
1 BC with equality

1.1 Comparing equality of two committed inputs

Example 1.1 bit commitment based on GNI.

GNI : (G1, G2) ∈ GNI

P V
ZK((G1,G2)∈GNI)

>

commit(b1),

G ≈ Gb1

G >

commit(b2),

G′ ≈ Gb2

G′

>
G=π(G′)

>

if G = π(G′) then accept b1 = b2.

Example 1.2 bit commitment based on QNR.

y ∈ QNRn[+1]

P V
ZK(y∈QNRn[+1])

>

commit(b1),

z1 ≡ yb1 ∗ r2 mod n,

r ∈R Z∗

n,
z1 >

commit(b2),

z2 ≡ yb2 ∗ r′2 mod n,

r′ ∈R Z∗

n,
z2 >

v:=rr′yb1

>

if z1z2 = v2 then accept b1 = b2.
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To prove b1 6= b2 P sends
√

yz1z2.

1.2 Computation on boolean circuits using committed

inputs

We shall use the previous two examples to do computations on boolean cir-
cuits. Prover commits to three bits: b1, b2, b3 ∈ {0, 1}, s.t. B: b1 ∧ b2 = b3.
There are only four possible situations of B (see Table T), i.e. B (three bits)
must belong to one of the following situation Tj (three bits).

Table T

T1 : 0 ∧ 0 = 0

T2 : 0 ∧ 1 = 0

T3 : 1 ∧ 0 = 0

T4 : 1 ∧ 1 = 1

We design the protocol by using the ”Cut and Choose” technique in order
to prove that B ∈ T . P permutes the Table T then commit to (π(T )) to V.

P V
commit(π(T ))

>

c ∈R {0, 1},
< c

if c = 0,
π, unveil(π(T ))

>

if c = 1,
ZK(B=Ti) >

Note:
1. π is a permutation of Table T.
2. Using example 1.1, P can show to V that the three committed bits B:

b1, b2 and b3 are equal to the three committed bits of Ti respectly.

If b1 ∧ b2 = b3, Pr[accept]=1,
If b1 ∧ b2 6= b3, Pr[accept]≤ 1/2k, where k=# of rounds.
We can use this method for any logical gate: ∧,∨,−,⊕.
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1.3 Rudich’s Trick

Now we are going to talk about a general way to obtain a bit commitment
where we can prove equality based on any bit commitment. Here “Rudich’s
Trick” is the way to show two committed bits are equal.

Suppose b = b′, where b, b′ ∈ {0, 1}, let ui, xi be random bits and vi, yi be
defined according to ui ⊕ vi = b, xi ⊕ yi = b′, i = 1, · · ·2n. We shall use 4n
committed bits to commit one bit.

Alice Bob

commit(b) : commit(b′) :

α1 : C(u1), C(v1) C(x1), C(y1) : β1

α2 : C(u2), C(v2) C(x2), C(y2) : β2

...
...

α2n : C(u2n), C(v2n) C(x2n), C(y2n) : β2n

where αi and βi are two committed bits and C denotes commit.

• Bob imposes two random permutations πα, πβ to Alice who permutes
αi using πα and βi using πβ.

C(u9), C(v9) C(x2), C(y2)

C(un), C(vn) C(x7), C(y7)
...

...

C(u3), C(v3) C(x6), C(y6)
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• Regardless of b, ui, xi and vi, yi are either identical or opposite. Alice
will claim for the first half of the lines whether they are “=” or “ 6=”.

C(u9), C(v9) = C(x2), C(y2)

C(un), C(vn) 6= C(x7), C(y7)
...

...

C(u41), C(v41) = C(x63), C(y63)

C(u99), C(v99) C(xn−9), C(yn−9)

C(u2n), C(v2n) C(x55), C(y55)
...

...

C(u3), C(v3) C(x6), C(y6)

for example:

b = b′ = 0 b = b′ = 1

0 ⊕ 0 = 0 ⊕ 0 : ui = xi, vi = yi, 0 ⊕ 1 = 0 ⊕ 1 : ui = xi, vi = yi,

0 ⊕ 0 = 1 ⊕ 1 : ui 6= xi, vi 6= yi, 1 ⊕ 0 = 0 ⊕ 1 : ui 6= xi, vi 6= yi.

• For each line Bob randomly chooses to see the both left sides or both
right sides, but not both sides, then Alice unveils them to Bob.

C(u9), U(v9) = C(x2), U(y2)

U(un), C(vn) 6= U(x7), C(y7)
...

...

C(u41), U(v41) = C(x63), U(y63)

C(u99), C(v99) C(xn−9), C(yn−9)

C(u2n), C(v2n) C(x55), C(y55)
...

...

C(u3), C(v3) C(x6), C(y6)

where U denotes unveil.
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If Alice wants to cheat, suppose b=1, b’=0 and Alice cliams that αi = βi,
for example:

b = 1 b′ = 0

αi : 0 ⊕ 1 = 1 ⊕ 1 : βi

With 1/2 probability, Bob will request to see the left sides and Alice
unveils to him that (ui = 0) 6= (xi = 1), then Bob rejects.

With 1/2 probability, Bob will request to see the right sides and Alice
unveils to him that vi = 1 = yi, then Bob accepts. So if b 6= b′, 1/2 probability
Bob will be cheated.

Therefore,
If b=b’, Pr[accept]=1,
If b 6= b′, Pr[accept]≤ (1/2)n, at each line, if b 6= b′, regardless of Alice’s

answer, the probability Bob finds out that Alice is cheating is 1/2.
After a test is conclusive, Alice can construct a new valid commitment to

represent both b and b′ using the untouched commitments:

commit(b, b′) :

C(u99), C(v99)

C(u2n), C(v2n)
...

C(u3), C(v3)

C(xn−9), C(yn−9)

C(x55), C(y55)
...

C(x6), C(y6)
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