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1. Introduction 

Iu their 1985 paper, Goldwasser, Micah and Rackoff set forth the notion of zero- 
knowledge interactive proofs [GMRl]. This seminal paper generated considerable 
activity around the world. In the span of a few years, a substantial number of results 
were obtained by different groups of researchers. Among those, the following two 
theorems make an intriguing pair: 

. Fortnow [F], together with Boppana, Hasrud and Zachos [BHZ]: The existence of 

a perfect zero-knowledge protocol for an NP-complete problem would imply that 
the polynomial hierarchy collapses. 

l Brussard, Chazm and Cr6peau [BCC]: There exists a perfect zero-knowledge 
protocol for satisfiability. 

Nevertheless, the polynomial hierarchy has not collapsed! Of course, the resolution of 
this apparent paradox is that the above two results strongly depend on fundamentally 
incompatible definitions of what a protocol is. 

The purpose of this paper is to explain the various notions involved and to offer a 
new terminology that emphasizes their differences. There are two orthogonal aspects 
to zero-knowledge interactive proofs. One is the notion of zero-knowledge and the 

other is the notion of interactive proof. Unfortunately, these two notions are often 
thought to be inseparable. This confusion is reminiscent of the long lasting confusion 
among many people between public-key encryption and digital signature. It is clear 
that interactive proofs make sense independently of zero-knowledge (after all, Babai’s 
Arthur-Merlin games pa] were invented independently of [GMRl]), but it is more 

subtle to see that a protocol could be zero-knowledge without being an interactive 
proof. 
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2. Proofs and Arguments 

According to [GMRl], an interactive proof is a protocol that takes place between 
an arbitrarily powerful prover and a computationally limited verifier. The purpose of 
such protocols is for the prover to convince the verifier of the validity of an assertion. 
This notion is very similar to Babai’s Arthur-Merlin games [Ba,BM] (not discussed 
here). As essential aspect of these protocols is that there is nothing a prover can do in 
order to convince the verifier of a false statement, except to blindly hope for an 
exponentially small probability of lucky successful cheating. This is the sense in 
which it is said of GMR interactive proofs that “A proof is a proof”. 

In many practical situations, it is nevertheless reasonable to impose computational 
limitations on the prover. This setting was investigated independently by Chaum [C21 
(who, on the other hand, allowed unlimited computing power to the verifier - to a 
large extent, Cham’s model goes back to [Cl]), and by Brassard and Crkpeau [BCI 
(who restricted both the prover and the verifier to “reasonable” computing power). 
In either the Chaum or the Brassard-Crepeau setting, an interactive “proof” may not 
be a proof at all. Indeed, a computationally unbounded prover could cheat in convinc- 
ing the verifier of a false statement. More importantly in practice, many of these 
“proofs” rely on an unproved assumption, usually the computational difficulty of com- 
puting some specific problem. For instance, even a polynomial-time prover could 
succeed at “proving” a false statement with the protocol of [BC], provided that she 
has a very efficient factoring algorithm (whose nonexistence is still an open problem). 

To distinguish interactive proofs in the sense of GMR from the protocols of 
[C2,BC], we introduce a new terminology. An interactive protocol is an argument 
(rather than a proof) if the verifier’s faith in the prover’s claim must ultimately rest on 
an assumption. As we have seen, this assumption could be cryptographic in nature, 
such as the assumption that the prover cannot compute a discrete logarithm while the 
protocol is in progress [BCC]. It could also be merely that the prover has time- 
bounded resources (such as polynomial time), although our current state of knowledge 
in computational complexity does not yet allow us to make use of this kind of assump- 
tion alone. The assumption behind an argument could also be of a mathematical or 
even physical nature, such as the Extended Riemann Hypothesis or the principles of 
quantum physics [BB]. Or it could be that there are two provers who initially agree on 
their strategy, but with the assumption that they cannot communicate while the protocol 
is in progress [BGKW, GKBW]. Other types of assumptions can be dreamt up as well. 

