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ABSTRACT 

A zero-knowledge interactive proof is a protocol by which Alice can convince a 
polynomially-bounded Bob of the truth of some theorem without giving him any hint as to 
how the proof might proceed. Under cryptographic assumptions, we give a general technique 
for achieving this goal for every problem in NP. This extends to a presumably larger class, 
which combines the powers of non-determinism and randomness. Our protocol is powerful 
enough to allow Mice to convince Bob of theorems for which she does not even have a 
proof: it is enough for Alice to convince herself probabilistidly of a theorem, perhaps 
thanks to her knowledge of some trap-door information, in order for her to be able to con- 
vince Bob as well, without compromising the map-door in any way. 

1. INTRODUCTION 

Assume that Alice holds the proof of some theorem. A zero-knowledge interactive proof 
(ZIP)  is a protocol that allows her to convince a polynomially bounded Bob that she owns such a 
proof, in a way that he will gain nothing else than this conviction: engaging in the protocol with 
Alice gives Bob no hint on Alice's proof, or at least nothing he can make use of in polynomial time. 
In p h c u l a r ,  it does not enable him to later convince anyone else that Alice has a prmf  of the 
theorem or even merely that the theorem is true (much less that he himself has a proof!). This notion 
was introduced by Goldwasser, Micali and Rackoff [GMR]; the reader is refered to this paper for 
formal definitions. An intuitive notion of ZKIP suffices to understand this extended abstract. 

The early examples of Z I P ' S  were all number theoretic and restricted to problems in 
NP n CO-NP [GMR, GHY]. It was conjectured by Silvio iMcali, and believed by most researchers, 
that such protocols could not exist for NP-complete problems. Under cryptographic assumptions, we 
show here that this ktuition was wrong by providing a ZKIP for satisfiability. The same result was 
obtained independently and slightly earlier by [GMW] as they gave a ZKIP for graph 3-colouring. 
Obviously (because Karp reductions carry NP certificates), it suffices to find a Z K P  for W' 
NP-complete problem in order to get one for every problem in NP. Protocols very similar to ours for 
satisfiability are also given in [Be, Ch]. Our protocol is more attractive in practice than that of 
[ G W ] ,  but we depend on a specific cryptographic assumption (quadratic residuosity) whereas they 
merely need to assume the existence of secure encryption schemes in the sense of [GMI. 
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ZKIP's are conceivable even if Alice does not have a proof to start with. Let us assume that she 
merely has a convincing argument that the theorem is true. h this case, she might wish to convince 
Bob of the theorem with a level of confidence comparable to her own. This w a d e r  of confidence is 
zero-knowledge if it does not provide a polynomially-bounded Bob with any information on the argu- 
ment itself, except for its existence and Alice's knowledge of it. Our main result is that such proto- 
cols exists for a class of problems probably more extensive than Np. 

TO illustrate the ideas, let us assume that Alice wishes to convince Bob that some integer rn 
(of her choosing) is the product of exactly k distinct primes. Alice is convinced of the truth of her 
claim because she randomly selected k distinct integers p l ,  pz , . . . , p k  that passed some probabilistic 
primality test [R, SS] to her satisfaction. Although proofs of primality for these factors exist since 
PRIMES E NP Pr], there is no known feasible algorithm for Alice to get these proofs1. In other 
words, Alice knows (with an arbitrary small probability of error) that rn is in the proper form, she 
knows there exists a short proof of this statement, but she cannot find the proof. Using our protocol, 
she can nonetheless convince Bob without compromising the factorization of m in any way (except 
for the fact that Bob will h o w  the number of factors). 

The above example illustrates the fact that our model does not assume that Alice has more com- 
puting power than Bob nor access to some oracle. Although she starts with one piece of additional 
knowledge (either a formal proof of some theorem or merely a convincing argument), this may be the 
result of her using trap-door infonnation. The entire protocol itself can be carried out with polyno- 
mial time resources. 

The general technique allows Alice to guide Bob through the simulation of an arbitrary Boolean 
circuit without ever having to disclose its inputs or any intermediary results. At the end of the proto- 
col, she can nonetheless convince Bob of the final outcome of the circuit. If this turns out to be 1, 
Bob will be convinced that the Boolean function computed by the circuit is satisfiable and that Alice 
holds a satisfying assignment, but he will known nothing else. The bottom line is that, whenever 
Alice can convince herself probabilistically of a fact or theorem, perhaps thanks to her knowledge of 
some trap-door information, she can convince Bob as well without compromising the trapdoor. 

