
SIAM J. COMPUT.
Vol. 18, No. 4, pp. 711-739, August 1989

(C) 1989 Society for Industrial and Applied Mathematics

0O6

MINIMUM-KNOWLEDGE INTERACTIVE PROOFS
FOR DECISION PROBLEMS*

ZVI GALIL’?, STUART HABER$, AND MOTI YUNG

Abstract. Interactive communication of knowledge from the point of view of resource-bounded compu-
tational complexity is studied. Extending the work of Goldwasser, Micali, and Rackoff [Proc. 17th Annual
ACM Symposium on the Theory of Computing, 1985, pp. 291-304; SIAM J. Comput., 18 (1989), pp. 186-208],
the authors define a protocol transferring the result of any fixed computation to be minimum-knowledge if
it communicates no additional knowledge to the recipient besides the intended computational result. It is
proved that such protocols may be combined in a natural way so as to build more complex protocols.

A protocol is introduced for two parties, a prover and a verifier, with the following properties:
(1) Following the protocol, the prover gives to the verifier a proof of the value, 0 or 1, of a particular

Boolean predicate, which is (assumed to be) hard for the verifier to compute. Such a deciding
"interactive proof-system" extends the interactive proof-systems of [op. cit.], which are used only
to confirm that a certain predicate has value 1.

(2) The protocol is minimum-knowledge.
(3) The protocol is result-indistinguishable: an eavesdropper, overhearing an execution of the protocol,

does not learn the value of the predicate that is proved.
The value of the predicate is a cryptographically secure bit, shared by the two parties to the protocol.

This security is achieved without the use of encryption functions, all messages being sent in the clear. These
properties enable one to define a cryptosystem in which each user receives exactly the knowledge he is
supposed to receive, and nothing more.

Key words, zero knowledge, interactive proof systems, minimum knowledge cryptographic protocols,
cryptography, security, probabilistic computations, factoring, quadratic residuosity, number theory

AMS(MOS) subject classifications. 11Z50, 68Q99, 94A60

1. Introduction. Transfer and exchange of knowledge is the basic task of any
communication system. Recently, much attention has been given to the process of
knowledge exchange in the context of distributed systems and cryptosystems. In
particular, several authors have concentrated on problems associated with the inter-
active communication of proofs [17], [1], [24].

In [17] Goldwasser, Micali, and Rackoff developed a computational-complexity
approach to the theory of knowledge: a message is said to convey knowledge if it
contains information that is the result of a computation that is intractable for the
receiver. They introduce the notion of an interactive proof-system for a language L.
This is a protocol for two interacting probabilistic Turing machines, whereby one of
them, the prover, proves to the other, the verifier, that an input string x is in fact (with

Received by the editors October 17, 1986; accepted for publication (in revised form) October 10,
1988. A preliminary version of the paper appeared as A Private Interactive Test of a Boolean Predicate and
Minimum Knowledge Public-Key Cryptosystems, Proceedings of the 26th Annual IEEE Symposium on the
Foundations of Computer Science, 1985, pp. 360-371. Most of this work was done while all three authors
were at Columbia University, New York, New York 10027.

Editor’s Note. This paper was originally scheduled to appear in the February 1988 Special Issue on

Cryptography (SIAM J. Comput., 17 (1988)).
? Department of Computer Science, Columbia University, New York, New York 10027, and Department

of Computer Science, Tel Aviv University, Tel Aviv, Israel.
t: Bell Communications Research, Morristown, New Jersey 07960.
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598.
The work of these authors was supported in part by National Science Foundation grants MCS-8303139

and DCR-851173.
The work of this author was supported in part by an IBM graduate fellowship.

711

712 ZVI GALIL, STUART HABER, AND MOTI YUNG

very high probability) an element of L. The verifier is limited to tractable (i.e.,
probabilistic polynomial-time) computations. We do not limit the computational power
of the prover; in the cryptographic context, the prover may possess some secret
information--for example, the factorization of a certain integer N. (This is analogous
to the following model of a "proof-system" for a language L in NP: given an instance
x L, an NP prover computes a string y and sends it to a deterministic polynomial-time
verifier, which uses y to check that indeed x L.)