The first published use of this new terminology appeared in the title of [BCY]. 
It should be pointed out that what we now call argument has occasionally been termed 
pseudo-proof by others. We wish to make a statement here, as the inventors of the 
notion (co-invented by Chaum), that we very strongly object to the appellation of 
pseudo-proof for the protocols of [C2, BC, BCY]. 
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One may well wonder why settle for arguments when interactive proofs are so 
much stronger. One reason has to do with the possible zero-knowledge aspect of these 
protocols (see next section): it is unlikely that perfect zero-knowledge interactive 
proofs exist €or statements concerning NP-complete problems [F, BHZ], and even com- 
putational zero-knowledge interactive proofs for such statements are not known to exist 
unless one makes cryptographic assumptions [GMWJ. In contrast, perfect zero- 
knowledge arguments are known for all such statements, and no assumptions are 
needed to prove that these arguments are perfect zero-knowledge [BCC] - but of 
course they are not interactive proofs at all in the sense of GMR. 

To a large extent, the (probably) computational zero-knowledge interactive proofs 
of [GMW] and the perfect zero-knowledge arguments of [BCC] are duals of each 
other. The only aspect of these protocols for which duality fails is that a cheating 
verifier can work off-line on the transcript of a [GMW] interactive proof and spend as 
much time as he wishes in attempts to decipher the prover’s secret. In contrast, the 
prover can only cheat a [BCC] argument if she can break the cryptographic assumption 
on-line, while the protocol is in progress. As a consequence, an algorithm capable of 
breaking the cryptographic assumption in a few months of CRAY computing time 
would be bad news for [GMW] proofs but of no real consequence for [BCC] argu- 
ments. The reader is referred to section 7 of [BCC] for a more complete discussion of 
this issue. 

Another reason to restrict the computational power of the prover is that it allows 
one to make sense of the notion of “proof of knowledge” [FFS,TW]. For instance, 
one such protocol allows a prover to convince a verifier that she (the prover) knows 
the factors of a given large integer [TI. The point is that it would be absurd for a 
prover known for her unbounded computing power to convince a verifier that she 
knows those factors: of cuurse she knows them since she can compute them whenever 
she wishes. These proofs of knowledge play a crucial role in modem identification 
schemes [FFS] (but read [BBDGQ]). (You may wonder at this point why we call 
them “proofs of knowledge” rather than “arguments of knowledge” even though the 
prover’s computing power is limited. For one thing, this terminology is well esta- 
blished. More importantly, they are GMR-proofs since no assumptions are needed for 
the proofs to be valid; it is only that they would be of no interest whatsoever if per- 
formed by a prover with unbounded computing power or if factoring, in our example, 
were known to be easy.) 

For more discussion on the difference between the settings of [GMR1,21, EC21 and 
[BC], the reader is referred to [BCC,p. 1591. 
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3. Zero-knowledge 

The notion of zero-knowledge was set forward by Goldwasser, Micali and Rackoff 
[GMRl]. The reader is encouraged to read also the subsequent joumal version of their 
work [GMR2]. Essentially, a zero-knowledge protocol allows a prover to convince a 
verifier of an assertion without disclosing any information to the verifier beyond the 
validity of that assertion. In the context of [GMR1,2], all zero-knowledge protocols 
are interactive proofs, but the notion of zero-knowledge arguments makes perfect sense 
as well. Whenever the prover’s computing power is limited, a zero-knowledge proto- 
col will necessarily disclose more than the validity of the assertion: the fact that the 
prover knows why this assertion is valid is also disclosed. (In the context of interac- 
tive proofs, the fact that the prover has this knowledge is implied by her unbounded 
computing power.) Nevertheless, this additional piece of information revealed when 
the prover’s computing power is limited makes it possible to design protocols that 
actually reveal less than would be possible for any (interesting) interactive proof in 
which the prover has unbounded computing power: these are the proofs of knowledge 
discussed at the end of the previous section. 

The intent of this paper is not to repeat the formal definitions of zero-knowledge, 
which can be found in [GMR2]. Rather, we wish to describe briefly several subtly 
different definitions for the main purpose of contrasting them. The reader not already 
familiar with the notion of (zero-knowledge) sirnularor is urged to read [GMR21 in 
order to profit fully from what follows, even though we briefly recall this notion in the 
next two paragraphs (with apologies to those who are familiar with it). 