2. NUMBER THEORETIC BACKGROUND 

Let n be an integer. 2$ denotes the set of integers relatively primes to n between 1 and n-1. 
An integer z E Zz is a quadratic residue modulo n ( z  E QRJ if there is an x E Z: such that 
z E x2 (mod n). An integer z E 6 is a quadratic non-residue modulo n (z  E QNRJ if z 4 QR,. 
If p is a prime and if z E Z$, it is easy to determine whether z E QRp because this is so if and only 
if z@-l)'* 1 (mod p ) .  Let n = p q  be the product of two distinct odd primes. Given z E Zz , let zp 

and z, denote ( z  mod p )  and (z mod q),  respectively. Given the factorization of n, it is easy to deter- 
mine whether z € QR, because this is so if and only if zF E QRF and z ,  E QR,. Given the factoriza- 
tion of n and given z E Q%, it is also easy (by a Las Vegas algorithm in general [Pel) to find every 
x E Zz such that z I x2 (mod n).  This is however believed to be hard without the factorization of n. 

' Goldwassa and Kilian's new provably correct and probably fast primaliry test [GK] allows Alice to 
"efficiently" (the running t ime is currently a 12th power polynomial) get short proofs for those primes on 
which the algorithm turns out to be fast. This might reduce the interest of chk particular example, but not 
the interest of our general protwol. 
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Given z E Zz, the Jacobi symbol ( z h )  is defined as +1 if both zo and zq are quadratic residues 
modulo p and q, respectively, or if both are quadratic non-residues; it is defined as -1 otherwise. It is 
easy to compute ( z /n )  even if the factorization of n is unknown BSA]. Let Z:[+l] denote the set of 
z E Zz such that (z/nj = +1 and define Zz[-1] similarly. Let Qi\iR,[+l] denote QNR, n ZZ[+ll. 
It is clear that Z,[-l] C QNR,; moreover, exactly half the memkrs of Z:[+1] are quadratic resi- 
dues modulo n and the other half are quadratic non-residues. Both C[+l] and QR, are closed under 
multiplication modulo n, the product modulo n of two members of QNR,[+I] is a member of QR,, 
and the product modulo n of a member of QR, by a member of Qhi,[+l] is a member of 
QNR,[+l]. A uniformly distributed random element of QR, can be obtained by randomly choosing 
some x E Z, and squaring it modulo n ;  given any fixed y E QhX,,[+l], a uniformly dismbuted ran- 
dom element of Qh;R,[+l] can be obtained by randomly choosing some x E Z, and computing 
x2y mod n. Furthermore, everything we have said so far, except for the definition of the Jacobi sym- 
bol, remains true if n is of the form piq’, where p and q are distinct odd primes and i and j are posi- 
tive powers of which at least one is odd. 

* 

* 
* 

It is believed that no efficient algorithm can distinguish a quadratic residue from a quadratic 
non-residue, even probabilistically speaking, as long as the latter has Jacobi symbol +l and the fac- 
torization of n is unknown. For a more formal statement of this quadratic residuosity assumption 
(QRA) and for more background on number theory, please refer to [GM]. 

3. THE ENCRYPTION OF SECRETS 

At the beginning of our protocols, Alice randomly chooses two distinct large primes p and q, 
and she discloses their product n = p q  to Bob. Following the QRA, we assume throughout that Bob 
cannot distinguish a quadratic residue modulo n from a quadratic non-residue, as long as the latter 
belongs to Zz[+1]. Alice also randomly chooses and discloses to Bob some y E QNR,[+I]. (It is 
proven in [GM] that this cannot help Bob distinguish residues from non-residues.) Using the zero- 
knowledge interactive protocol of [GHY], Alice convinces Bob that R is of the form p‘qj for distinct 
odd primes p and 4. and positive integers i and j of which at least one is odd2. Using the zero- 
knowledge protocol of [GMR], Alice convinces Bob that y E QNR,[+l]. 

