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Abstract 

Assume that a party, Alice, has a bit x in mind, to 
which she would like to be committed toward another 
party, Bob .  That is, Alice wishes, through a proce- 
dure c o m m i t ( x ) ,  to provide Bob  with a piece of evi- 
dence that she has a bit x in mind and that she cannot 
change it. Meanwhile, Bob  should not be able to tell 
from that evidence what x is. At a later time, Alice 
can reveal, through a procedure u n v e i l ( z ) ,  the value 
of x and prove to Bob  that the piece of evidence sent 
earlier really corresponded to that bit. Classical bit 
commitment schemes (by which Alice’s piece of ev- 
idence is classical information such as a bit string) 
cannot be secure against unlimited computing power 
and none have been proven secure against algorith- 
mic sophistication. Previous quantum bit commit- 
ment schemes (by which Alice’s piece of evidence is 
quantum information such as a stream of polarized 
photons) were known to be invulnerable to unlimited 
computing power and algorithmic sophistication, but 
not to arbitrary measurements allowed by quantum 
physics: perhaps more sophisticated use of quantum 
physics could have defeated them. 

We present a new quantum bit commitment 
scheme. The major contribution of this work is to 
provide the first complete proof that, according to 
the laws of quantum physics, neither participant, in 
the protocol can cheat, except with arbitrarily small 
probability. In addition, the new protocol can be im- 
plemented with current technology. 
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1 Introduction 

Assume that a party, Alice, has a bit x in mind, to 
which she would like to be committed toward another 
party, Bob .  That is, Alice wishes, through a proce- 
dure commil(;c), to provide Bob with a piece of evi- 
dence that she has a bit x in mind and that she cannot 
change it. Meanwhile, Bob  should not be able to tell 
from that evidence what ;c is. At a later time, Alice 
can reveal, through a procedure u n v e i l ( x ) ,  the value 
of x and prove to Bob  that the piece of evidence sent 
earlier really corresponded to that bit. 

Bit commitment schemes have several applications 
in the field of cryptographic protocols. In particular 
one can implement zero-knowledge proofs of a variety 
of statements using bit commitment schemes [GMR89, 
GMW91, BCC881. The first implementations of bit 
commitment schemes were given in a computational 
complexity scenario [Blu82]. Unfortunately, proofs of 
their (computational) security have always required 
an unproved assumption since otherwise they would 
imply very strong results such as P # NP. 

Over the last two decades a number of researchers 
have investigated the connection between cryptogra- 
phy and quantum physics, starting with the work of 
Wiesner in the late 1960’s (though published much 
later [Wie83]), and continuing with the work of Ben- 
nett and Brassard [BBBW83, BB84, BB85, BBR88, 
BB89, BBBSS921 and later of Crdpeau [CK88, CrdSO, 
BC91, BBCS92, Crd931. The security of these protc- 
cols would not be compromised if a cheater had un- 
limited computing power, but in essentially all cases it 
has not yet been ruled out that still more sophisticated 
use of quantum physics might defeat them. 

The first quantum bit commitment scheme ever 
proposed is due to Bennett and Brassard [BB84] (ac- 
tually, the protocol they describe is only claimed to 
implement coin tossing, but implicitly it implements 
bit commitment). Their scheme had two major flaws: 
it was impossible to use in practice because faint pulses 
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of light would compromise the security of the scheme 
(it required individual photons to be transmitted), and 
the scheme could actually be cheated by Alice using 
the Einstein-Podolsky-&sen effect [EPR35]. A later 
protocol of [BC91] did not suffer from these problems 
but was sensitive to  transmission errors in the quan- 
tum channel and no formal proof of its security was, 
at the time, available. 

The protocol we describe in this current paper is 
an improvement on the protocol of [BC91], which can 
deal with transmission errors and is more efficient. We 
also provide the first mathematical proof that the pro- 
tocol is perfectly secure, in the sense that neither party 
can cheat without arbitrarily high probability of de- 
tection, according to the laws of quantum physics. 