A protocol is perfect zero-knowledge [GMW] if the verifier does not learn any- 
thing at all from the interaction beyond the validity of the assertion involved and 
-if relevant- the fact that the prover knows why it is valid. In order to define this 
notion more formally, one has to consider the view of what the verifier sees during his 
interaction with the prover. This consists of the outcome of his own random coin 
tosses as well as of everything that the prover tells him during the interaction. Because 
of the probabilistic nature of interactive protocols (including random choices made by 
the prover), a probability distribution is defined on the view of the verifier. A protocol 
is pegect zero-knowledge if, to each polynomial-time verifier, there corresponds a 
polynomial-time simularur capable of producing a view taken from exactly the same 
probability distribution wirhout ever ralking ro the prover. Intuitively, the existence of 
this simulator shows that the verifier does not learn anything from the interaction since 
the prover does not tell him anything that he could not have produced by himself 
(probabilistically speaking). 

If the simulator is only required to produce a view taken from a probability distri- 
bution that is polynomially indistinguishable [GM] from the “correct distribution”, the 
protocol is said to be cumpurutionul zero-knowledge [GMRl]. Intuitively, this means 
that whatever the verifier may obtain from the interaction, he cannot make use of in 
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polynomial time. Finally, the protocol is statistical (or almost perfect) zero-knowledge 
[fl if the real and simulated probability distributions are statistically close. When a 
protocol is simply said to be “zero-knowledge”, most authors mean that it is computa- 
tional zero-knowledge. In the opinion of the current authors, it would be better if the 
default option were that such protocols are perfect zero-knowledge. 

Some researchers have objected to calling zero knowledge a protocol that reveals 
one bit of knowledge, for instance that a given graph is Hamiltonian. For this reason, 
Galil, Haber and Yung have suggested that such protocols be termed minimum 
knowledge [GHY], meaning that they reveal nothing more than what they absolutely 
have to by definition of their purpose. By contrast, Feige, Fiat and Shamir wished to 
keep the term “zero-knowledge”, so they introduced the notion of proof of knowledge 
in order to have a protocol that is truly zero knowledge (in their opinion) [FFS] in the 
sense that it reveals zero bits of information about the “real world”. This notion of 
proof of knowledge was also formalized by Tompa and Woll [TW]. 

The original definition of zero-knowledge [GMRl] lacked the desirable property 
that the sequential composition of two zero-knowledge protocols should remain zero- 
knowledge [GK]. If this property is important, the stronger notion of zero-knowledge 
wirh auxiliary input [O] should be used. A protocol is perfect zero-knowledge with 
auxiliary input if, no matter which additional input is given to the verifier before the 
interaction with the prover, the interaction does not help the verifier learn anything at 
all that he could not have leamt by himself given the same additional input. The 
notions of computational and statistical zero-knowledge with auxiliary input are defined 
similarly. 

The formal definition of zero-knowledge [GMR1,2] stipulated that a polynomial- 
time simulator should exist for each polynomial-time verifier. This begs the following 
two questions. 

1) Should there be a uniform and efficient process by which the simulator can be 
derived from the verifier? 

2) How should the definition be modified if one is also interested in dealing with 
verifiers that are not limited to polynomial time? (This is an important issue when 
dealing with arguments rather than interactive proofs.) 

We believe that the answer to the first question ought to be “yes”. Otherwise, it 
is hard to support the view that a verifier learns nothing from the interaction if his 
conversation with the prover could be simulated but only by a simulator that is infeasi- 
ble to find. We can think of two different definitions that would force the simulator to 
be efficiently obtainable from the verifier. The first and most obvious definition 
requires that the verifier be provided using a fixed formalism, such as that of proba- 
bilistic interactive Turing machines. In this case, we would insist that the “code” for 
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the simulator (presumably expressed in the same formalism) be efficiently derivable 
from the code for the verifier. 

