
Sorting out zero-knowledge

Gilles BRASSARD t

Dkpartement IRO
Universiti de Montr&l

Claude CREPEAU $

Laboratory for Computer Science
Massachusetts Institute of Technology

1. Introduction

Iu their 1985 paper, Goldwasser, Micah and Rackoff set forth the notion of zero-
knowledge interactive proofs [GMRl]. This seminal paper generated considerable
activity around the world. In the span of a few years, a substantial number of results
were obtained by different groups of researchers. Among those, the following two
theorems make an intriguing pair:

. Fortnow [F], together with Boppana, Hasrud and Zachos [BHZ]: The existence of

a perfect zero-knowledge protocol for an NP-complete problem would imply that
the polynomial hierarchy collapses.

l Brussard, Chazm and Cr6peau [BCC]: There exists a perfect zero-knowledge
protocol for satisfiability.

Nevertheless, the polynomial hierarchy has not collapsed! Of course, the resolution of
this apparent paradox is that the above two results strongly depend on fundamentally
incompatible definitions of what a protocol is.

The purpose of this paper is to explain the various notions involved and to offer a
new terminology that emphasizes their differences. There are two orthogonal aspects
to zero-knowledge interactive proofs. One is the notion of zero-knowledge and the

other is the notion of interactive proof. Unfortunately, these two notions are often
thought to be inseparable. This confusion is reminiscent of the long lasting confusion
among many people between public-key encryption and digital signature. It is clear
that interactive proofs make sense independently of zero-knowledge (after all, Babai’s
Arthur-Merlin games pa] were invented independently of [GMRl]), but it is more

subtle to see that a protocol could be zero-knowledge without being an interactive
proof.

t Supported in part by Canada NSERC grant A4107.
t Supported in pm by an NSERC postgraduate scholarship; part of this research was

performed while this author was visiting the Universiti de Montrt5aI.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 181-191, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

1 a2

2. Proofs and Arguments

According to [GMRl], an interactive proof is a protocol that takes place between
an arbitrarily powerful prover and a computationally limited verifier. The purpose of
such protocols is for the prover to convince the verifier of the validity of an assertion.
This notion is very similar to Babai’s Arthur-Merlin games [Ba,BM] (not discussed
here). As essential aspect of these protocols is that there is nothing a prover can do in
order to convince the verifier of a false statement, except to blindly hope for an
exponentially small probability of lucky successful cheating. This is the sense in
which it is said of GMR interactive proofs that “A proof is a proof”.

In many practical situations, it is nevertheless reasonable to impose computational
limitations on the prover. This setting was investigated independently by Chaum [C21
(who, on the other hand, allowed unlimited computing power to the verifier - to a
large extent, Cham’s model goes back to [Cl]), and by Brassard and Crkpeau [BCI
(who restricted both the prover and the verifier to “reasonable” computing power).
In either the Chaum or the Brassard-Crepeau setting, an interactive “proof” may not
be a proof at all. Indeed, a computationally unbounded prover could cheat in convinc-
ing the verifier of a false statement. More importantly in practice, many of these
“proofs” rely on an unproved assumption, usually the computational difficulty of com-
puting some specific problem. For instance, even a polynomial-time prover could
succeed at “proving” a false statement with the protocol of [BC], provided that she
has a very efficient factoring algorithm (whose nonexistence is still an open problem).

To distinguish interactive proofs in the sense of GMR from the protocols of
[C2,BC], we introduce a new terminology. An interactive protocol is an argument
(rather than a proof) if the verifier’s faith in the prover’s claim must ultimately rest on
an assumption. As we have seen, this assumption could be cryptographic in nature,
such as the assumption that the prover cannot compute a discrete logarithm while the
protocol is in progress [BCC]. It could also be merely that the prover has time-
bounded resources (such as polynomial time), although our current state of knowledge
in computational complexity does not yet allow us to make use of this kind of assump-
tion alone. The assumption behind an argument could also be of a mathematical or
even physical nature, such as the Extended Riemann Hypothesis or the principles of
quantum physics [BB]. Or it could be that there are two provers who initially agree on
their strategy, but with the assumption that they cannot communicate while the protocol
is in progress [BGKW, GKBW]. Other types of assumptions can be dreamt up as well.