As a side benefit, the current result and proof pro- 
vide the missing piece to the protocol of [BBCS92] for 
quantum oblivious transfer. Thus, it, is now possible 
to prove the security of that scheme as well. In tnrn, 
this unconditionally secure quantum oblivious trans- 
fer protocol allows for provably unconditionally secure 
discreet two-party computation and decision making. 

2 The New Quantum Bit Com- 
mitment Scheme 

Let @P denote the random variable that takes the bi- 
nary value 0 with probability y and 1 with probability 
1 - p .  We often drop the index when y = f and write 
@ instead of 03. Also, denote by [ ] i  the selection 
function such that [ao, a l ,  ..., at]i  = ai. Let 3: 0 y de- 
note the Boolean scalar product, i.e. if z,,yi are the 

ith bits of z and y we have z @ y  = @ z i A y i .  
n 

i = l  

Let + = (I-), 11)) and x = (I/), 12)) denote re- 
spectively the bases of rectilinear and diagonal polar- 
ization in the quantum state space of a photon. Please 
consult the Appendix for an explanation of this nota- 
tion and a summary of relevant basic quantum physics. 

2.1 The formal protocols 

Let E be an upper bound on the error rate of the quan- 
tum channel, i.e. the probability that a I-) polarized 
photon is detected as l l ) .  In order for Alice to com- 
mit to a bit z, she uses protocol commit(z) with Gob. 
(an informal description of the protocol follows in Sub- 
section 2.2) 

Protocol 2.1 ( commit(z) ) 

1: Bob chooses a Boolean matrix G as the generat- 
ing matrix of a binary linear (n, k, d)-code C such 
that the ratio d/n > 1 0 ~  and the ratio kfn  = 0.52 
and announces it to Alice 

2: Alice chooses a non-zero random n-bit string 
r + (@1@2 ...an) and announces it to Bob 

3: Alice chooses a random n-bit codeword 
c - (@I ...@ k)G from C such that c r = z 

4: D”0 
,=I 

0 Alice chooses a random bit b, - @ 
and defines her transmission basis 
(Us,%’:) [+> X]b,  

polarization [U,, 9:Ic, 
0 Alice sends to Bob a photon 7r, with 

n 

C = l  
5:  DO 

0 Bob chooses a random bit b: +- 0 
and measures photon x,  in basis 
( @ a , O ? )  - I+> XI,: 

0 
1 

if x ,  is seen as 8, 
if x ;  is seen as 8: 

0 6 o b  sets c: + 

Let c’, 6 and 6’ be the vectors c’ = ( c i c i . .  . c ; ) ,  6 = 
(6162.. .6,), 6‘ = (hi6;. . .a;). Alice keeps z , c  and 6 
secret until (and if) unveiling takes place, whereas Bob 
keeps c’ and 6’ secret forever. Theorem 3.4 shows that 
an honest Alice does not reveal much about her secret 
bit 2 by sending codeword c on the quantum channel. 

If Alice subsequently decides to unveil her commit- 
ment, she initiates the following protocol with Gob. 

Protocol 2.2 ( u n v c i l ( ( c ,  6, z), (c’, 6‘)) ) 

1: Alice reveals c, b and z to Bob 

3: if (6 < 1.4a), (z = c a t )  and (c i s  a codeword) 
then Bob outputs “accept” 
else Bob outputs “reject” 
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2.2 Intuition behind the protocols 

