Non-Transitive Transfer of Confidence:
A Perfect Zero-Knowledge Interactive Protocol for SAT and Beyond

Gilles BRASSARD '

Département d’LR.O.
Université de Montréal

Abstract

A perfect zero-knowledge interactive proof is a protocol by
which Alice can convince Bob of the truth of some theorem in
a way that yields no information as to how the proof might
proceed (in the sense of Shannon’s information theory).
We give a general technique for achieving this goal for any
problem in NP (and beyond). The fact that our protocol is
perfect zero-knowledge does not depend on unproved cryp-
tographic assumptions. Furthermore, our protocol is powerful
enough to allow Alice to convince Bob of theorems for which
she does not even have a proof. Whenever Alice can convince
herself probabilistically of a theorem, perhaps thanks to her
knowledge of some trap-door information, she can convince
Bob as well without compromising the trap-door in any way.
This results in a non-transitive transfer of confidence from
Alice to Bob, because Bob will not be able to subsequently
convince someone else that the theorem is true. Our protocol
is dual to those of [GMW1, BC].

1. INTRODUCTION

Assume that Alice holds the proof of some theorem.
A zero-knowledge interactive proof (ZKIP) is a protocol that
allows her to convince a polynomially bounded Bob that she
owns such a proof, in a way that he will gain nothing else
than this conviction: engaging in the protocol with Alice
gives Bob no hint on Alice’s proof, or at least nothing he
can make use of in polynomial time. In particular, it does
not enable him to later convince anyone else that Alice has a
proof of the theorem or even merely that the theorem is true
(much less that he himself has a proof!). This notion was
introduced in [GMR] with examples of such protocols in the
realm of number theory. Other number theoretic ZKIP’s are
given in [GHY]. If, in addition, the protocol contains no
information on Alice’s proof, in the sense of classical infor-
mation theory, the ZKIP is said to be perfect zero-knowledge
[GMWI1]. In essence, this is so if the entire discussion
between Alice and Bob could have been efficiently simulated
by Bob alone, in the sense of probability distribution, pro-
vided the theorem is true. For applications of these notions
in the realm of cryptographic protocol design, please consult
[GMW]1, 2]. Although an intuitive notion of ZKIP suffices
1 Supported in part by NSERC grant A4107.

¥ Supported in part by an NSERC postgraduate scholarship.
* Research conducted at the Université de Montréal

0272-5428/86/0000/0188$01.00 © 1986 IEEE

188

Claude CREPEAU *

Department of Computer Science *
MIT

to understand this extended abstract, let us mention that for-
mal definitions can be found in [GMR, GMW1].

Until recently, ZKIP’s were known only for some
specific problems in NP N CoNP [GHY, GMR]. It was con-
jectured by Silvio Micali, and believed by most researchers,
that ZKIP’s could not exist for NP-complete problems.
Under cryptographic assumptions, this intuition was proven
wrong by [GMW1] as they found a ZKIP for 3-COL.
Independently but subsequently, [BC] proposed a ZKIP for
satisfiability. Since then, several other similar protocols have
been discovered. Obviously (because Karp reductions actu-
ally carry NP certificates), it suffices to find a ZKIP for any
NP-complete problem in order to get one for all problems in
NP. However, the ZKIP’s resulting from a sequence of Karp
reductions are likely to be horrible and of no practical use.

In fact, ZKIP’s are conceivable even if Alice does not
have a proof to start with. Let us assume that she merely has
a convincing argument that the theorem is true. In this case,
she would transfer her confidence to Bob if she could
convince him of the theorem with a level of confidence com-
parable to her own. This transfer of confidence is zero-
knowledge if it yields no additionnal information to Bob;
in particular, Alice’s convincing argument remains secret.
The main characteristic of a zero-knowledge transfer of
confidence (ZKTC) is that it is non-transitive: Alice con-
vinces Bob of the theorem in a way that Bob cannot con-
vince anyone else afterwards.

One nice thing about the early ZKIP’s of [GMR, GHY]
is that their being zero-knowledge does not depend on any
unproved cryptographic assumptions (although this is true in
a non-constructive sense — either quadratic residuosity is
hard, in which case they prove that their protocols are zero-
knowledge, or quadratic residuosity is easy, in which case
their protocols are vacuously zero-knowledge). On the other
hand, the ZKIP’s of [GMW1, BC] depend on such assump-
tions in a crucial way: should they fail, Bob could efficiently
get complete knowledge of Alice’s proof. Moreover, this
weakness is retroactive: even if Bob does not know an
efficient algorithm to counter the cryptographic assumptions
at the time the protocol takes place, he could go back to old
instances and figure out each of Alice’s previous proofs

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

whenever he becomes aware of such an algorithm. He could
even do so off-line should he merely know a slow, yet feasi-
ble, such algorithm. Moreover, none of these protocols for
NP-complete problems are perfect zero-knowledge.