At this point, Bob could produce uniformly distributed random members of QR, and QNR,[+11 
by choosing a random x E Z, and computing either x2 mod n or x2y mod n. The fact that only Alice 
can distinguish between these two occurrences was the basis of Goldwasser and Micali’s original pro- 
babilistic encryption [GM]. Here, we use this idea in rhe reverse direcrion: it will atways be Alice 
that produces random members of QR, and QNR,[+l]. By convention, members of QR, are used as 
encryptions of the bit 0 and members of QNR,[+l] are used as encryptions of the bit 1. Whenever 
Alice shows Bob the encryption z of some bit b, he has no clue as to which bit it encodes (under 
QRA). It is however possible for Alice to prove to Bob whether b = 0 or b = 1 by showing him 
some x E Zn such that z = x2yb  mod n. This operation will be refered to as opening the 
secref z. Notice tha: this is a zero-knowledge proof even though a square root of either z or q-’ is 
given to Bob, because x was randomly chosen by Alice. For this reason, whenever she wishes to 

* 

* 

~~ ~~ 

It would be nicer if .-Uice could convince Bob directly that n is of the form p q ,  but we offer in the 
sequel the first ZKIP capable of achieving this (and therefore we cannot use it yet). This is however of no 
consequence because .Ucz could only make herself more vulnerahle by choosing n = p’qj without i = j =  1. 
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open a secret z,  there is no need for Alice to use the ZKlp of [GMR] in order to convince Bob of 
which among v-' or z belongs to QNR,[+l]. We give in the last section of this paper a simplified 
ZKIP for quadratic residuosity when the target is chosen by Bob. 

4. CAN BOB COMPUTE ON ENCRYPTED BITS? 
Let bl and bz be two secret bits of Alice, and let z1 and z2 be their encryptions as given to Bob. 

Even though Bob has no knowledge of b, or b,, he can still compute an encryption of some func- 
tions of bl and b2 . For instance, Bob can compute z1 y mod n, which is an encryption for the nega- 
tion of bl . Similarly, Bob can compute z1z2 mod n, which is an encryption of the exclusive-or of bl 
and b, because if z1 = $y"l mod n and z2 = x$ybz mod n, then 

zlz2 mod n = (x1x2)2ybl+b1 mod n = x2yfb1* mod mod n, 

where x = xlx2y(b'ib3 d'v mod n. 

Could Bob compute an encryption of the and or the or of bl and b, given only z1 and z,? This 
remains an open question. We will show, however, that it is possible for Bob to do so with the 
(zero-knowledge) help of Alice. As a corollary, Bob can compute an encryption of arbitrary Boolean 
functions of bits for which he only has encryptions. After this computation, Alice can open the result 
for Bob without ever having had to open the input Boolean variables or any intermediary informa- 
tion. This idea leads to a simple ZKIP for SAT in Section 6. 

5. HOW ALICE CAN HELP BOB COMPUTE ON ENCRYPTED BITS 
Let u = blb2 . . . bk be a k-bit string of Alice. For each i, 1 I i I k, let zi and ii be two encryp- 

tions of bi randomly chosen by Alice. It is easy for Alice to convince Bob that the k-bit striiigs 
encrypted by z1z2 . . zk and f1f2 . . . fk are identical without providing Bob with any additional 
information. 

String equality protocol: For each i, 1 I i I k, Alice gives Bob some xi E ZE such that 
ziii = $ (mod n). Once again, this is a Z K P  because the encryptions were randomly 

0 

As above, let u = b,bz. . . bk and let zi encrypt bi for each i, 1 i i I k. Now, let 
ri = blbz ' . 6, be some k-bit string different from u and let fi be an encryption of & for each i, 
1 I i I k. It is no longer so obvious that Alice can convince Bob that the strings encrypted by 
z1z2 . . . zk and fl& . . . fk are different without yielding some additional information (such as a 
specific i for which bi # 6'). The fact that this is possible, and the technique that achieves this proto- 
col, illushate the core of our main result. 

String inequality protocol: For each i, 1 5 i I k, let vi = ziii mod n. The problem reduces 
to convincing Bob (by a ZKIP) that the string encrypted by vIvz . . vk is not identically 
zero. For this, Alice randomly chooses some permutation (T of { 1,2, . . , k} and xi E 

for 1 5 i I k. She then computes and discloses to Bob wi = 2 v ~ ( , ~  mod n for each 1 1. i 1.k. 
At this point, Bob sends either challenge A or challenge B to Alice. 

chosen by Alice and not influenced by Bob. 