Intuitively, Alice  chooses a random vector r and a ran- 
dom codeword c such that c a r  = I. She tells r to Bob  
in the clear, but she sends him c through the quan- 
tum channel. For this, she encodes each bit of c by a 
photon polarized in a randomly chosen basis (rectilin- 
ear or diagonal): bit ci = 0 is thus encoded as I-) if 
bi = 0 or as I / )  if bi = 1, whereas bit 1 may be en- 
coded either as 11) or 1 \ ) .  Since B o b  does not know 
in which bases the photons are polarized, he measures 
them in randomly chosen bases. When he chooses the 
correct basis (6: = ai) ,  which happens with probabil- 
ity f ,  he obtains the correct bit (4 = c i )  except with 
error probability at most E .  On the other hand, when 
he chooses the wrong basis (b: # b , ) ,  his bit is uncor- 
related with Alice 's  bit (c:  = ci with probability $). 
Therefore Bob's reading of Alice's word c is correct 
on roughly 75% of the bits. (We shall see later that a 
cheating B o b  is able to get as much as about 85% of 
the bits correctly, and that this is the best possible.) 

The binary linear code C is chosen so that there 
are exponentially many codewords around Bob's re- 
ceived c' that are a t  the same Hamming distance as 
Alice's transmitted e.  For this, the minimum distance 
between codewords should not. be too large. Because 
r is chosen randomly, knowledge of T and c' give Pot) 
an exponentially small amount of expected Shannon 
information on z = c @ r .  (See Theorem 3.4.) On the 
other hand, the minimum distance between codewords 
must be sufficiently large to prevent Alice  from find- 
ing two different codewords eo and c1 (together with 
possibly fake sending bases I" and 6') so that) tioh 
would be willing to blame on transmission errors the 
differences between either codeword and his measured 
c'. (See Theorem 3.7.) Thus we see that a balancing 
act is needed in the choice of code C to prevent, both 
Alice  and B o b  from cheating, thence the mysterious 
parameters 1 0 ~  and 0.52 in protocol commit .  

3 Analysis 

There are very few ways in which the above protocols 
might fail. This section is divided into four parts, each 
analysing one way in which failure could occur. 

0 B o b  gets too much information about x 

0 B o b  chooses an unsuitable G 

0 Al ice  changes z without detection 

0 B o b  rejects a valid c 

3.1 Analysis of Bob's information 
about x 

Given the public parameters G and r ,  all the infor- 
mation available to B o b  about z is provided to him 
through the quantum transmission of c in step 4.  We 
identify the measurement that Bob  may perform in 
step 5 which will maximize his information about c 
(and z). Let us first define two magic constants that 
will be used later in the analysis: 

n = cos(7r/8) = 0.9238795 

and 
U = sin(7r/8) % 0.3826834. 

Let IB) denote the state midway between I-) and 
I / ) ,  and let IB') denote the state midway between 

18) = nl*) + ~ 1 1 )  and IS') = -(TI*) + nII) 

11) and I \ ) ,  i.e. 

3.1.1 Optimal measiirement 

Theorem 3.1 The p u n t u m  meosirrement that wall 
muximize (cheutiny) Bob's  information about 1: is  the 
meusurcment of each photon 7ri separately an the basis 
@,e:)  = (B ,B ' ) .  

Proof. The density matrix po (please consult the Ap- 
pendix) describing the quantum mixture of states sent 
to Gob to represent, a 0 in step 4 of tlhe original pro- 
tocol commi t  is given by 

=;(A ;)+;(; 1 1  i ) = (  t )  
and for a bit 1, the density matrix p1 is given by 

Consider a protocol commit '  that is identical to 
commi t  except that step 4 becomes 

4': D"0 1 8 x 1  

I 0 Alice chooses a random bit b ,  t aKCz I 
0 Alice sends to Fob a photon 'IF, with 

polarization [ IF) ,   IF')]^, et,, 
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For the modified protocol commit’  the density ma- 
trices p;, p: describing the quantum mixtures sent to 
G o b  to represent a 0 and a 1 in step 4’ are the same 
as in c o m m i t :  

K 2 (  ii : ) + U 2 (  - U K  - “ “ )=(  K 2  f f ) 