We give here a general technique to design simple and
efficient ZKIP’s that provably offer Shannon security for
Alice. Our technique extends naturally to the setting of
transfer of confidence. This results in protocols that are dual
to those of [GMW1, BC]. A different but similar idea lead-
ing to Shannon security has been independently proposed by
David Chaum [C]. More precisely, we offer the following:

e Shannon security for Alice: our protocol is perfect
zero-knowledge for problems in NP. After its completion,
Alice knows for sure that nothing about her proof has tran-
spired from the protocol. This does nor depend on unproved
cryptographic assumptions; it would even hold if Bob
had infinite computing power (in wich case, of course, he
would not need Alice to convince himself of the theorem!).
Nothing is ever quite perfect, however: belief in the
difficulty of factoring is needed for Bob to be convinced by
Alice. The protocols of [GMW1, BC] are therefore prefer-
able if it is crucial that a proof be a proof (i.e.: Bob should
not be fooled into beliév'mg a false statement), whereas the
protocol given here is preferable if it is crucial that secrecy
of Alice’s proof be assured at all costs. This issue is dis-
cussed in section 10.

o Efficiency and simplicity: for a variety of problems in
NP, we get a direct ZKIP, without going through an unat-
tractive sequence of reductions. In particular, we get direct
and efficient ZKIP’s for SAT, 3-COL, Hamiltonian Circuit,
Clique, (Exact) Knapsack, etc. This is briefly discussed in
section 8.

o Power: not only do we obtain ZKIP’s for every prob-
lem in NP, but also ZKTC for any statement for which Alice
has a convincing argument. Therefore, it allows Alice to
convince Bob of theorems for which she does not have
a proof herself. To illustrate the idea, let us assume that
Alice wishes to convince Bob that some integer m (of her
choosing) is the product of exactly k distinct primes. Alice is
convinced of the truth of her claim because she randomly
selected k distinct integers py,py, ' - , p; that passed
some probabilistic primality test [R1, SS] to her satisfaction.
Although efficient certificates of primality exist for these fac-
tors since PRIMES € NP [Pr], no feasible algorithm is
known for Alice to get them 1. In other words, Alice knows
(with an arbitrary small probability of error) that m is in the
proper form, she knows there exists a short proof of this

1 Goldwasser and Kilian’s new provably correct and prob-
ably fast primality test [GK] allows Alice to "efficiently"
(currently, the running time is a 12th power polynomial) get
short - certificates for those primes on which the algorithm
turns out to be fast. This might reduce the interest of this
particular example, but not the interest of our general non-
transitive transfer of confidence protocol.

189

statement, but she cannot find the proof. Using our protocol,
she can nonetheless transfer her confidence to Bob without
compromising the factorization of m in any way (except of
course for the number of factors).

The general technique allows Alice to guide Bob
through the simulation of an arbitrary Boolean circuit
without ever having to disclose its inputs or any intermedi-
ary results. At the end of the protocol, she can nonetheless
convince Bob of the final outcome of the circuit. If this turns
out to be 1, Bob will be convinced 2 that the Boolean func-
tion computed by the circuit is satisfiable, but he will have
learned nothing else 3. Whenever Alice can convince herself
probabilistically of a fact or theorem, perhaps thanks to her
knowledge of some trap-door information, she can convince
Bob as well without compromising the trap-door.

2. NUMBER THEORETIC BACKGROUND

Very little background on number theory is necessary
to understand our protocols. Let n be an integer.
Z":, denotes the set of integers relatively primes to n
between 1 and n—1. An integer z € Z",‘l is a quadratic resi-
due modulo n (z € QR,) if there is an x € Z¥ such that
z=x2 (mod n). Such an x is called a square root of z,
modulo n. Let y be any fixed quadratic residue. A uniformly
distributed random quadratic residue can be generated by
choosing w € Z* and computing z = w? mod n. This holds
in particular if y = 1. The crucial fact is that it is information
theoretically impossible to distinguish a quadratic residue
thus produced using any given y € QR, from one produced
using y = 1.

Now, let n =pg be the product of two distinct odd
primes. The problem of extracting square roots modulo # is
computationally equivalent to the problem of factoring »
[R2]. We shall assume here the factoring conjecture to the
effect that factoring n is infeasible when p and g are
sufficiently large. Therefore, given » and y € QR,, we
assume it infeasible to compute a square root of y modulo »
unless the factorization of n is known. Again, this crypto-
graphic assumption will not be used to ensure that our pro-
tocol is perfect zero-knowledge. 1t is necessary, however,
for Bob to be convinced by the protocol.

3. THE ENCRYPTION OF SECRETS

At the beginning of our protocol, Bob randomly
chooses two distinct large primes p and g, and he discloses
their product n = pq to Alice. Bob also chooses and dis-
closes to Alice some randomly chosen y € QR, . Using the
ZKIP of [BC] (independently given in [Be]), Bob convinces
Alice that y € QR,. Although he could [BC], there is no
point for Bob to additionally convince Alice that » is in the
proper form, because he would only hurt himself by

2 Assuming he believes in the difficulty of factoring.
3 Regardless of any assumptions.

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

choosing n otherwise. The possibility that y might be a qua-
dratic non-residue and that Bob fools Alice into thinking the
opposite (which is a very unlikely event) is discussed in sec-
tion 10. Following the factoring conjecture, we assume
throughout that Alice cannot find a square root of y.
Whenever she wishes to encrypt bit b, Alice randomly
chooses some w € Z",‘, and she computes the encryption
z = w?” mod n. She keeps secret w as her b-witness for z.
Clearly, any quadratic residue can just as well encrypt a zero
or a one. Therefore, z itself conveys no information on the
bit. Using her witness, however, Alice can convince Bob of
which bit she encrypted by z: it encrypts a O if Alice can
exhibit a square root of z and it encrypts a 1 if Alice can
exhibit a square root of zy~! mod n. We refer to this opera-
tion as Alice opening the bit encrypted by z. The only way
some z could encrypt both 0 and 1 would be if Alice knew a
0-witness wy and a 1-witness w; for the same z. But she
could then compute a square root of y as wowi' mod ,
without having used the help of Bob anywhere along the
protocol, which we assumed to be infeasible for her.