The second definition, which we prefer for its simplicity even though it is more 
restrictive, is that of a “black box simulator”, first introduced by Oren [O]. This 
definition requires the simulator to use the verifier as a resettable black box in order to 
simulate the interaction between that verifier and the prover. In other words, the simu- 
lator has no access to the code of the verifier, but has control over its tapes, including 
its random coin flip tape, and has the ability to bring it to a halt and restart it in its 
starting state (possibly with different tapes) at any time it wishes. This definition is 
not as restrictive as it might appear because most simulators in the literature are in fact 
designed in the black box model. It is known that black box simulation implies zero- 
knowledge with auxiliary input [O]. 

This brings us to the second question mentioned above: “How should the 
definition be modified if one is also interested in dealing with verifiers that are not lim- 
ited to polynomial time? ”. One possibility would be to grant the simulator an amount 
of time comparable (perhaps up to a polynomial factor) to the time allowed to the 
verifier. Another possibility, which we prefer, involves again the notion of black box 
simulator: restrict the simulator to polynomial time, but count at unit cost any call on 
the verifier. 

Thus we see that there are two different reasons why there may be protocols that 
are GMR zero-knowledge but not black box zero-knowledge. Firstly, there may be 
protocols that are non-uniform zero-knowledge but that cannot be simulated by a black 
box simulator. Moreover, given the work of [GK], it is not hard to design a protocol 
that is zero-knowledge against any polynomial-time verifier (although not with awili- 
ary input), but that would nevertheless allow a super-polynomial-time verifier to get 
information from an even more powerful prover that he could not compute by himself 
within his allowed time bound. 

All the concepts discussed so far are but minor variations on the original definition 
of zero-knowledge [GIMR~]. Other minor variations have been introduced, such as the 
notion of zero-knowledge with respect to a trusted verifier. We do not discuss them 
here. Rather, we now discuss a few notions that are more significantly different. 

There are practical situations in which it is worthwhile to settle for something less 
than zero-knowledge. This may be the case, for instance, if it allows a substantial 
increase in efficiency. A nice example of this concept is the version of their 
identification scheme that Feige, Fiat and Shamir discuss in section 4 of [FFS]. They 
propose a scheme that is (probably) not zero-knowledge because the interaction reveals 
information to the verifier that he could (probably) not have computed by himself. 
Nevertheless, this information is proven in [FFS] not to be enough to help the verifier 
cheat the system in polynomial time, provided that cheating the protocol in polynomial 
time is impossible in the first place without the interaction. In other words, partial 
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information is perhaps released on the prover’s secret, but this partial information is 
not sufficient for the verifier to recompute the prover’s secret (or any “equivalent” 
secret that might allow him to defeat the system). Feige, Fiat and Shamir say of such 
schemes that they “release no useful information”. 

A similar but stronger notion was introduced by ‘Brassard, C h a m  and Ckpeau 
[BCC]. A protocol is minimum disclosure if everything that the prover ever says to 
the verifier is uncorrelated to her secret (or any equivalent secret). Clearly, a minimum 
disclosure protocol cannot help the verifier compute the prover’s secret (or any 
equivalent secret), hence it “releases no useful information”. However, it may not be 
zero-knowledge because the prover is allowed to reveal irrelevant information even if 
this information would be hard for the verifier to compute by himself. Contrary to 
protocols that reveal no useful information, a minimum disclosure protocol is not 
allowed to reveal partial information, even if such information is not enough to 
efficiently recompute the secret. 

This brings us to a curious notion, which has evolved from discussions between 
the authors and Silvio Micali. Some protocols are not known to be zero-knowledge 
nor even minimum disclosure. However, it is known that whatever the verifier could 
learn by deviating arbitrarily from his prescribed behaviour could not be worth more, 
for instance, than the discrete logarithm of a number of his choosing. (This is the 
case, in particular, of the parallel version of the main protocol given in [BCC] if the 
blobs are implemented as suggested in section 6.1.2.) This is not to say that the 
verifier can actually obtain this discrete logarithm from his interaction with the prover, 
but whatever he can get is worth no more than if he did. Formally, this is so because 
it would be easy for a simulator to do a perfect job very efficiently were it only given 
this discrete logarithm. If it can be proven that this discrete logarithm is uncorrelated 
to the prover’s secret (or any equivalent secret), then the corresponding protocol is 
minimum disclosure. We would like to point out that, because such correlation cannot 
be ruled out in general, the claim made in [BCC,p. 1661 to the effect that “the parallel 
version of the protocol is minimum disclosure” is not known to hold in all cases. 