The first published use of this new terminology appeared in the title of [BCY].
It should be pointed out that what we now call argument has occasionally been termed
pseudo-proof by others. We wish to make a statement here, as the inventors of the
notion (co-invented by Chaum), that we very strongly object to the appellation of
pseudo-proof for the protocols of [C2, BC, BCY].

183

One may well wonder why settle for arguments when interactive proofs are so
much stronger. One reason has to do with the possible zero-knowledge aspect of these
protocols (see next section): it is unlikely that perfect zero-knowledge interactive
proofs exist €or statements concerning NP-complete problems [F, BHZ], and even com-
putational zero-knowledge interactive proofs for such statements are not known to exist
unless one makes cryptographic assumptions [GMWJ. In contrast, perfect zero-
knowledge arguments are known for all such statements, and no assumptions are
needed to prove that these arguments are perfect zero-knowledge [BCC] - but of
course they are not interactive proofs at all in the sense of GMR.

To a large extent, the (probably) computational zero-knowledge interactive proofs
of [GMW] and the perfect zero-knowledge arguments of [BCC] are duals of each
other. The only aspect of these protocols for which duality fails is that a cheating
verifier can work off-line on the transcript of a [GMW] interactive proof and spend as
much time as he wishes in attempts to decipher the prover’s secret. In contrast, the
prover can only cheat a [BCC] argument if she can break the cryptographic assumption
on-line, while the protocol is in progress. As a consequence, an algorithm capable of
breaking the cryptographic assumption in a few months of CRAY computing time
would be bad news for [GMW] proofs but of no real consequence for [BCC] argu-
ments. The reader is referred to section 7 of [BCC] for a more complete discussion of
this issue.

Another reason to restrict the computational power of the prover is that it allows
one to make sense of the notion of “proof of knowledge” [FFS,TW]. For instance,
one such protocol allows a prover to convince a verifier that she (the prover) knows
the factors of a given large integer [TI. The point is that it would be absurd for a
prover known for her unbounded computing power to convince a verifier that she
knows those factors: of cuurse she knows them since she can compute them whenever
she wishes. These proofs of knowledge play a crucial role in modem identification
schemes [FFS] (but read [BBDGQ]). (You may wonder at this point why we call
them “proofs of knowledge” rather than “arguments of knowledge” even though the
prover’s computing power is limited. For one thing, this terminology is well esta-
blished. More importantly, they are GMR-proofs since no assumptions are needed for
the proofs to be valid; it is only that they would be of no interest whatsoever if per-
formed by a prover with unbounded computing power or if factoring, in our example,
were known to be easy.)

For more discussion on the difference between the settings of [GMR1,21, EC21 and
[BC], the reader is referred to [BCC,p. 1591.

184

3. Zero-knowledge

The notion of zero-knowledge was set forward by Goldwasser, Micali and Rackoff
[GMRl]. The reader is encouraged to read also the subsequent joumal version of their
work [GMR2]. Essentially, a zero-knowledge protocol allows a prover to convince a
verifier of an assertion without disclosing any information to the verifier beyond the
validity of that assertion. In the context of [GMR1,2], all zero-knowledge protocols
are interactive proofs, but the notion of zero-knowledge arguments makes perfect sense
as well. Whenever the prover’s computing power is limited, a zero-knowledge proto-
col will necessarily disclose more than the validity of the assertion: the fact that the
prover knows why this assertion is valid is also disclosed. (In the context of interac-
tive proofs, the fact that the prover has this knowledge is implied by her unbounded
computing power.) Nevertheless, this additional piece of information revealed when
the prover’s computing power is limited makes it possible to design protocols that
actually reveal less than would be possible for any (interesting) interactive proof in
which the prover has unbounded computing power: these are the proofs of knowledge
discussed at the end of the previous section.

The intent of this paper is not to repeat the formal definitions of zero-knowledge,
which can be found in [GMR2]. Rather, we wish to describe briefly several subtly
different definitions for the main purpose of contrasting them. The reader not already
familiar with the notion of (zero-knowledge) sirnularor is urged to read [GMR21 in
order to profit fully from what follows, even though we briefly recall this notion in the
next two paragraphs (with apologies to those who are familiar with it).