Goldwasser, Micali, and Rackoff called an interactive proof-system for L zero-
knowledge if it releases no additional knowledge--that is, nothing more than the one
bit of knowledge given by the assertion that x L 17]. Extending their definition, we
consider all two-party protocols for the purpose of transferring from one party to the
other the result of a specified computation--y =f(x), say--depending on the input x,
and call any such protocol minimum-knowledge if it releases nothing more than the
assertion that y =f(x). Naturally, such interactive protocols are of particular interest
in a cryptographic setting where distrustful users with unequal computing power
communicate with each other.

After giving our definition of minimum-knowledge protocols, we prove that the
concatenation of two minimum-knowledge protocols is minimum-knowledge. This
suggests the importance of the minimum-knowledge property for the modular design
of complex protocols. In fact, it is by serially composing several minimum-knowledge
subprotocols that we formulate the more complex minimum-knowledge protocol that
we introduce in this paper.

In this paper we extend the ability of interactive proof-system protocols from
confirming that a given string x is in a language L to deciding whether x L or x L.
That is, we give the first (nontrivial) example of a language L so that both L and its
complement have minimum-knowledge interactive proof-systems for confirming mem-
bership, where both the proof of membership in L and the proof of nonmembership
in L are by means of the same protocol, which releases no more knowledge than the
value of the membership bit (x L).

Furthermore, by following the protocol, the prover demonstrates to the verifier
either that x L or that x L in such a way that the two cases are indistinguishable
to an eavesdropping third party that is limited to feasible computations. In fact, the
protocol releases no knowledge at all to such an eavesdropper. As usual, we assume
that the eavesdropper knows both the prover’s and the verifier’s algorithms, and we
allow him access to all messages passed during an execution of the protocol. In spite
of the fact that our protocol makes no use of encryption functions, the eavesdropper
receives no knowledge about whether he has just witnessed an interactive proof of the
assertion that x L or of the assertion that x L. We call this property of our protocol
result-indistinguishability.

The proof that our protocol is minimum-knowledge with respect to the verifier
and result-indistinguishable with respect to the eavesdropper relies on no unproved
assumptions about the complexity of a number-theoretic problem.

The work of [17], [1], [24] concentrates on the knowledge transmitted by a prover
to an active verifier. Introducing a third party to the scenario, we analyze the knowledge
gained both by an active verifier and by a passive eavesdropper.

If membership or nonmembership in L is an intractable computation, then a

result-indistinguishable minimum-knowledge proof-system for L can be used as a tool
in building a cryptographic system. After an execution of our protocol, the string x
can serve as a cryptographically secure encoding--shared only by the prover and the
verifier--of the membership-bit (x L). The use of x as an encoding of the membership-

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 713

bit exemplifies what we may call "minimum-knowledge cryptography": it is a prob-
abilistic encryption with the property that neither its specification (i.e., the interactive
proof of the value encoded by x) nor its further use in communication can release
any compromising knowledge, either to the verifier or to an eavesdropper. The
minimum-knowledge property ensures that each party receives exactly the knowledge
he is supposed to receive and nothing more. A cryptosystem based on such a minimum-
knowledge protocol has the strongest security against passive attack that we could
hopeto prove; in particular, it is secure againstbothchosen-messageandchosen-ciphertext
attack.

The predicate that our protocol tests is that of being a quadratic residue or
nonresidue modulo N for a certain number N (whose factorization may be the prover’s
secret information). We note that the language for which we show membership and
nonmembership is in NP f3 co-NP. A conventional membership proof for these
languages releases the factorization of N, while in the interactive proof-system presented
below no extra knowledge (about the factorization or about anything else) is given
either to the verifier or to an eavesdropper.

An important motivation in our work on this protocol comes from our desire to
guarantee the security of cryptographic keys, especially in situations where the genera-
tion of new keys is very costly or is otherwise limited by the context. If the integer N
is the prover’s public key in a public-key cryptosystem, then N is not compromised
by polynomially many executions of our protocol; a polynomially bounded opponent
knows no more after witnessing or participating in these executions than he knew
before the key was used at all.