Furthermore, if we call pc the density matrix associ- 
ated with the mixture of states used in c o m m i t  to send 
c and similarly, p’, for commit’  we get 

where the operation is the tensor product. Finally, 
the density matrices PO, p 1 ,  eh, e{ describing the quan- 
tum mixtures of states sent to Eob to commit to a 0 
(or a 1)  with the protocols c o m m i t  and commit’  are 
given by 

and 

Thus Bob is able to get etact ly  the same informa- 
tion about c and 2 in protocol c o m m i t  as in c o m m i t ‘ .  
(This follows from a theorem of quantum physics stip- 
ulating that mixtures with identical density matrices 
cannot be distinguished by any quantum measurement 
whatsoever.) We also observe that in the protocol 
commit ’  the measurement that will optimize Bob’s in- 
formation about c (and t,hus 2) consists of measuring 
every single photon ~i in basis ( G , B ’ )  since in that 
basis he gets all the information available! (All the 
photons sent are either polarized as 16) or IS*).) We 
thus conclude that the optimal measurement for Gob 
in protocol c o m m i t  is the same. In particular, any 
more general joint measurement on all the photons 
together will be of no advantage. (This was the main 
open question of [BC91].) 3 1. 

3.1.2 firther analysis 

Despite the fact that the honest G o b  is not expected 
to perform the above optimal measurement, we show 
that even if he did he would get very little information 
about z. 

We start with a lemma stating that the vector c’ 
received by Bob must be fairly far from the vector c 
sent by Alice .  Let y = H-’(1/2) M 0.1100279. 

Lemma 3.2 Even if (cheating) G o b  performs the op- 
t imal  measurement, there exists a positive constant 
a < 1 such that he ends up with a vecior c’ at dis- 
tance less than yn from c with probability at most  a”. 

Proof. Assume that the quantum channel is noise- 
less (in reality things are even worse for a cheating 
G o b ) .  When Bob performs the optimal measurement, 
his distribution on c‘ is ruled by the fact that for all 
i ,  1 5 i 5 n ,  we have [Prob(ci  = c: )  = K ’ ] .  Therefore 
the number of differences between c and c’ is expected 
to be u2n w .1464466n. We can use “Bernshtein’s law 
of large numbers” [Kra86] to estimate the probability 
that the number of errors will be less than yn. 

Theorem 3.3 (Bernshtein) Let 2 1 , 2 2 ,  ..., 2, be in- 
dependent Bernoulli variables. If Prob(zi = 1) = p 
for 1 5 i 5 n then fop .  a110 < 6 5 y( 1 - y )  we have 

Let xi be the indicator variable of c ; ,  c: ,  i.e. zi = c ,@c: .  
The number of differences between c and c’ is given 
by Cy=l xi and Prob(zi = 1 )  = U’ .  Therefore the 
probability that c’ is at distance less than yn of c is 
given by 

We conclude that most, of the time c’ is a t  
least yn from c .  

3.2. 

distance at 

Theorem 3.4 Even i f  G o b  knew the exact Hamming 
distance d +- d ~ ( c ,  c’) ,  he would have very little infor- 
mation about x ,  when d > yn. 
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Proof. The number of words at Hamming distance rl 
from c' is (:). Using the fact that d > 7n and the 
standard approximation [MS77] 

4- (3 J 2 ? r n ~ ( 1 -  A) ' 

2H(A)n 2H(+ 

we get the lower bound 

2H(r)n 2nP (l) > (Inn> 2 7 - 3 
because 8A(1 - A) 5 1 precisely when A 2 IC' or A 5 
1 - lc2,  and also because H(7) = 1/2. If we divide by 
271-k (the number of symdroms of the code C) we get: 

E(number of codewords a t  distance d) > - 

> +. 

- 

2k-n/2 

Jr; 
which is exponentially large in n as long as 
Indeed, we show that 

Lemma 3.5 The number of codewords at distance d 
from c' i s  ai least except with probability 
2-Qn for any a > 0. 