4. COMPUTING ON ENCRYPTED BITS

Let b; and b, be two secret bits of Alice, let z; and z,
be their encryptions as given to Bob, and let w; and w, be
their witnesses as secretly kept by Alice. It is possible for
Alice to convince Bob of whether or not z; and z, encrypt
the same bit, without releasing any additional information.
For this, it suffices for Alice to compute and give Bob

ww,ymodnrn ifbothb; =1and b, =1
w =
wiw, mod n otherwise .

Let z = z;zy mod n. It is easy to see that z = w? mod n if
b, = by, whereas z =w?y mod n otherwise. This is some-
thing Bob can verify. In other words, z is an encryption for
the exclusive-or of b, and b,, and w is Alice’s witness for
this.)

Similarly, let u = b;b, - + - by be a k-bit string of Alice.
For each i, 1 <i <k, let z; and Z; be two encryptions of b;
randomly chosen by Alice, and let w; and W; be their
corresponding witnesses. It is easy for Alice to convince Bob
that the k-bit strings encrypted by z)z; * - - z; and £,2, - - * %
are identical without providing Bob with any additional
information.

String equality protocol: Independently for each

i, 1 <i<k, Alice convinces Bob by the above

protocol that z; and Z; encrypt the same bit. O

Again, let u=b;b, - + - by, let z; encrypt b; for each i,
1 £ i<k, and let w; be its witness. Now, let i = 5152 <o Ek
be some k-bit string different from u, let Z; be an encryption
of b; for each i, 1 < i <k, and let w; be its witness. It is no
longer so obvious that Alice can convince Bob that the
strings encrypted by zjz, - * - z; and 2,2, - - * Z; are different
without yielding some additional information (such as a

190

specific i for which b; # b,). The fact that this is possible,
and the technique that achieves this protocol, illustrate the
core of our main result.

String inequality protocol: For each i, 1 <i <k,
let v; = z;z; mod n. The problem reduces to con-
vincing Bob (by a ZKIP) that the string encrypted
by viv, * * v is not identically zero. Let s be a
safety parameter agreed upon between Alice and
Bob. Alice randomly chooses s permutations
G, 05 - ,0,0f {1,2, -+ ,k} and ks ran-
dom integers x; € Zy for 1 Si<kand 1 Sj<s.
She then computes and discloses to Bob
aj; = X¥e mod n for each i, j. At this point, Bob
selects a random subset X < {1,2, --- , s} and
sends it to Alice as a challenge. In order to con-
vince Bob, Alice must:

(1) for each j € X, disclose some 11 such that
a;;j encrypts a 1, and open this g; ; for Bob
(by giving him w = x; W, mod n, where
r= cj(ij , So that Bob can make sure
that aj= w2y mod n);
(i) for each j ¢ X, disclose the permutation o;
and use the string equality protocol to con-
vince Bob that a;jay; - - - a; encrypts the
same String as Vg (1)Vo(2) * * " Vo - O
Theorem
(i) This protocol conveys no information on the bit strings
u and &, except for the fact that they are distinct, and
(ii) Alice only has a probability 2™ of convincing Bob of

this when in fact the strings are identical (assuming

that factoring is hard).
Proof (sketch).
(i) Observe that whenever j € X, the protocol tells Bob
that the original bit strings are distinct in at least one
place, but it gives no clue as to any single i such that
b; # I;,- because the permutation o; is then kept secret.
On the other hand, whenever j ¢ X, Bob gains no infor-
mation whatsoever on the original strings. More for-
mally, it is easy for Bob to simulate his discussion with
Alice, given only the information that the strings are
different (more details in the final paper).
(ii) Suppose that v;v, - - * v encrypts the identically zero
string and that Alice cannot figure out a square root
for y. The only thing Alice can do to hope convincing
Bob that « and # are different is to guess exactly which
subset X will be chosen by Bob and to encrypt identi-
cally zero strings with a;;ay; - - *‘ay; for each j ¢ X and
non-identically zero strings with ajjay; * - - ay; for each
J € X. The results follows from the fact that there are
2% equally likely choices of X for Bob. (Of course,
Alice can convince Bob of anything she wanis if she
knows a square root of y). O

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

We are now ready for the main tool used in this paper.
Consider any Boolean function B : {0,1} — {0,1} agreed
upon between Alice and Bob, and any bits b, , by, - - , b,
known to Alice. For 1 <i<¢, let z; be an encryption of b;
known to Bob, and let w; be Alice’s secret witness.
Let b=B(b,, by, * -+ , by). Alice can produce an encryp-
tion z for b and convince Bob that z encrypts the correct bit
without giving him any information on the input bits
by,by, -+ , b, nor on the result b. A similar idea was
introduced in [CF] and used in [BC, Be] to obtain a protocol
dual to the one described here.

