa) (B[S (W)
= PaE[Y (W)] + pae? + (1 — po) (B[S (W)
< e 4+ p B[ (W)] + (1 — pa) (BISS (W)
We now show that E[§0+D] > p,E[8Y (W)]+ (1 —p,)(E[s{) (W)]) — 4p, and this
concludes the proof. Let ¢ € {0,1} and consider stage j in Phase 1. From our choice
of 7 and the fact that 1/n < p, <1 —1/n, it follows that, with probability at least

1 —27" at least n/p of the w,,’s are in 7, and at least n/p of the w,,’s are in 7. It
then follows using Chernoff bounds that

Pr[ max {6 (wn)} > max{E[s) (W)], E[8Y (W)]} — 4]

1<m<rt
is at least 1 — 27", Also, with probability at least 1 — 27", Agj)(wm) is within p of
the corresponding 89 )(wm)7 and thus (recalling how w,,, is chosen above in stage j)

6£j)(wmo) > Az(:j)(wmo) - P
= max {AD(w,)}—p

me{l,...,7}
> max {6 (wn)} —2p
me{l,...,7}

> max{E[6{" (W)], E[6Y" (W)]} — 3p

with probability at least 1 —3-27". Let 5£j 1 he the value of §U+1 conditional on
¢j+1 = c. From this we can conclude that

E[8Y*Y] > max{E[s{) (W)], E[sY") (W)]} — 4p.
Since c¢j4+1 = 1 with probability py,

B8O+ = paBloy "] 4 (1 - pu)ELS )
> paEloy (W) + (1= pa) (BLS5 (W) ~ 4. D
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Before we continue let us just check that a good approximation of p,, is sufficient.
Suppose that p, < pn < pn + % and do the entire construction with p,, replacing
pn. Enlarge 7 to density P, by making it contain some elements (x,i) with i =
ﬁf(f(x)) +1. Lemma 6.1 is easily seen to remain valid, and Lemma 6.4 just becomes
more true in that the entropy of D decreases. This implies that it is sufficient to try
O(n) different values of p,.

7. A direct construction. We have shown how to construct a false-entropy
generator from an arbitrary one-way function, a pseudoentropy generator from a
false-entropy generator, and finally a pseudorandom generator from a pseudoentropy
generator. The combinations of these constructions give a pseudorandom generator
from an arbitrary one-way function as stated in Theorem 6.3. By literally composing
the reductions given in the preceding parts of this paper, we construct a pseudorandom
generator with inputs of length n3* from a one-way function with inputs of length n.
This is obviously not a suitable reduction for practical applications. In this subsection,
we use the concepts developed in the rest of this paper, but we provide a more direct
and efficient construction. However, this construction still produces a pseudorandom
generator with inputs of length n'% which is clearly still not suitable for practical
applications. (A sharper analysis can reduce this to n®, which is the best we could
find using the ideas developed in this paper.) The result could only be considered
practical if the pseudorandom generator had inputs of length n2, or perhaps even
close to n. (However, in many special cases of one-way functions, the ideas from this
paper are practical; see, e.g., [Luby96].)

The improvement in the direct construction given here comes from the observation
that more than one of the reductions involves a product distribution, whereas only
one product distribution is needed for the overall proof.

We start with a one-way function f : {0,1}" — {0,1}%». We construct f’ as in
(6.3), and let p,, be the probability that I < D;(f(X)) as in the previous section. Let
X = (X, I, R) represent the input distribution to f’, and let ¢, be the length of X and
¢, the length of f/(X). Let e, = H(f'(X)). Let b(X,y) =z ®y. Set k, = 2000n°.

Intuitively, we generate pseudorandom bits as follows: let X’ = X*» and Y’ =
Yk We first compute f*"(X') and b* (X’ Y’). Intuitively, we are entitled to
recapture

kncn — H{F'™ (X)), 05 (X', Y"))

bits from X’ because this is the conditional entropy left after we have computed f’ kn
and b¥». We are entitled to recapture k,p, bits from the bk (X’ Y’) (since we get
a hidden bit out of each copy whenever I < D;(f(X))). Finally, we should be able
to extract e,k, bits from f'*"(X’), since e, is the entropy of f/(X). Since b(n) is
almost totally predictable for almost all inputs where I > D r(f(X)),

H(f'(X),b(X,Y)) < e + Pn — 1/n +1/(2n).