Proof. Let S,,, be the syndrome of a word w .  Let 
N d ( Z , y )  be the number of words with syndrome y 
at distance d from a fixed word w with syndrome 
z (this function is well defined because its value is 
independent of _the specific choice of w ;  moreover, 

that N d ( & ' ,  sc) 2 2-'% with probability a t  least 
1 - 2-' for any security parameter r > 0. 

Starting from word c, each syndrome s occurs 
Nd(Se, s) times among the words at distance d from c .  
Therefore syndrome s has probability N d ( s c ,  s)/(i) = 
Nd(s, S c ) / ( z )  of being selected, i.e. of being that of the 
actual c'. Thus, any syndrome s for which Nd(s,  sc) < 
2+$ (which would be bad because it would mean 
less uncertainty for Gob) has probability of occurrence 

less than (2-'$)/(;) = &2-'. Even if all but 
one syndrome were in that category, their collective 
probability would still be less than 2-'. This estab- 

lishes the claim that Nd(Sc',Sc) 2 2 - ' 8 ,  except 
with probability less than 2-". Given that (:) 2 5, 
setting r = a n  leads to  the result of the lemma. 3.5. 

From Bob's point of view, the codeword c is one 
of the, at least 7 many, equally likely code- 
words at distance d from c' forming a set E. The 
following lemma says how much information Gob will 
consequently have about c 0 r for a random r.  

2 k - n / l - u n  

N d ( Z ,  y )  = Nd(0,  Z @ y )  = N d ( y ,  X ) ) .  w e  first show 

Z k - n f a - u m  

Lemma 3.6 ([BBR88]) If Bob has narrowed down 
the value of c to a set E of equally likely candidates 
and if a random subset of the bits of c is chosen, the 
expected amount of Shannon information available to 
Gob about the parity of the bits in this subset is less 
than 2/IEI ln2 bit. 

In our case, this means that the number of bits 
of information Gob has after seeing c' is less than 
&. This number of bits is exponentially 
small as soon as k > n/2 + a n .  Thus, if we pick 
a = 0.1 we find that the number of bits of informa- 
tion is at most 2 - ' . l n 6 /  In 2 whenever k/n > 0.51 
even if he knew the exact number of errors d .  3.4. 

In reality, Gob's situation is much more difficult: he 
may not perform the optimal measurement, his mea- 
suring apparatus may be imperfect, and he does not 
even know the exact number of errors. Since his infor- 
mation about z would be very small even if he knew 
rf and made no mistakes, his actual knowledge cannot 
be any better. 

3.2 Analysis of Bob's probability of 
choosing an unsuitable G 

It is a well known fact, [MS77] that a random binary 
matrix G of size k x n defines a binary linear code with 
minimal distance at least d except with probability 
2-"" as long as 

k < n - H(rf/n)n - a n .  

In particular if we set, E 5 1% we find that a ran- 
dom binary matrix defines a binary linear code with 
minimal distance at least 1O.m except with probability 
2-0.01n as long as 

k/n = 0.52 < 1 - H(O.l) - 0.01. 

Therefore, Bob may choose G a t  random of size 
0.52n x n and only with probability 2-'.'ln will the 
code thus defined have minimal distance less than 
IOEn, again, as long as E 5 1%. 

3.3 Analysis of Alice's probability of 
changing x without detection 

Although an honest Bob would not have as much in- 
formation about x as the cheating Gob who reads each 
photon in basis (IB),  lG*)), he would have something 
more: the honest Gob has the ability to check that 
Alice is indeed committed to some bit. 
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Theorem 3.7 There exists a positive constant U < 1 
with the following property: the probability that Alice 
i s  able to  announce either pair  (CO, bo) or pair  (c ' ,  6') 
at her  choosing i n  protocol unvei l  leading Bob t o  ac- 
cept a 0 and a 1, i s  less than a". 