1 -  

If Bob sent challenge A, Alice must disclose some i such that wi encrypts a 1, and 
open this wi for Bob by giving him a square root of wiy-' modulo n. 
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If Bob sent challenge B, Alice must disclose the permutation D and use the string 
equality protocol to convince Bob that wlw2 . . . wk encrypts the same string as 

va(l)vo(2) . ' . 'o(k). 
This process is repeated s times, for some safety parameter s agreed upon between Alice 

0 
Theorem 
and Bob. In order to convince Bob, Alice must meet ever)' single challenge. 

(i) The only knowledge obtainable by Bob from this protocol is that zlz2 . . . zk and 

(ii) Alice only has a probability 2-' of convincing Bob of this when in fact the strings 

2122 . . . 2k encrypt distinct bit strings, and 

are identical. 

Proof (sketch). 

(i) Observe that whenever Bob chooses challenge A, he learns that the original bit 
strings are distinct in at least one place (if Alice was honest), but this gives him no 
clue as to any single i such that bi # Li because the permutation (T is then kept secret. 
On the other hand, whenever Bob chooses challenge B, he gains no information 
whatsoever on the original strings. 

(ii) Tf in fact v1v2 . . . vk encrypts the identically zero string, the only thing Alice can do 
to hope convincing Bob of the contrary is to guess exactly which challenge Bob will 
choose for each round and to encrypt non-identically zero strings with w1w2 . . ' Wk 
whenever she expects Bob to use challenge A and identically zero strings otherwise. 
The results follows from the fact that there are 25 equally likely sequences of choices 
for Bob. 0 

We are now ready for the main tool used in this paper. Consider any Boolean function 
B : {O, 1)' -+ {0,1} agreed upon between Alice and Bob, and any bits b, , bz ,  . . . , b, known to Alice 
only. For 1 I i S t ,  let zi be an encryption of b, known to Bob. Let b = B(b1, b,, * . * , b,). 
Alice can produce an encryption z for b and convince Bob t h a  z encrypts the correct bit without giv- 
ing him any information on the input bits b, , b2, . . . , b, nor on the result b. 

Definition. A pennured truth table for the Boolean function B is a binary string of length 
(r+1)2' formed of 2' blocks of t+l bits. The last bit of each block is the value of B on the 
other r bits of the block, and each assignment of truth values occurs exactly once in the 
first t bits of some block. For example, here is a permuted truth table for the binary O r :  

011000111101, which should be read as 0 or 1 = 1,0 or 0 = 0, 1 or 1 = 1 and 1 or o =  1. 

Boolean computation protocol: Let the situation be as in the paragraph just before the 
above definition. Alice randomly chooses a permuted truth table for B and she &closes 
encryptions for each of its bits. At this point, Bob sends either challenge A or challenge B 
to Alice. 

If Bob sent challenge A, Alice must open the entire encryption of the v m u t d  truth 
table, so that Bob can check that it is a valid truth table for B.  
If Bob sent challenge B, Alice must point out to the appropriate block in the e n W P  
tion of the permuted truth table and use the string equality protocol to convince Bob 
that 2122 . . . ztz encrypts the same bit string as this block. 
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This process is repeated s times, for some safety parameter s agreed upon between Alice 
and Bob. In order to convince Bob that z is an encryption for B(b, , b,, . . . , bt), Alice 

CI 
A theorem very similar to the one for the string inequality protocol can be stated and the proof 

is essentially identical. Notice that this protocol is interesting only for small t because it is exponen- 
tial in t .  In the sequel, we will use it exclusively with r S 2. A very similar Boolean computation pro- 
tocol was discovered independently by Josh Benaloh [Be] as an application of the general tool of 
“cryptographic capsules” [CFJ 

must succeed in meeting every single challenge. 

6. ZKIPFORSAT 
The zero-knowledge interactive proof for satisfiability should now be obvious. Let 

f: (0, l}k + (0,l) be the function computed by some satisfiable Boolean formula for which Alice 
knows an assignment b, , b,, . . . , bk E {0,1} such that f (b l ,  9, . . . , bJ = 1. Assume the 
Boolean formula is given using arbitrary unary and binary Boolean operators. In order to convince 
Bob that the formula is satisfiable, Alice produces encryptions zl, z 2 ,  . . . , zk of b, , b2, * - . , b k ,  

respectively. She then guides Bob through the encrypted evaluation of the formula, one Boolean 
operator at a time3, using the BOOIW computation protocol (with t I 2). This results is an encryp- 
tion z for the value of f ( b , ,  b,, . . . , bJ. It then only remains for Alice to open z and show Bob 
that it encrypts a 1. 