Definition. A permuted truth table for the Boolean function
B is a binary string of length (#+1)2' formed of 2 blocks of
t+1 bits. The last bit of each block is the value of B on the
other ¢ bits of the block, and each assignment of truth values
occurs once and only once in the first ¢ bits of some block.
For example, here is a permuted truth table for the binary
or: 011000111101, which should be read as Oor1=1,
Oor0=0,lorl=1landlor0=1. 0O

Boolean computation protocol: Let the situation
be as in the paragraph just before the above
definition. Let s be a safety parameter agreed
upon between Alice and Bob. Alice randomly
chooses s permuted truth tables for B and she dis-
closes encryptions for each of them, keeping the
witnesses. At this point, Bob selects a random
subset X € {1,2, - -+ , s} and sends it to Alice
as a challenge. In order to convince Bob that z is
an encryption of B(b,, b, ‘- - , b)), Alice must:

(i) for each j € X, open the entire encryption
of the j** permuted truth table, so that Bob
can check that it is a valid truth table for B;
(ii) for each j ¢ X, point out to the appropriate

block in the encryption of the j * permuted
table and use the string equality protocol to
convince Bob that z;z, - - - zz encrypts the
same bit string as this block. O

A theorem very similar to the one for the string ine-
quality protocol can be stated and the proof is essentially
identical. Notice that this protocol is interesting only for
small ¢ because it is exponential in z In the sequel, we will
use it exclusively with t < 2.

S. ZKIP FOR SAT

The zero-knowledge interactive proof for satisfiability
should now be obvious. Let f: {0,1}¥ - {0,1} be the func-
tion computed by some satisfiable Boolean formula for
which Alice knows an assignment by, by, - , b€ {0,1}
such that f(by, by, - - , by =1. Assume the Boolean
formula is given using arbitrary unary and binary Boolean
operators. In order to convince Bob that the formula is
satisfiable, Alice produces encryptions z;,zy, **° , 2 of

191

by,by, - ,b, , respectively. She then guides Bob
through the encrypted evaluation of the formula, one
Boolean operator at a time, using the Boolean computation
protocol (with ¢ < 2). This results is an encryption z for the
value of f(by, by, - - , by). It then only remains for Alice
to open z and show Bob that it encrypts a 1.

6. ZKIP FOR THE NUMBER OF PRIME FACTORS

Let us now come back to the problem mentioned at
the end of the introduction. Alice has selected k distinct
primes py,py, " ,pr and she formed their product
m=pp, - pr. She wishes to convince Bob that m is the
product of exactly & distinct primes. Let / be the number of
bits in m. Each factor will be considered as a length / binary
string, with leading zeroes if needed. As a first step, Alice
encrypts each of the factors and she discloses these encryp-
tions to Bob. The string inequality protocol is used to con-
vince Bob that the factors are all distinct and that none of
them is equal to 1. She then guides Bob through the simula-
tion of a Boolean circuit for iterated multiplication. This pro-
duces the encryption of a length k! bit string, which Alice
opens to show that it encrypts (k—1)! zeroes followed by the
binary representation of m.

At this point, Alice still has to convince Bob that each
of these factors is a prime. If she had a proof of this, she
could encode it as the input to a proof verification Boolean
circuit and guide Bob through its evaluation. Recall, how-
ever, that her conviction that each of the p; is prime comes
from her own running of a probabilistic primality test. None
of these runs can be considered as interesting by Bob
because he cannot trust that Alice was honest in her coin
tosses.

This is where our technique is most powerful. Consider
a Boolean circuit with two /-bit inputs p and ¢ that outputs 1
if and only if ¢ mod p is a certificate that p is composite
(where primes have no certificates and composites have lots
[R1, SS]). Recall that Bob was given by Alice an encryp-
tion for each bit of each p;. With the help of Alice, he can
run as many randomly chosen c¢’s as he wishes into the cir-
cuit for each p; and ask her to open the circuit outcomes. If
he ever gets a 1, he will know for sure that the correspond-
ing p; is composite and that Alice had been cheating (or
perhaps that Alice was honest after all, and that she just
discovered with him that this p; is composite!). Otherwise,
since he has complete control over the ¢’s, he can convince
himself, with any level of confidence, that m is the product
of exactly k distinct primes. This protocol can be adapted if
Alice wished to convince Bob that there are exactly k dis-
tinct primes in the factorization of m, regardless of their
multiplicities. A more practical variation allows Alice to
convince Bob that the prime factors of n have interesting
properties, such as being of the form 2g+1, where q is also a
prime.

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

7. THE GENERAL PROTOCOL

Recall that BPP stands for the class of decision prob-
lems that can be solved in probabilistic polynomial time with
bounded error probability [G]. It is reasonable to consider
BPP as the real class of tractable problems (rather than P)
because the error probability can always be decreased below
any threshold € > 0 by repeating the algorithm c loge™
times and taking the majority answer, where ¢ depends only
on the original error probability. It is generally believed that
there is no inclusion relation either way between NP and
BPP: non-determinism and randomness seem to be incom-
parable powers. These powers can be combined in several
ways. We consider Babai’s class MA [Ba], which we would
rather call RNP, to be the most natural 4. This class is such
that NP U BPP € RNP, hence NP is almost certainly a
strict subset of RNP.