Proof. .Let (CO, bo) and (c',hl) be any pairs of n-bit 
strings such that  CO 0 r = 0 and c1 0 r = 1. Since 
co@r # c l o r ,  it must be that CO # c'. By construction 
of the code C ,  any two codewords must be at distance 
at least l O ~ n  from each other. Let Z be the set, of 
indices on which CO and c' disagree: Z = {i I c: # 
c i } .  We show that whatever Alice does, with high 
probability, l o  + { i E Z I cp # c: Ab: = b:}  or ZI + 

{ i  E Z I c i  # c:A6f = b:} has size more than 0 . 7 ~ n .  
Since IO n ZI = 0, and thus IZO U ZII = lZ01 + IZlI, it 
suffices to show 

Lemma 3.8 Except with probability U" f o r  some con- 
stant a < 1, 

because 

Prob(cp # c:A6p = 6:Vcf # c:Abf = 6:)  
= Prob(6: # c:Ab; = b:v6p # c:Abf = b : )  

Prob(c: = 6: = 6pVc: = 6: = b f )  

= Prob(c: = 6:) 

(The other case leads to Prob(c: # 6 : ) )  
But how small can Alice make these probabilities? 

Assume first that Alice sends Bob a photon T;  polar- 
ized as a pure state IS) a t  step i (please consult the 
Appendix for the notion of pure states). 

for the 0 such that IS) =   COS^)^-) + (sin8)(1). 
Therefore 

1 
Prob(c: = 6:)  = - cos28 + - 

2 2 

Zo U ZI = {i E Z I C: # c:A6: = 6:Vci  # C : A ~ ;  = 6 : )  

has size more than 1 . 4 ~ n .  

Proof. For each i E Z consider 
- - f + cos2 8 - sin 8 cose 

2 

The minimum and maximum of this expression are cr2 
and l i2.  So, for any pure state IS), 

Prob(c; # c:A6; = 6:Vcf # c:A6: = 6 : ) .  

(3) The size of Zo U I1 can be estimated by a binomial cr2 5 Prob(c: = 6 : )  5 ~d 2 
distribution with respect to a lower bound for this 
probability. We start by giving such a lower bound. (and similarly cr2 5 Prob(c{ # 6:)  5 K ~ ) .  

Lemma 3.9 For each i E I, 

Proof. First notice that for i E I, if 6; = 6f then 

Prob(cf # c:Abp = b:vcf # c:Abf = 6:)  = 1/2 (1) 

since Bob has probability 4 of choosing the same basis 

The more complicated question is to determine this 
probability for by # bf . Without loss of generality we 
may assume bi = cy # cf = 6:, since the only other 
possibility bp = c: # cf = I ; ,  is treated similarly. 
Then we get 

bo = b! = b! 
I I I '  

Prob(cf # c:Abp = b:Vc: # ciA6f = 6 : )  

It is a fact of quantum physics that the polariza- 
tion of any photon can be described by a mixture of 
pure states (see the Appendix). Therefore, if mi is 
not in a pure state, it, may be represented as a mix- 
ture of pure states ISl), lS2), ..., I@,,,) with probabili- 
ties yl, y2, ..., y, such that p,  = 1. We get the same 
result in this case since it holds for each lSj) individu- 
ally. We therefore conclude from ( l ) ,  (2) and (3) that 
in all cases, for each i E Z 

o2 5 Prob(cp # c:A6; = 6:Vc: # ciA6f = 6:) 5 K' 

3.9. 

Now, since 111 = 10m,  IZo U ZII will be given by a 
binomial distribution with mean a t  least 10a2En over 
lOEn trials. Let, ui be the characteristic function of 
ZO U 11, i.e. 

1 
0 otherwise 

if cy # c:A6; = 6:vcf  # c:Abf = b: 
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The probability that l1ou11 I < 1 . 4 ~ n  is therefore going 
to be very small: 

Prob( 110 U 11 I < 1 . 4 ~ n )  

= P r o b ( x u i  < 1.4~71) 
i€I 

= P r o b ( x  2 < 0.14) 
lOEn 

i€I  

= P r o b ( x  -?- - U’ < 0.14 - U’)  
lOEn 

i€I  

6’1 2 U’ - 0.14) Ui  I P r o b c l C K  - 
i € I  

3.8. 