7. ZKIP FOR THE NUMBER OF PRIME FACTORS 

Let  us now come back to the problem mentioned in the introduction. Alice has selected k dis- 
tinct primes P I ,  p 2 ,  . . . , p t  and she has formed their product m = pp, . . . p k .  She wishes to con- 
vince Bob that m is indeed the product of exactly k distinct primes. Let 1 be the number of bits in m. 

Each factor will be considered as a length 1 binary string, with leading zeroes if needed. As a first 
step, Alice encrypts each of the factors and she discloses these encryptions to Bob. The string ine- 
quality protocol is used to convince Bob that the factors are all distinct and that none of them is 
equal to 1. She then guides Bob through the simulation of a Boolean circuit for iterated multiplica- 
tion. This produces the encryption of a length kl bit string, which Alice opens to show that it 
encrypts (k - l ) f  zeroes followed by the binary representation of m. 

At this point, Alice still has to convince Bob that each of these factors is a prime. If she had a 
proof of this, she could encode it as the input to a proof verification Boolean circuit and guide Bob 
through its evaluation. Recall, however, that her conviction that each of the pi is prime comes from 
her own running of a probabilistic primality test. None of these runs can be considered as convincing 
by Bob because he cannot t rust  that Alice was honest in her coin tosses. 

This is where. our technique is most powerful. Consider a Boolean circuit with two I-bit inputs p 
and c that outputs 1 if and only if c is a certificate that p is composite (where primes have no 
certificates and composites have lots m, S S ] ) .  Recall that Bob was given by Alice an encryption of 
each bit of each p i .  With the help of Alice, he can run as many randomly chosen c’s as he wishes 
into the circuit for each pi and ask her to open the circuit outcomes. If he ever gets a 1, he will know 
for sure that the corresponding pi is composite and that Alice had been cheating (or perhaps that 

To save on the number of communications rounds, the various operators can be processed in p d l e l .  
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Alice was honest after all, and that she just discovered with him that this pi is composite!). Other- 
wise, since he has complete control over the c’s, he can convince himself, with any level of 
confidence, that m is the product of exactly k distinct primes. This protocol can be adapted if Alice 
wished instead to convince Bob that there are exactly k distinct primes in the factorization of m, 
regardless of their multiplicities. A more practical variation allows Alice to convince Bob that 
the prime factors of n have interesting properties, such as being of the form 2 ~ 1 ,  where 4 is 
also a prime. 

8. THE GENERAL PROTOCOL 

Recall that BPP stands for the class of decision problems that can be solved in probabilistic 
polynomial time with bounded error probability [GI. It is reasonable to consider BPP as the real 
class of tractable problems (rather than P) because the error probability can always be decreased 
below any E > 0 by repeating the algorithm clog&-’ times and taking the majority answer, where c 

depends only on the original error probability. It is generally believed that there is no inclusion rela- 
tion either way between NP and BPP: non-determinism and randomness seem to be incomparable 
powers. These powers can be combined in several ways. We believe the most natural to be Babai’s 
class MA [Ba], which we would rather call RNP as random NP. This class is such that 
NP u BPP C RNP, hence NP is almost certainly a strict subset of RNP. For a discussion as to why 
we favour MA over the seemingly more powerful AM or interactive proof systems [GMR], please 
consult [BC]. 

Definition. Let Z stand for (0,l). A decision problem X 
only if there exists a predicate A 

Z* belongs to RNP if and * *  I: x Z and a polynomial p(n)  such that 
(i) A E BPP, and 
(ii) (Vx E Z*)[x E X e (3a E Z*)[jal = p(bl) and or,& E A ] ]  

(such an a is refered to as an argument for x) .  0 

Notice that this would correspond to the polynomial hierarchy characterization of NP had we insisted 
that A E P. The restriction [a1 = p(bl )  instead of the usual la1 2 p(b \ )  is there for a technical reason. 
Notice also that X E NP whenever A E NP. 