Definition. Let X stand for {0,1}. A decision problem
X C Z* belongs to RNP if and only if there exists a predi-
cate A € 2*x £* and a polynomial p(n) such that
(i) Ae€ BPP,and
i) (Mxe x*
[x € X <> (3a € 2)[la| = p(ix|) and <x,a> € A]]
(such an a is refered to as an argument for x).

Notice that this would correspond to the polynomial hierar-
chy characterization of NP had we insisted that A € P. The
restriction |a| = p(lx]) instead of the usual |a| £ p(lx|) is there
for a technical reason. Notice also that X € NP whenever
Ae NP.O

Intuitively, X € RNP means that whenever x € X,
there is a (possibly hard to find) short argument for this, and
that the validity of this argument can be checked probabilist-
ically in polynomial time. We are about to prove that if
X € RNP, if the proof that X € RNP is in the public
domain, and if Alice has an argument a for some x € X, she
can convince Bob with a ZKIP that x € X. As a warm up,
let us first restrict ourselves to one-sided probabilistic algo-
rithms.

Recall that RP (sometimes refered to as R) is the class
of decision problems that can be solved in polynomial time
by a one-sided bounded error probabilistic algorithm [A].
Here, each time the probabilistic algorithm is run on any
yes-instance, it accepts with probability at least %%, whereas
it always rejects no-instances. It is well known that
RP € NP n BPP and that co-RP < BPP, but co-RP and
NP are probably incomparable. Whenever x is a yes-instance
of a co-RP problem, one can convince him/herself that this
is so (by repeating the algorithm), but there does not have to
exist a succinct proof of this.

4 For a discussion as to why we favour MA over the seem-
ingly more powerful AM, see section 9.

192

Theorem Consider a problem X € RNP such that the
corresponding A (refer to the definition of RNP)
belongs to co-RP. Assume that the characterization A
for X and a co-RP algorithm for A are in the public
domain. Let Alice have an argument a for some x € X.
Although she may not have a definite proof that x € X,
she convinced herself probabilistically that <x,a> € A,
hence x € X. Assuming Bob believes that factoring is
hard, it is then possible for Alice to efficiently transfer
to Bob her confidence that x € X by a perfect zero-
knowledge interactive protocol. The protocol remains
perfect zero-knowledge even if factoring is easy.

Proof (sketch). Alice and Bob agree on a probabilistic
one-sided Boolean circuit for the complement of A.
(That is: on any yes-instance of A, using any random
choices, the circuit outputs 0; on any no-instance of A,
it outputs 1 for at least 50% of the random choices.)
Alice gives Bob an encryption for each bit of x, and
she opens them to show that they do encrypt x. Alice
also gives Bob an encryption for each bit of a, but she
keeps a itself secret, of course. She then guides Bob
through the evaluation of the Boolean circuit on input
<x,a>, using Bob’s coin tosses, until the encrypted out-
come is obtained. She then opens the outcome to Bob,
who can ascertain that it is indeed a 0. This process is
repeated until Bob is convinced that <x,a> € A, hence
that x € X. Clearly, this gives Bob no information on a
(except for its mere existence) because the only possi-
ble outcome for the Boolean circuit is 0, provided
Alice was not trying to cheat. Bob does not even learn
the length of a because it had to be exactly p(lx|) by
definition of RNP. A formal proof will be included in
the final paper. O

The above protocol does not work directly for
X e RNP in general, because it would not be zero-
knowledge. Indeed, Bob would gain information on Alice’s
argument a from knowledge of which random choices made
the circuit accept <x,a> and which made it reject, or even
merely from knowledge of the number of each of these
occurrences. (Recall that if A € BPP but A ¢ RP L co-RP,
the probabilistic Boolean test circuit for A is expected to out-
put sometimes 0 and sometimes 1 on the same input; the
most frequent answer being correct with high probability.)
Two ideas are needed to solve this difficulty, but even then
we do not quite get a perfect zero-knowledge protocol (but
we come arbitrarily close).
(i) Alice and Bob agree in advance on the number of runs
they wish to carry through the test circuit. At the end
of each run, Alice no longer opens the outcome. After
all the runs are completed, Alice guides Bob through
the evaluation of a majority Boolean circuit, using the
previously obtained encrypted outcomes as input. It is
only the resulting majority bit that Alice finally opens
for Bob.

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

(ii) Even if Alice is in good faith, the above idea leaves
the door open for Bob to cheat. Indeed, it could be that
the circuit outcome is not what she expected because
Bob has deliberately chosen the "random" coin tosses
to make this occurrence 50% likely. Assuming Alice’s
good faith, this could yield up to one.bit of information
to Bob about the argument a, which is intolerable.
Alice would be almost certain that Bob cheated, but it
would be too late by then. In order to prevent this
possibility, it is essential that all coins be tossed so that
neither Alice nor Bob can influence the outcome, and
such that Bob does not get to see the outcome (i.e.
coin tossing in a well). Fortunately, such a protocol is
very simple: to toss a coin, Alice randomly selects an
element of Z’f, , squares it, and then randomly decides
whether to multiply it by Bob’s quadratic residue y.
She gives the result to Bob. At this point, Bob ran-
domly decides whether to multiply it by y. Alice keeps
track of her witness for the resulting encrypted bit.

In order to see why this is not quite perfect zero-
knowledge, the formal definition is necessary [GMW1].
The problem comes from the fact that it will not be possible
for Bob to simulate the arbitrarily small probability that the
outcome of the majority circuit come out wrong (because he
does not know in general what this probability should be).
This issue will be discussed in the final paper.