(See the proof of Lemma 6.4.) Thus, if we add up all the output bits, we are entitled
t0 kn(cn+1/(2n)), or ky/(2n) more bits than the input to f/*". However, our methods
of extracting entropy are not perfect, so we need to sacrifice some bits at each stage;
to use Corollary 4.10, we need to sacrifice ani/ % at each stage, so we chose k,, to
satisfy ky/(2n) > 6nk, />,

Formally, let m,, = k, (¢, — e, — pn +1/(2n)) — 2nkn2/3, m), = k,pn — 2nk,

and m! = ke, — 2nkn2/3. Let Ri, Ro, and R3 be indices of hash functions so that

2/3
b
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hg, maps k,cy, bits to m,, bits, hg, maps k, bits to m/, bits, and hr, maps k,c,, bits
to m! bits. Our construction is as follows.
CONSTRUCTION 7.1.

g(leyla Ry, Ry, R3) = <hR1 (X/)v hR2 (bkn (leyl))a hRs (flkn (X/))a Ylv Ry, Ry, R3>

THEOREM 7.2. If f is a one-way function and g is as in Construction 7.1, then g
is a mildly nonuniform pseudorandom generator. The reduction is weak-preserving.

Proof. Tt is easy to check that g outputs more bits than it inputs.

As noted above, the conditional entropy of X' given f/(X) and b(X,Y) is at
least ¢, — €, — pn + (1/2n). Thus, from Corollary 4.10, we have that (hg, (X’), R1)
is statistically indistinguishable from random bits given (f/*"(X’),b% (X', Y"),Y").
Hence, g(X’,Y’, R, Ra, R3) is statistically indistinguishable from

<Z17 th (bkn (le Yl))? hRs (f,kn (X/))v Y/, R1, Ra, R3>,

where Z; €4 {0,1}™». Now, from Lemmas 6.5 and 6.1, it follows that hp, (b*" (X', Y"))
is computationally indistinguishable from random bits given (f’ ko (X'), Ra,Y"). Thus,
g(X', Y’ Ry, Ry, R3) is computationally indistinguishable from

<Zl7 Z27 h’R3 (f/kﬂ (Xl))v Y/; R17 R27R3>7

where Zy €y {0,1}™». Finally, from Corollary 4.10, (hRS(f’k”’(X’)),RP,) is sta-
tistically indistinguishable from (Zs, R3), where Zs €y {0,1}™~. Thus, the output
of g is computationally indistinguishable from a truly random output of the same
length. 1]

If we use hash functions constructed as Toeplitz matrices, then O(m) bits are
sufficient to construct a hash function on m bits and the inputs needed for the hash
function is just a constant fraction of all inputs. Then the input length to g is
O(nky) = O(n").

We still need to use Proposition 4.17 to get rid of the mild nonuniformity. From
the arguments above, it is clear that an approximation of both e, and p, that is
within 1/(8n) of their true values is sufficient. Since 0 < e, < n, and 0 < p,, < 1,
there are at most O(n3) cases of pairs to consider. This means that we get a total of
O(n?) generators, each needing an input of length O(n”). Thus the total input size
to the pseudorandom generator is O(n!?), as claimed.

8. Conclusions. A general problem is to characterize the conditions under
which cryptographic applications are possible. By conditions we mean complexity the-
oretic conditions, e.g., P # NP, the existence of one-way functions, etc. Examples of
cryptographic applications are private key cryptography, identification/authentication,
digital signatures, bit commitment, exchanging secrets, coin flipping over the tele-
phone, etc.

For a variety of cryptographic applications it is known that a secure protocol can
be constructed from a pseudorandom generator, e.g., the work of [GGMS&6], [LR8S],
[GMRA9], [Naor88], [GMWO91], shows that applications ranging from private key en-
cryption to zero-knowledge proofs can be based on a pseudorandom generator. The
results presented in this paper show that these same protocols can be based on any
one-way function. The paper [NY89] gives a signature scheme that can be based on
any one-way permutation, and [R90] substantially improves this by basing such a
scheme on any one-way function.
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Using the notion of a false-entropy generator, [G89] shows that the existence of
pseudorandom generators is equivalent to the existence of a pair of P-samplable dis-
tributions which are computationally indistinguishable but statistically very different.

The paper [IL89] provides complementary results; a one-way function can be con-
structed from a secure protocol for any one of a variety of cryptographic applications,
including private key encryption, identification/authentication, bit commitment, and
coin flipping by telephone. The paper [OW93] shows that a one-way function can be
constructed from any nontrivial zero-knowledge proof protocol. Thus, secure proto-
cols for any of these applications are equivalent to the existence of one-way functions.

The results described in this paper and the previous three paragraphs show that
the existence of a one-way function is central to modern complexity-based cryptogra-
phy.

Some applications seem unlikely to be shown possible based on any one-way func-
tion; e.g., [IR89] gives strong evidence that exchanging secrets over a public channel
is an application of this type.

A fundamental issue is that of efficiency, both in size and time; the general
construction we give for a pseudorandom generator based on any one-way function
increases the size of the input by a large polynomial amount and thus is only weak-
preserving. This is not good news for practical applications; it would be nice to have
a general poly-preserving or a linear-preserving reduction.
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