Intuitively, X E RNP means that whenever x E X, there is a (possibly hard to find) short ugu- 
ment for this, and that the validity of this argument can be checked probabilistically in polynomial 
time. We are about to prove that i f X  E RNP, if the proof that X E RNP is in the public domain, and 
if Alice knows an argument a for some x E X, she can convince Bob with a ZKIP that x E X. As a 
warm UP, let us first restrict ourselves to one-sided probabilistic algorithms. 

Recall that RP (sometimes refered to as R) is the class of decision problems that can be solved 
in polynomial time by a one-sided bounded error probabilistic algorithm [A]. Here, each time the 
probabilistic algorithm is run on a yes-instance, it accepts with probability at least %, whereas it 
always rejects neinstances. It is well known that RP E NP n BPP and that co-RP C BPP, but 
co-RP and NP are probably incomparable. Whenever x is a yes-instance of a co-RP problem, one 
can convince himherself that this is SO (by repeating the algorithm), but there does not have to exist 
a succinct proof of this. 
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Theorem (under QRA). Consider a problem X E R h T  such that the corresponding A 
(refer to the definition of RNP) belongs to co-RP. Assume that the characterization A for X 
and a co-RP algorithm for A are in the public domain. Let Alice have an argument a for 
some x E X. Although she may not have a definite proof that x E X, she convinced herself 
probabilistically that c x e  E A, hence x E X. It is then possible for Alice to convince Bob 
in polynomial time that x E X without disclosing any additional information. 

Proof (sketch). Alice and Bob agree on a probabilistic one-sided Boolean circuit for the 
complement of A. (That is : on any yes-instance of A, using any random choices, the circuit 
outputs a 0 ; on any neinstance of A ,  the circuit outputs a 1 for at least 50% of the random 
choices.) Alice gives Bob an encryption for each bit of x ,  and she opens them to show that 
they encrypt x. Alice also gives Bob an encryption for each bit of a, but she keeps a itself 
secret. She then guides Bob through the evaluation of the Boolean circuit on input -,a>, 

using Bob's coin tosses, until the encrypted outcome is obtained. She then opens this out- 
come to Bob, who can ascertain that it is indeed a 0. This process is repeated until Bob is 
convinced that e,a> E A ,  hence that x E X. Clearly, this gives Bob no information on a 
(except for its mere existence and Alice's knowledge of it) because the only possible out- 
come for the Boolean circuit is 0, provided Alice was not trying to cheat. Bob does not 
even leam the length of a because it had to be exactly p(bl) by definition of RNP. 

The above protocol does not work directly for X E RNP in general, because it would not 
be zero-knowledge. Indeed, Bob would gain information on Alice's argument a from know- 
ledge of which random choices made the circuit accept o c p  and which made it reject, or even 
merely from knowledge of the number of each of these occurrences. (Recall that if A E BPP 
but A @ R P  LJ co-RP, the probabilistic Boolean test circuit for A is expected to output sometimes 0 
and sometimes 1 on the same input; the most frequent answer being correct with high probability.) 
Two ideas are needed to solve this difficulty: 

Alice and Bob agree in advance on the number of runs they wish to carry through the test 
circuit (depending on the error probability they are willing to tolerate). At the end of each 
run, Alice no longer opens the outcome. After all the runs are completed, Alice guides 
Bob through the evaluation of a majority Boolean circuit, using the previously obtained 
encrypted outcomes as input. It is only the resulting majority bit that Alice finally opens 
for Bob. 

Even if Alice is honest, the above idea leaves the door open for Bob to cheat: it could be 
that the circuit outcome is not what she expected because Bob had deliberately chosen the 
"random" coin tosses to make this occurrence 50% likely. Assuming Alice's good faith, 
this could yield up to one bit of information to Bob about the argument a, which is 
intolerable. Alice would be almost certain that Bob cheated, but it would be too late by 
then. In order to prevent this possibility, it is essential that all coins be tossed SO that nei- 
ther Alice nor Bob can influence the outcome, and such that Bob does not get to see the 
outcome (i.e. : coin tossing in a well). Fortunately, such a protocol is very simple : to toss 
a coin, Alice gives Bob a randomly chosen element of 2:[+1] and Bob tells her whether 
to multiply it or not by the standard y E QNR,[+I]. 
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Main Theorem (under QRA). Consider any X E RNP and some x E X for which Alice 
knows an argument u. Assume the proof that X E RNP is in the public domain4. Even 
though Alice may not have a definite proof that x E X, she convinced herself probabilisti- 
cally that -,a> E A, hence x E X. It is possible for Alice to convince Bob in polynomial 
time that x E X  and that she knows some argument for this without disclosing any addi- 
tional information. 