Main Theorem. Consider any X € RNP and some x € X for
which Alice has an argument a. Assume the proof that
X € RNP is in the public domain>. Even though
Alice may not have a definite proof that x € X, she
convinced herself probabilistically that <x,a>€ A,
hence x € X. Assuming Bob believes that factoring is
hard, it is possible for Alice to efficiently transfer to
Bob her confidence that x € X with an arbitrarily low
probability of failure, by a protocol that discloses no
additional information to Bob. Alice’s secret argument
remains uncompromised even if factoring is easy.

Proof (sketch). By the above discussion. O]

Let us stress again that this protocol is interesting even
when A € NP, hence X € NP (as in section 6 because
PRIMES € NP), despite the reduction to SAT in these
cases. This is so because Alice could know the argument a
for x as a result of her choosing a in the first place (as trap-
door information) and producing x from it. She might not,
however, have an accepting computation for <x,a>, even
though A € NP. Nonetheless, she can make use of our
protocol. In other words, it does not require Alice to have
more computing power than Bob or to have access to some
NP-complete oracle. As long as she can convince herself
with the help of her trap-door, she can convince Bob as
well without compromising the trap-door.

5 j.e.: the predicate A and the BPP algorithm for A are
already known to Bob.

193

8. OTHER EXAMPLES OF ZKIP’s (sketch)

Our general technique can be used directly to get
efficient ZKIP’s for a variety of NP-complete problems.
A very useful sub-protocol, of which the boolean computa-
tion protocol from section 4 is but an instance, allows Alice
to convince Bob that a given string of quadratic residues
encrypts a secret permutation of some cleartext data (such as
the adjacency matrix of a random permutation of some
"cleartext" graph). Subsequent opening of a selected set of
these residues easily yields ZKIP’s for NP-complete prob-
lems as diverse as Hamiltonian Circuit, Clique and Exact
Knapsack. Similarly, the string inequality protocol yields
immediately an efficient perfect zero-knowledge interactive
protocol for 3-COL.

9. RNP AND ARTHUR-MERLIN GAMES 6

As previously mentioned, our class RNP is equivalent
to Babai’s class MA in his Arthur-Merlin games [Ba]
(and similar to Papadimitriou’s stochastic satisfiability in his
games against nature [Pa]). According to Babai, his other
class AM is a better candidate for the generalization of NP
and BPP. This is because he could prove that MA € AM.
The interest of AM is further increased by Goldwasser and
Sipser’s proof that, for any fixed k22, AM = IP(k), the
class of languages that allow an interactive protocol with no
more than k rounds [GS]. All these considerations are
theoretically very compelling.

We claim nonetheless that MA (i.e.: RNP) is a more
natural class for practical purposes, at least in cryptographic
settings. Consider, for instance, the example of section 6.
It is natural that Alice has a convincing argument that m is
the product of exactly k distinct primes. This corresponds to
a Merlin-Arthur game, except for the fact that it is not
because Alice has Merlin’s infinite wisdom that she obtained
the argument: it is because she built it from trap-door infor-
mation. From Babai’s theorem MA € AM, we know that
there is also an Arthur-Merlin protocol for the same prob-
lem, but it is likely to be far more complicated and less
natural (at least if we follow Babai’s proof directly).

If needed, our technique could nonetheless be applied
to obtain zero-knowledge protocols for problems in AM, and
therefore zero-knowledge versions of any interactive protocol
with a bounded number of rounds, very much like the way it
is done in [GMW1]. This does not seem to be very interest-
ing in practice, however, because the resulting protocols
would often be far too complicated. Moreover, this result is
subsumed (except for the fact that our protocol would be
perfect zero-knowledge, regardless of unproved assumptions)
by independent work of Ben-Or and Impagliazzo, in which
they show that every language which has an interactive
proof system has a zero-knowledge one [BO, I].

6 This section assumes you are familiar with [Ba, GMR].

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

10. IS IT PREFERABLE TO TRUST BOB OR ALICE?

"Cheating" takes up a different meaning, depending on
whether you are talking about Bob or Alice. For Bob to
cheat means that he gains knowledge on Alice’s proof.
Perhaps did he not quite obtain this Hamiltonian circuit he is
desperately seeking, for instance, but he learned enough to
drastically reduce his search. On the other hand, for Alice to
cheat means that she succeeds in convincing Bob of a false
"theorem", or at least of one for which she does not happen
to have a proof or even a convincing argument.

It is also interesting to distinguish between lucky and
daring successful cheating. The former refers to Alice or
Bob figuring out, against all odds, a piece of information
that will enable him/her to quietly go about his/her cheating
with the certainty of being successful and undetected.
The latter refers to Alice or Bob taking an illegal move that
is almost certainly going to result in his/her cheating being
detected at some point in the future, but that might nonethe-
less, with an exponentially small probability, allow him/her
to succeed.

Finally, cheating is retroactive (or off-line) if it can
take place some times after the protocol is completed,
by looking back at its record. Conversely, it is real-time if
it must be completed while the protocol is taking place.