Given a protocol such as the one we have just discussed, the interesting question is 
to determine the minimal piece of information that would allow efficient simulation. 
This information can be thought of as the maximal value of the protocol for any cheat- 
ing verifier because whatever a verifier can get from the interaction is worth no more 
than it. An interesting question asked by Silvio Micali is what is the maximal value of 
the parallel version of the protocol for graph isomorphism [GMW]? Could it be less 
than the isomorphism itself? 
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4. Complexity issues 

There are several complexity issues pertaining to zero-knowledge protocols. One 
of the most interesting from a practical point of view is the issue of parallelism. 
Zero-knowledge protocols usually take place in several rounds of interaction between 
the prover and the verifier. Each round increases the 'verifier's confidence in the 
prover's honesty. Most of these protocols can be reformulated in a natural way in a 
bounded number of rounds, but they apparently cease to be zero-knowledge when this 
is done. (As previously mentioned, the identification protocol of [FFS] is an interest- 
ing special case: its parallel version may not be zero-knowledge but it releases no use- 
ful information, which is just as good for the application that they have in mind.) 
Nevertheless, it is known that the general protocols of [ G W  and [BCC] can be 
redesigned to be run in parallel and remain zero-knowledge (perfect zero-knowledge in 
the case of [BCC]). For a full discussion of the fact that everything in NP can be 
argued in perfect zero-knowledge in a bounded number of rounds, read the ICALP ver- 
sion of [BCY]. A summary, including the history of the problem and references to 
related work, can be found in these EUROCRYPT '89 Proceedings. Following the work 
of [BCY], Bellare, Micali and Osuovsky have shown than graph isomorphism can be 
proven in perfect zero-knowledge in a bounded number of rounds (personal communi- 
cation). 

An orthogonal result pertaining to bounded round interactive proofs is due to Fort- 
now [F] and to Aiello and Hastad [AH]: if L is any language that admits a perfect or 
statistical zero-knowledge interactive proof system with an arbitrary number of rounds, 
then both L and its complement also admit a bounded round interactive proof system 
(which is not zero-knowledge in general, however). It is crucial for the Fortnow and 
Aiello-Hastad results not to limit the prover to polynomial time. 

Despite the work mentioned in the first paragraph of this section, it remains 
interesting to analyse what happens if one runs an arbitrary zero-knowledge protocol in 
parallel without any additional precaution. In particular, it has not been proven that 
these protocols cease to be zero-knowledge (it is only the case that no one has been 
able to design a simulator capable of coping with the situation). If indeed these proto- 
cols are not zero-knowledge, what is in general their maximal value (as defined at the 
end of the previous section)? When are they minimum disclosure? When do they 
release no useful infomation? 

Other complexity issues pertain to the simulator. One of them is whether it is 
legitimate to say that a protocol is zero-knowledge if there exists a verifier capable in 
quadratic time to force the prover to take part in an interaction that no sirnulator could 
reproduce in less than cubic time. 

Yet another issue pertaining to the simulator is that of strict polynomial time 
versus expected polynomial time. Recall that both the verifier and the simulator are 
probabilistic processes. It is usually the case that the prescribed verifier takes a time 
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that is strictly bounded by a fixed polynomial, regardless of its random choices 
(perhaps the only exception in the published literature is the prescribed verifier for the 
zero-knowledge interactive protocol for graph 3-colourability when the number of 
edges is not a power of 2 [GMW]). Nevertheless, the simulator usually requires poly- 
nomial time in the expected sense. Is it possible in general to make do with strict 
polynomial time for the simulator whenever the verifier is strict polynomial time 
(or when the black box model is used)? In particular, it is an open question to design 
a strict polynomial-time simulator that retains the pelfect zero-knowledge property of 
the well-known protocol for graph isomorphism [GMW]. 
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