Proof (sketch). By the above discussion. 

Let us stress again that this protocol is interesting even when A E NP, hence X E NT (as in sec- 
tion 7 because PRIMES E NP), despite the reduction to SAT in these cases. This is so because Alice 
could know the argument a for x as a result of her choosing u in the first place (as trap-door informa- 
tion) and producing x from it. She might not, however, have an accepting computation for -,a>, 
even though A E NP. She can nonetheless make use of OUI protocol. In other words, it does not 
require Alice to have more computing power than Bob or to have access to some NP-complete om- 
cle. As long as she can convince herself with the help of her own trap-door, she can convince 
Bob as well without compromising the trapdoor. 

9. OTHER EXAMPLES OF ZKTp’s 

Our basic technique can be used in various situations. Let us briefly mention a few of them. 
It allows Alice to convince Bob of the quadratic residuosity of a member of e[+l] chosen by Bob 
without yielding additional information, in a way much simpler than those of [GMR, GHY]. I t  also 
allows Alice to convince Bob that an encrypted function is a permutation (see below). More gen- 
erally, all these building blocks can be used directly to obtain ej‘icient ZKIP ’s  for a variety of 
NP-complete problems such as Hamiltonian circuit, clique, knapsack, graph 3-colouing, etc. 

Quadratic Residumity Protocol: Bob shows some z E e[+l] to Alice and she is willing 
to convince him of whether it is a quadratic residue or not Assume initially that z E QR,. 
Alice uses her knowledge of the factors of n to compute some x E such that 
z = x2 mod n. Because z was chosen by Bob, it would be far from a ZKIP if Alice 
revealed x to Bob as proof (it could give Bob a 50% chance of factoring Alice’s master 
secret n). Instead, Alice randomly generates some u E Zz. She then computes and dis- 
closes w = uz mod n. At this point, Bob sends either challenge A or challenge B to Alice. 

If Bob sent challenge A, Alice must disclose u so that Bob can check that 
w = u2 mod n, hence that w is a quadratic residue. 

If Bob sent challenge B, Alice must disclose ux mod n so that Bob can check that 
(m)’ a wz (mod n), hence that w has the same quadratic character as z .  

This process is repeated s times for some safety parmeter s agreed upon between Alice 
and Bob. The protocol is very similar if z 4 QR, but it requires that some standard 
y E QNR,[+l] has already been proven once and for all. Thus, the protocol of [GMR] must 

0 be used the very frrsr time in order to make ours effective. 

i.e. : the predicate A and the BPP algorithm for A are already known to Bob 
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A similar protocol is independently given in [Be] ; its essence was already in [CF]. Notice also 
that our protocol would not work for quadratic non-residuosity if n had more than two distinct prime 
factors, whereas the protocol of [GMR] could still be used. 

Finally, here is the permutation problem. Let m be some integer agreed upon between Alice and 
Bob. Let G be a permutation of {1,2, . . . , m} randomly and secfftly chosen by Alice. This pennu- 
tation can be naturally represented by a table of mk bits, where k = pogzml. Alice discloses to Bob 
an encryption for each of these bits, so that it will not be possible for her to change her originally 
chosen permutation. At this point, Bob would like to be convinced that he was given the encryption 
of a permutation, not just of any function from (1, 2, . . . , m }  to { I , &  - . . ,2’L). No doubt the 
reader has seen our technique used enough times by now to design hisker own ZKIP. This problem 
has applications if one wishes to keep an electronic poker face [Cr], and its solution is central to the 
above mentioned efficient ZKIP’s for Hamiltonian circuit, clique, knapsack, etc. 

10. OPEN PROBLEM 

Can Bob compute encryptions of arbitrary Boolean functions of encrypted Boolean inputs 
withour the help of Alice ? For instance, given encryptions for the bits b, and b2 ,  can he compute an 
encryption for (b, and b2) ? If so, this might allow a dramatic improvement in our protocols, includ- 
ing the possibility of publishing ZKIP’s (an idea originally investigated by Manuel Blum). 
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