As pointed out in the introduction, previous ZKIP’s
given in [GMW1, BC] for NP-complete problems were only
"proven" zero-knowledge assuming unproved cryptographic
assumptions, and they were known not to be perfect zero-
knowledge. This means that Alice could never participate in
such protocols with a quiet mind: an algorithmic break-
through might allow Bob to cheat, even retroactively, and
even if the new algorithm is not fast enough for a real-time
response while the protocol is taking place. Even if the cryp-
tographic assumptions turned out to be well-founded, Bob
still has a (very slight) probability of lucky (hence undetect-
able) cheating. On the other hand, regardless of any
assumptions, the only cheating Alice could attempt would be
of the daring kind.

We presented here a ZKIP for NP-complete problems
that does not base Alice’s safety on unproved assumptions.
The only way Bob can hope to learn anything about Alice’s
secret is to be daring right from the beginning and choose a
quadratic non-residue as his y. He would almost certainly
get caught by Alice while trying to convince her that
y € QR, [BC, Be], but he would otherwise be capable of
distinguishing Alice’s encryptions of O from her encryptions
of 1. Asking Bob to disclose a square root of y at the very
end of the protocol (which is not detrimental to him at that
point, assuming he is honest), provides Alice with certainty
that Bob has not learnt any of her secrets (and never will
retroactively), because this completes the proof for Alice that
the protocol was perfect zero-knowledge. On the other
hand, Bob’s belief that Alice cannot cheat our protocol
depends on his belief of the factoring conjecture. Clearly,

194

Alice could "open" any quadratic residue as either 0 or 1,
whichever suits her best, if she could only obtain a square
root of y, but she must be able to do so in real-time. More-
over, even if the factoring conjecture is true, Alice still has a
(very slight) possibility of lucky (hence undetectable) cheat-
ing. Finally, retroactive cheating is not possible for Alice
because it is meaningless.

Compared to the protocols of [GMW1, BC], ours rev-
erses exactly the roles of Alice and Bob cheatingwise, except
for retroactivity and real-time considerations: an algorithm
capable of factoring in two hours, for instance, would spell
doom to the protocol of [BC], but it would be of no direct
consequence here. Is it preferable to trust Bob or Alice? We
do not know, but it sure is nice to have the choice! Finally,
think of the following provocative consideration: assume that
Alice claims to have proven Theorem T and she uses our
protocol to convince a skeptical Bob of this. At the end of
the protocol, regardless of any unproved assumptions, Bob
will be non-constructively convinced that either Alice has a
proof of T or she has hot results on integer factoring! In par-
ticular, no assumptions are needed if T says: ‘‘I have an
efficient factoring algorithm’’...

11. OUTLINE OF THE DUAL PROTOCOL OF [BC]

Because proceedings of the CRYPTO conference may
not be widely distributed this year (1986), let us briefly
describe the dual protocol presented in [BC]. Recall that it
requires a cryptographic assumption to prevent Bob from
figuring out Alice’s secret and that it is not perfect zero-
knowledge. Bob’s confidence in Alice’s good faith, however,
is not based on any unproved assumptions. We assume here
that the reader is familiar with Jacobi symbols and the qua-
dratic residuosity assumption (QRA).

~ The main difference in the dual protocol is that the
composite number n =pq is chosen by Alice rather than
Bob. She also randomly selects some quadratic non-residue y
whose Jacobi symbol is +1. She gives n and y to Bob. She
uses ZKIP’s of [GHY] and [GMR] to convince Bob that n
has only two primes factors and that y is a quadratic non-
residue, respectively. In order to encrypt bit b, she chooses a
random x € Z% and computes z = x2y* mod n, which is a
quadratic residue if and only if b = 0. Because encryptions
of 0 and 1 are distinct here, there is no need for the previous
notion of witness. Under QRA, Bob cannot distinguish
encryptions of ones from encryptions of zeroes.

Alice can help Bob compute on encrypted bits in a
way very similar to the one described above. For instance,
the exclusive-or corresponds again to modular multiplication.
The resulting protocol cannot be perfect zero-knowledge,
however, because quadratic residues are obviously not infor-
mation theoretically indistinguishable from quadratic non-
residues. The graph theoretic implementation discussed in
the next section can be adapted as well for the dual protocol.
Further details are available from the authors.

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

12. A GRAPH THEORETIC PROTOCOL (sketch)

In this section, we outline an approach that allows trad-
ing the number theoretic assumption (factoring is hard) for
an assumption related to graph isomorphism. We make no
attempts here to formalize the concepts involved, as this idea
will be developped in a further paper.

Definition. A graph G is hard if it is difficult, with high pro-
bability, to figure out an isomorphism between G and a ran-
domly permuted isomorphic copy of G. O

Assumption. Arbitrarily hard graphs exist and they can be
constructed efficiently. O

In order to achieve protocols similar to those described
so far in this paper, it suffices to show how this assumption
allows Alice to give Bob information theoretically indistin-
guishable encryptions of zeroes and ones. For this, Alice and
Bob first agree on some hard graph G = <V, E>. Then, Bob
randomly selects a permutation ¢ : V—V and uses it to pro-
duce the graph H =<V, F> isomorphic to G defined by
{u,v}eF if and only if {c(u),0(v)}€E. Bob gives H to Alice,
keeping G secret. By assumption, with high probability,
Alice cannot compute ¢ from G and H (nor any other iso-
morphism between G and H). Using a ZKIP of [GMW1],
Bob convinces Alice that G and H are isomorphic (notice
that this ZKIP is perfect and that it does not depend on any
assumptions).