A protocol is perfect zero-knowledge [GMW] if the verifier does not learn any-
thing at all from the interaction beyond the validity of the assertion involved and
-if relevant- the fact that the prover knows why it is valid. In order to define this
notion more formally, one has to consider the view of what the verifier sees during his
interaction with the prover. This consists of the outcome of his own random coin
tosses as well as of everything that the prover tells him during the interaction. Because
of the probabilistic nature of interactive protocols (including random choices made by
the prover), a probability distribution is defined on the view of the verifier. A protocol
is pegect zero-knowledge if, to each polynomial-time verifier, there corresponds a
polynomial-time simularur capable of producing a view taken from exactly the same
probability distribution wirhout ever ralking ro the prover. Intuitively, the existence of
this simulator shows that the verifier does not learn anything from the interaction since
the prover does not tell him anything that he could not have produced by himself
(probabilistically speaking).

If the simulator is only required to produce a view taken from a probability distri-
bution that is polynomially indistinguishable [GM] from the “correct distribution”, the
protocol is said to be cumpurutionul zero-knowledge [GMRl]. Intuitively, this means
that whatever the verifier may obtain from the interaction, he cannot make use of in

185

polynomial time. Finally, the protocol is statistical (or almost perfect) zero-knowledge
[fl if the real and simulated probability distributions are statistically close. When a
protocol is simply said to be “zero-knowledge”, most authors mean that it is computa-
tional zero-knowledge. In the opinion of the current authors, it would be better if the
default option were that such protocols are perfect zero-knowledge.

Some researchers have objected to calling zero knowledge a protocol that reveals
one bit of knowledge, for instance that a given graph is Hamiltonian. For this reason,
Galil, Haber and Yung have suggested that such protocols be termed minimum
knowledge [GHY], meaning that they reveal nothing more than what they absolutely
have to by definition of their purpose. By contrast, Feige, Fiat and Shamir wished to
keep the term “zero-knowledge”, so they introduced the notion of proof of knowledge
in order to have a protocol that is truly zero knowledge (in their opinion) [FFS] in the
sense that it reveals zero bits of information about the “real world”. This notion of
proof of knowledge was also formalized by Tompa and Woll [TW].

The original definition of zero-knowledge [GMRl] lacked the desirable property
that the sequential composition of two zero-knowledge protocols should remain zero-
knowledge [GK]. If this property is important, the stronger notion of zero-knowledge
wirh auxiliary input [O] should be used. A protocol is perfect zero-knowledge with
auxiliary input if, no matter which additional input is given to the verifier before the
interaction with the prover, the interaction does not help the verifier learn anything at
all that he could not have leamt by himself given the same additional input. The
notions of computational and statistical zero-knowledge with auxiliary input are defined
similarly.

The formal definition of zero-knowledge [GMR1,2] stipulated that a polynomial-
time simulator should exist for each polynomial-time verifier. This begs the following
two questions.

1) Should there be a uniform and efficient process by which the simulator can be
derived from the verifier?

2) How should the definition be modified if one is also interested in dealing with
verifiers that are not limited to polynomial time? (This is an important issue when
dealing with arguments rather than interactive proofs.)

We believe that the answer to the first question ought to be “yes”. Otherwise, it
is hard to support the view that a verifier learns nothing from the interaction if his
conversation with the prover could be simulated but only by a simulator that is infeasi-
ble to find. We can think of two different definitions that would force the simulator to
be efficiently obtainable from the verifier. The first and most obvious definition
requires that the verifier be provided using a fixed formalism, such as that of proba-
bilistic interactive Turing machines. In this case, we would insist that the “code” for

186

the simulator (presumably expressed in the same formalism) be efficiently derivable
from the code for the verifier.

The second definition, which we prefer for its simplicity even though it is more
restrictive, is that of a “black box simulator”, first introduced by Oren [O]. This
definition requires the simulator to use the verifier as a resettable black box in order to
simulate the interaction between that verifier and the prover. In other words, the simu-
lator has no access to the code of the verifier, but has control over its tapes, including
its random coin flip tape, and has the ability to bring it to a halt and restart it in its
starting state (possibly with different tapes) at any time it wishes. This definition is
not as restrictive as it might appear because most simulators in the literature are in fact
designed in the black box model. It is known that black box simulation implies zero-
knowledge with auxiliary input [O].