We conclude from the lemma, that except with prob- 
, a t  least one of 10 or 11 must 

have size more than 0 . 7 ~ n  and thus Bob  would nec- 
essarily reject either ( ~ “ ~ 6 ’ )  or ( ~ ‘ ~ 6 ’ )  at step 3 of 

ability 2e-0.000415587cn 

protocol unveil. 3.7. 

3.4 Analysis of Bob’s probability of re- 
jecting a valid c 

Despite the good will of Alice, there is a small prob- 
ability that Bob will reject the correct pair ( c , 6 )  be- 
cause of unlikely extreme noise in the quantum chan- 
nel. We finally show that. this event) occurs with expo- 
nentially small probability. 

Theorem 3.10 Ifdlice is honest, then there exists a 
constant CY < 1 such that un honest Bob  rejects ( c ,  6 ,  x) 
with probability less thun a ” .  

Proof. An error will be observed by Bob exactly if 
bi = b:, while c; # c:. The probability of such an 
event due to noise is less than 5 ,  by definition of E 

and because Prob(bi = bi)  = $. What is therefore the 
probability of observing at least 0 . 7 ~ n  errors? 

Let 
1 
0 otherwise 

if 6, = 6:Aci # c: vi = 

be the characteristic function of the observation of er- 
rors. The probability of observing more than 0.7m er- 
rors is given by Prob(C;=’=, vi > 0 . 7 ~ n )  and is bounded 

as follows 
n 

P r o b ( x  vi > 0 . 7 ~ n )  
i = l  

n 

= P r o b ( z  2 - 0 . 5 ~  > 0 . 2 ~ )  
n 

i = l  
n 

I Prob(1 2 - 0.5~1 > 0 . 2 ~ )  
n i=l  

4 Conclusion and Open Ques- 
t ions 

We have described a complete protocol for Bit Com- 
mitment based on the transmission of polarized pho- 
tons. We have shown that under tlhe laws of quan- 
tum physics, this protocol cannot be cheated by either 
party except with exponentially small probability (ex- 
ponential in the running t,ime needed to implement 
the honest protocol). 

A more thorough analysis is required to adjust all 
the constants used in this paper to get the best per- 
formance from our construction. Better performances 
may probably be achieved by using a third conjugate 
transmission-reception basis of circular polarization. 
This analysis will appear in the final version of this 
paper. 
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Appendix: Outline of Some Rel- Another important basis is IB), I&) defined in Sec- 
tion 3.1, which corresponds to linear polarization in di- 
rections midway between the above two bases. (In this evant Quantum Theory 

In quantum physics, the state space of a single photon 
is the collection of all unit vectors in a two dimen- 
sional complex Hilbert space 7-1. We use the Dirac 
bracket notation ([SudSS] chapter 2), commonly used 
in physics, to denote the states. In this notation the 
state vectors are written using right-handed pointed 
brackets. If (:) is a state in 7-1 (given in terms of its 
components with respect to some basis) we write 

Ilk) = (:>. 
The corresponding left-handed bracket, enclosing the 
same symbol, denotes the complex conjugate trans- 
pose 

($1 = ( U * ,  v * )  

and juxtaposition represents matrix multiplication. 
Thus if 

then 

paper we do not use photons with circular polariza- 
tion, which correspond to linear combinations of 11) 
and I-) with complex, rather than real, coefficients.) 