After this initialisation, Alice encrypts zeroes as ran-
domly permuted isomorphic copies of G and ones as ran-
domly permuted isomorphic copies of H. She keeps the iso-
morphisms as witnesses. She can prove that two graphs
encrypt the same bit by showing Bob an isomorphism
between them. We invite the reader to figure out how Alice
can prove that two graphs encrypt complementary bits, how
to achieve coin-tossing in a well, and how to adapt the gen-
eral protocol for any problem in RNP.

An advantage of this protocol over the one based on
number theory is that some standard "certified" hard graph
could be constructed once and for all for use by all parties.
This is possible because there is no trap-door involved.

13. OPEN PROBLEM

Could there be a ZKIP that allows neither Alice nor
Bob to cheat, without making use of unproved cryptographic
assumptions? Could it be perfect zero-knowledge? Notice
that putting back to back the current protocol with the one of
[BC] is a bad idea: instead of adding their strengths, this
only results in the protocols adding their weaknesses.

ACKNOWLEDGEMENT

We wish to thank Joan Feigenbaum, Shafi Goldwasser,
Russel Impagliazzo, Silvio Micali, Jean-Marc Robert, Steven
Rudich and Moti Yung for fruitful discussions. Moti Yung
suggested the title ‘“Transfer of Confidence’’ for this work.

195

REFERENCES

[A]

[Ba]

[Be]

[BO]
[BC]

[C]

[CF]

[GHY]

[G]

[GMW1]

[GMW?2]

[GK]

[GMR]

[GS]

1]
[Pa]

[Pr]

[R1]

[R2]

[SS]

Adleman, L., ‘‘Reducibility, randomness and intractabil-
ity’’, Proceedings of the 9th Annual ACM Symposium
on the Theory of Computing, 1977, pp. 151-163.

Babai, L., ‘“Trading group theory for randomness’’,
Proceedings of the 17th Annual ACM Symposium on the
Theory of Computing, 1985, pp. 421-429,

Benaloh (Cohen), J. D., *“‘Cryptographic capsules: a dis-
junctive primitive for interactive protocols’’, presented
at CRYPTO 86, 1986.

Ben-Or, M., private communication, 1986.

Brassard, G. and C. Crépeau, ‘‘Zero-knowledge simula-
tion of Boolean circuits’’, presented at CRYPTO 86,
1986.

Chaum, D., ‘‘Demonstrating that a public predicate can
be satisfied without revealing any information about
how”’, presented at CRYPTO 86, 1986.

Cohen, J. D. and M. J. Fischer, ‘‘A robust and
verifiable cryptographically secure election scheme’’,
Proceedings of the 26th Annual IEEE Symposium
on the Foundations of Computer Science, 1985,
pp. 372-382.

Galil, Z., S. Haber and M. Yung, ‘‘A private interactive
test of a Boolean predicate and minimum-knowledge
public-key cryptosystems’’, Proceedings of the 26th
Annual IEEE Symposium on the Foundations of Com-
puter Science, 1985, pp. 360-371.

Gill, J. ‘‘Computational complexity of probabilistic Tur-
ing machines’’, SIAM Journal on Computing, Vol. 6,
no. 4, December 1977, pp. 675-695.

Goldreich, O., S. Micali and A. Wigderson, ‘‘Proofs
that yield nothing but the validity of the assertion and
the methodology of cryptographic protocol design’’,
these Proceedings of the 27th Annual IEEE Symposium
on the Foundations of Computer Science, 1986.

Goldreich, O., S. Micali and A. Wigderson, ‘‘Methodo-
logical theorems for cryptographic protocol design’’,
in preparation, 1986.

Goldwasser, S. and J. Kilian, ‘A provably correct and
probably fast primality test’’, Proceedings of the 18th
Annual ACM Symposium on the Theory of Computing,
1986, pp. 316-329.

Goldwasser, S., S. Micali and C. Rackoff, ‘‘“The
knowledge complexity of interactive proof-systems’’,
Proceedings of the 17th Annual ACM Symposium on the
Theory of Computing, 1985, pp. 291-304.

Goldwasser, S. and M. Sipser, ‘‘Arthur-Merlin games
versus interactive proof systems’’, Proceedings of the
18th Annual ACM Symposium on the Theory of Com-
puting, 1986, pp. 59-68.

Impagliazzo, R., private communication, 1986.

Papadimitriou, C. H., “‘Games against nature’’, Journal
of Computer and System Sciences, Vol. 31, 1985,
pp. 288-301.

Pratt, V., “Every prime has a succinct certificate’’,
SIAM J. on Computing, Vol. 4, 1975, pp. 214-220.
Rabin, M. O., ‘‘Probabilistic algorithms”’, in Algorithms
and Their Complexity: Recent Results and New Direc-
tions, J. F. Traub (editor), Academic Press, New York,
NY, 1976, pp. 21-39.

Rabin, M. O., *‘Digitalized signatures and public-key
functions as intractable as factorization’’, MIT/LCS/TR-
22, 1979.

Solovay, R. and V. Strassen, ‘‘A fast Monte Carlo test
for primality’’, SIAM Journal on Computing, Vol. 6,
1977, pp. 84-85.

Authorized licensed use limited to: McGill University. Downloaded on February 11, 2010 at 23:26 from IEEE Xplore. Restrictions apply.