This brings us to the second question mentioned above: “How should the
definition be modified if one is also interested in dealing with verifiers that are not lim-
ited to polynomial time? ”. One possibility would be to grant the simulator an amount
of time comparable (perhaps up to a polynomial factor) to the time allowed to the
verifier. Another possibility, which we prefer, involves again the notion of black box
simulator: restrict the simulator to polynomial time, but count at unit cost any call on
the verifier.

Thus we see that there are two different reasons why there may be protocols that
are GMR zero-knowledge but not black box zero-knowledge. Firstly, there may be
protocols that are non-uniform zero-knowledge but that cannot be simulated by a black
box simulator. Moreover, given the work of [GK], it is not hard to design a protocol
that is zero-knowledge against any polynomial-time verifier (although not with awili-
ary input), but that would nevertheless allow a super-polynomial-time verifier to get
information from an even more powerful prover that he could not compute by himself
within his allowed time bound.

All the concepts discussed so far are but minor variations on the original definition
of zero-knowledge [GIMR~]. Other minor variations have been introduced, such as the
notion of zero-knowledge with respect to a trusted verifier. We do not discuss them
here. Rather, we now discuss a few notions that are more significantly different.

There are practical situations in which it is worthwhile to settle for something less
than zero-knowledge. This may be the case, for instance, if it allows a substantial
increase in efficiency. A nice example of this concept is the version of their
identification scheme that Feige, Fiat and Shamir discuss in section 4 of [FFS]. They
propose a scheme that is (probably) not zero-knowledge because the interaction reveals
information to the verifier that he could (probably) not have computed by himself.
Nevertheless, this information is proven in [FFS] not to be enough to help the verifier
cheat the system in polynomial time, provided that cheating the protocol in polynomial
time is impossible in the first place without the interaction. In other words, partial

187

information is perhaps released on the prover’s secret, but this partial information is
not sufficient for the verifier to recompute the prover’s secret (or any “equivalent”
secret that might allow him to defeat the system). Feige, Fiat and Shamir say of such
schemes that they “release no useful information”.

A similar but stronger notion was introduced by ‘Brassard, C h a m and Ckpeau
[BCC]. A protocol is minimum disclosure if everything that the prover ever says to
the verifier is uncorrelated to her secret (or any equivalent secret). Clearly, a minimum
disclosure protocol cannot help the verifier compute the prover’s secret (or any
equivalent secret), hence it “releases no useful information”. However, it may not be
zero-knowledge because the prover is allowed to reveal irrelevant information even if
this information would be hard for the verifier to compute by himself. Contrary to
protocols that reveal no useful information, a minimum disclosure protocol is not
allowed to reveal partial information, even if such information is not enough to
efficiently recompute the secret.

This brings us to a curious notion, which has evolved from discussions between
the authors and Silvio Micali. Some protocols are not known to be zero-knowledge
nor even minimum disclosure. However, it is known that whatever the verifier could
learn by deviating arbitrarily from his prescribed behaviour could not be worth more,
for instance, than the discrete logarithm of a number of his choosing. (This is the
case, in particular, of the parallel version of the main protocol given in [BCC] if the
blobs are implemented as suggested in section 6.1.2.) This is not to say that the
verifier can actually obtain this discrete logarithm from his interaction with the prover,
but whatever he can get is worth no more than if he did. Formally, this is so because
it would be easy for a simulator to do a perfect job very efficiently were it only given
this discrete logarithm. If it can be proven that this discrete logarithm is uncorrelated
to the prover’s secret (or any equivalent secret), then the corresponding protocol is
minimum disclosure. We would like to point out that, because such correlation cannot
be ruled out in general, the claim made in [BCC,p. 1661 to the effect that “the parallel
version of the protocol is minimum disclosure” is not known to hold in all cases.

Given a protocol such as the one we have just discussed, the interesting question is
to determine the minimal piece of information that would allow efficient simulation.
This information can be thought of as the maximal value of the protocol for any cheat-
ing verifier because whatever a verifier can get from the interaction is worth no more
than it. An interesting question asked by Silvio Micali is what is the maximal value of
the parallel version of the protocol for graph isomorphism [GMW]? Could it be less
than the isomorphism itself?