According to the formalism of quantum physics, 
any physical measurement on a photon is described 
in terms of a decomposition of the Hilbert space 31 
into a family of orthogonal subspaces, one for each 
measurement outcome’. When a measurement is per- 
formed on a photon in state I$) each outcome may 
occur with probability given by the squared length of 
the projection of I$) into the corresponding subspace. 
As a result of the measurement, the original state I$) 
is obliterated and replaced by the projected vector (re- 
normalized to unit length) corresponding to the seen 
outcome. Thus, we may associate a measurement to 
any orthogonal basis of 3.1. The rectilinear and diag- 
onal bases have the following “conjugacy” property: 
if a measurement in one basis is carried out on ei- 
ther vector of the other basis, then the two outcomes 
always occur with probability f and all information 
about the measured state is obliterated. Thus we get 
zero informatmion about which of the two basis states 
was supplied. However if a basis vector is measured in 
the same basis, then it, is identified with certainty and 
the state is left unchanged. 

In certain situations, the state of a photon may 
($11$2) = (4,4) 

- - u;uz + v;v2 

is a complex number giving the inner product of the 
states and 

is an outer product giving a linear operation on 31, 
which maps a vector I<) to the vector 1$1)($21<). In 
particular 1$)(+1 is the operation of orthogonal pro- 
jection into the one dimensional subspace of 3c in the 
direction of the unit vector I$). 

The states of horizontal and vertical polarization, 
denoted 11) and I-), form an orthonormal basis of ‘If 
(called the rectilinear basis) as do the states of diago- 
nal polarization (at 45’ and 135’) defined by 

not be describable by a “pure” state in 3.1 (that is, 
a vector in the Hilbert space). This occurs in two 
possible ways (see [Sud86] chapter 5) (a) the state is 
known only to the extent of being one of a “mixture” of 
states 1 $ 1 ) ,  . . . , I$,,) with probabilities y1,. . . ,yn; (b) 
the photon is “entangled” with some other system and 
only the larger joint system has a description as a pure 
state (in a larger Hilbert space). The situation (a) 
occurs in step 4 of protocol commit - Alice’s signal 
to Gob for the value c, = 0 is one of two possible (non 
orthogonal) states randomly chosen with probability f 
(and similarly for the value 1). To the general mixture 
in (a) above we associate the density matrix 

P =  CPi I$i)($iI, 
I 

which is t,he average projection operator for the state 
distribution. For the special case of a pure state I$), 

‘Actually there is a more general notion of measurement, the 
so called POM or “Positive-Operator-Valued” measurements 
(see [He176, pp. 74-83] for details) which we ornit for the sake 
of clarity. However it is straiglitforward to see that the argu- 
ment in the proof of Theorem 3.1 also covers these more general 
measurements. 
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the density matrix is simply I$J)($J~. A straightforward 
extension of the measurement theory outlined above 
shows that the results of any physical measurement 
whatever on the mixture depend on the states and 
probabilities constituting the mixture only through 
the combination p. This is rather curious since the 
same density matrix may arise from very different mix- 
tures of states. Thus any two such mixtures, having 
the same density matrix, cannot be distinguished by 
any physical measurement. We exploit this property 
of quantum measurement theory in Theorem 3.1, us- 
ing the fact that a ( f ,  f )  mixture of the non orthogo- 
nal states 11) and I \ )  has the same density matrix as 
the (1 - t?, IC’) mixture of the orthogonal states IB) 
and IBL). 

With regard to the situation (b), the most famous 
example of an entangled state is the joint state of two 
particles occurring in the Einstein-Podolsky-Rosen ef- 
fect [EPR35]. If a photon is entangled with any other 
system then it can be shown ([SudSS] chapter 5) that 
the photon alone may always be described by a suit- 
able density matrix, i.e. as far as measurements on the 
photon alone are concerned, it is physically indistin- 
guishable from a suitable mixture of states, and follows 
the analysis of (a). This fact is relevant in the proof 
of Lemma 3.9 (where Alice may attempt to cheat by 
entangling her photons with each other or with some 
other system, which is precisely how the 1084 quan- 
tum bit commitment scheme of Bennett and Brassard 
could be broken [BB84]). Thus the density matrix for- 
malism provides a uniform way of describing a single 
photon in the most general possible situation. 
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