188

4. Complexity issues

There are several complexity issues pertaining to zero-knowledge protocols. One
of the most interesting from a practical point of view is the issue of parallelism.
Zero-knowledge protocols usually take place in several rounds of interaction between
the prover and the verifier. Each round increases the 'verifier's confidence in the
prover's honesty. Most of these protocols can be reformulated in a natural way in a
bounded number of rounds, but they apparently cease to be zero-knowledge when this
is done. (As previously mentioned, the identification protocol of [FFS] is an interest-
ing special case: its parallel version may not be zero-knowledge but it releases no use-
ful information, which is just as good for the application that they have in mind.)
Nevertheless, it is known that the general protocols of [G W and [BCC] can be
redesigned to be run in parallel and remain zero-knowledge (perfect zero-knowledge in
the case of [BCC]). For a full discussion of the fact that everything in NP can be
argued in perfect zero-knowledge in a bounded number of rounds, read the ICALP ver-
sion of [BCY]. A summary, including the history of the problem and references to
related work, can be found in these EUROCRYPT '89 Proceedings. Following the work
of [BCY], Bellare, Micali and Osuovsky have shown than graph isomorphism can be
proven in perfect zero-knowledge in a bounded number of rounds (personal communi-
cation).

An orthogonal result pertaining to bounded round interactive proofs is due to Fort-
now [F] and to Aiello and Hastad [AH]: if L is any language that admits a perfect or
statistical zero-knowledge interactive proof system with an arbitrary number of rounds,
then both L and its complement also admit a bounded round interactive proof system
(which is not zero-knowledge in general, however). It is crucial for the Fortnow and
Aiello-Hastad results not to limit the prover to polynomial time.

Despite the work mentioned in the first paragraph of this section, it remains
interesting to analyse what happens if one runs an arbitrary zero-knowledge protocol in
parallel without any additional precaution. In particular, it has not been proven that
these protocols cease to be zero-knowledge (it is only the case that no one has been
able to design a simulator capable of coping with the situation). If indeed these proto-
cols are not zero-knowledge, what is in general their maximal value (as defined at the
end of the previous section)? When are they minimum disclosure? When do they
release no useful infomation?

Other complexity issues pertain to the simulator. One of them is whether it is
legitimate to say that a protocol is zero-knowledge if there exists a verifier capable in
quadratic time to force the prover to take part in an interaction that no sirnulator could
reproduce in less than cubic time.

Yet another issue pertaining to the simulator is that of strict polynomial time
versus expected polynomial time. Recall that both the verifier and the simulator are
probabilistic processes. It is usually the case that the prescribed verifier takes a time

189

that is strictly bounded by a fixed polynomial, regardless of its random choices
(perhaps the only exception in the published literature is the prescribed verifier for the
zero-knowledge interactive protocol for graph 3-colourability when the number of
edges is not a power of 2 [GMW]). Nevertheless, the simulator usually requires poly-
nomial time in the expected sense. Is it possible in general to make do with strict
polynomial time for the simulator whenever the verifier is strict polynomial time
(or when the black box model is used)? In particular, it is an open question to design
a strict polynomial-time simulator that retains the pelfect zero-knowledge property of
the well-known protocol for graph isomorphism [GMW].

ACKNOWLEDGEME~TS

The idea of writing this paper came from several discussions the authors have had
with Silvio Micali.

BIBLIOGRAPHY

[AH] Aiello, IV. and Hastad, J., “Perfect zero-knowledge languages can be recog-
nized in two rounds”, Proceedings of the 28th IEEE Symposium on Foun-
dations of Computer Science, 1987, pp. 439-448.
Babai, L., “Trading group theory for randomness”, Proceedings of rhe 17th
ACM Symposium on Theory of Computing, 1985, pp. 421-429.
Babai, L. and Moran, S., “Arthur-Merlin games: A randomized proof sys-
tem, and a hierarchy of complexity classes”, Journal of Computer and Sys-
tem Sciences, vol. 36, 1988, pp. 254-276.

[BBDGQ] Bengio, S . . Brassard, G., Desmedt, Y., Goutier, C. and Quisquater, J.-J.,

P a l

[BM]

“Secure implementation of identification systems”, in preparation.
Bennett, C. H. and Brassard, G., “Quantum cryptography”, in preparation;
in the mean time, read chapter 6 in [Br].
Ben Or, M., Goldwasser, S . , Kilian, J. and Wigderson, A., “Multi-prover
interactive proofs : How to remove intractability assumptions”, Proceedings
of the 20th ACM Symposium on Theory of Computing, 1988, pp.113-131.
Boppana, R. B., Hastad, I. and Zachos, S . , “Does co-NP have short interac-
tive proofs? ”, Information Processing Letters, vol. 25, 1987, pp. 127-132.
Brassard, G., Modern Cryprology : A Tutorial, Lecture Notes in Computer
Science, vol. 325, Springer-Verlag, 1988.
Brassard, G., Chaum, D. and Crkpeau, C., “Minimum disclosure proofs of
knowledge”, Journal of Computer and System Sciences, vol. 37, no. 2, 1988,
pp. 156-189.

190

[GKBW]

[GMI

[GMRI]

[GMR2]

Brassard, G. and Crkpeau, C., “Non-transitive transfer of confidence:
A perfect zero-knowledge interactive protocol for SAT and beyond”,
Proceedings of the 27th IEEE Symposium on Foundations of Computer Sci-
ence, 1986, pp. 188-195.
Brassard, G., Cripeau, C. and Yung, M., “Everything in NP can be argued
in perfect zero-knowledge in a bounded number of rounds”, Proceedings of
16th ICALp Conference, Stresa, Italy, July 1989, to appear; an extended
abstract appears in these EUROCRYPT ’89 Proceedings.
Chaum, D., “Security without identification: Transaction system to make
Big Brother obsolete”, Communications of the ACM, vol. 28, 1985,

Chaum, D., “Demonstrating that a public predicate can be satisfied
without revealing any information about how”, Advances in Cryptology -
CRYPTO ’86 Proceedings, Springer-Verlag, 1987, pp. 195-199.
Feige, U., Fiat, A. and Shamir, A., “Zero knowledge proofs of identity”,
Journal of Cryptology, vol. 1, no. 2, 1988, pp. 77-94.
Formow, L., “The complexity of perfect zero-knowledge”, Proceedings of
the 19th ACM Symposium on Theory of Computing, 1987, pp. 204-209.
Galil, Z., Haber, S. and Yung, M., “A private interactive test of a Boolean
predicate and minimum-knowledge public-key cryptosystems”, Proceedings
of the 26th IEEE Symposium on Foundations of Computer Science, 1985,

Goldreich, 0. and Krawczyk, H., “On sparse pseudo-random distributions”,
Advances in Cryptology - CRYPTO ‘89 Proceedings, Springer-Verlag, to
appear.
Goldreich, O., Micali, S. and Wigderson, A,, “Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design”,
Proceedings of the 27th IEEE Symposium on Foundations of Computer Sci-
ence, 1986, pp. 174-187.
Goldwasser, S., Kilian, J., Ben Or, M. and Wigderson, A., “Efficient
identification schemes using two prover interactive proofs”, Advances in
Cryptology - CRYPT0 ’89 Proceedings, Springer-Verlag, to appear.
Goldwasser, S . and Micali, S., “Probabilistic encryption”, Journal of Com-
puter and System Sciences, vol. 28, 1984, pp. 270-299.
Goldwasser, S . , Micali, S. and Rackoff, C., “The knowledge complexity of
interactive proof. systems”, Proceedings of the 17th ACM Symposium on
Theory of Computing, 1985, pp. 291-304;
Goldwasser, S., Micali, S. and Rackoff, C., “The knowledge complexity of
interactive proof systems”, SIAM Journal on Computing, vol. 18, no. 1,

pp. 1030-1044.

pp. 360-37 1.

1989, pp. 186-208.

191

P I Oren, Y., “On the cunning power of cheating verifiers: Some observations
about zero knowledge proofs”, Proceedings of the 28th IEEE Symposium
on Foundations of Computer Science, 1987, pp. 462-471.
Tompa, M.. “Zero knowledge interactive proofs of knowledge (a digest)”,
Second Conference on Theoretical Aspects of Reasoning about Knowledge,
Monterey, CA, 1988; available as Research Report RC 13282 (#59389), IBM
Research Division, T. J. Watson Research Center, Yorktown Heights, NY,
1987.
Tompa, M. and Woll, H., “Random self-reducibility and zero-knowledge
interactive proofs of possession of information”, Proceedings of the 28th
IEEE Symposium on Foundations of Computer Science, 1987, pp. 472-482.

[TI

[TW]