2. Preliminaries.
2.1. Interactive Turing machines. We specify the model for which we describe our

protocol; this is an extension of the model used in [17]. Two probabilistic Turing
machines A and B form an interactive pair of Turing machines if they share a read-only
input tape and a pair of communication tapes; one of the communication tapes is
exclusive-write for A, while the other is exclusive-write for B. (The writing heads are
unidirectional; once a symbol has been written on a communication tape, it cannot
be erased.) We model each machine’s probabilistic nature by providing it with a
read-only random tape with a unidirectional read-head; the machine "flips a coin" by
reading the next bit from its random tape. The two machines take turns being active.
While it is active, a machine can read the communication tapes, perform computation
using its own work tape and consulting its random tape, and send a message to the
other machine by writing the message on its exclusive-write communication tape. In
addition, B has a private output tape; whatever is written on this tape when A and B
halt is the result of their computation.

In order to model the fact that the system is not memory-less, we also assume
that each machine has a history tape, with a unidirectional write-head, on which the
following records are automatically written:

When the machine flips a coin, the bit it reads from its random tape is recorded
on its history tape.
At the beginning of each active turn, when the machine reads a new message
from the other machine’s exclusive-write communication tape, it records this
message on its history tape.
At the end of each active turn, when the machine writes a message to the other
machine on its own exclusive-write communication tape, it records this message
on its history tape.

714 ZVl GALIL, STUART HABER, AND MOTI YUNG

The result written on B’s output tape is also recorded on B’s history tape.
These records are written on the history tape sequentially in order according to the
machine’s computation; for example, when the machine flips a coin several times
while computing its next message, these random bits are recorded on the history
tape immediately before the message. The input tape and communication tapes are
public, or shared by the two machines; each machine’s random tape, history tape,
and work tape are private, as is B’s output tape. This is not the only way to model the
situation we would like to describe, and some of the records written on the history
tape are redundant, but without loss of generality we may assume this mode of
operation.

When A and B begin their computation, an infinite bit-string is written on each
of their random tapes. The choice of these two bit-strings, independently and uniformly
at random from the set of all infinite strings, defines a probability measure on the set
of possible computation histories of (A, B) that begin in any particular configuration.

For any strings x, h we say that the interactive pair of Turing machines (A, B)
begins its computation with input x and B’s initial history h if in their initial configuration
x is written on the common input tape and h is the written portion of B’s history tape.
(Throughout this paper, we are not concerned with the contents of A’s history tape.)
We use (A, B)[x, h] to denote the set of computations that begin in this configuration.
In each of the protocols that we present in this paper, B never consults its history tape.
However, in discussing the properties of these protocols, we must be concerned with
an arbitrary Turing machine that may take the role of B in an interaction with A, and
that may make use of its history tape.

In what follows, B is limited to expected running time that is polynomial in the
length of the common input x, while we make no limiting assumption about A’s
computational resources. (For cryptographic applications, A is also limited to feasible
computation but possesses some trapdoor information.) Their messages to each other
are in cleartext, though these messages may depend on their private coin flips, which
remain hidden. We assume that both the length of B’s initial history, as well as the
total length of the messages written on the two communication tapes, are polynomial
in Ix]. For any input string x, we introduce the notation Hx={h}h{O, 1}*,]hi=
O(]x](l))} for the set of associated initial histories that we allow.

Our scenario also includes a third probabilistic Turing machine, C, limited to

expected polynomial-time computation, that can read the input and communication
tapes of A and B and knows their algorithms. A is the prover, B is the verifier, and C
is the eavesdropper.

2.2. Ensembles of strings. In order to speak precisely of the knowledge transmitted
by communicated messages, we need the following definitions [17], [27], [6]. Let
I
_

{0, 1}* be an infinite set of strings, and for each x 1, let r[x] be a probability
distribution on a set of bit-strings. We call II {[x]]x I} an ensemble of strings
(usually suppressing any mention of 1).

For example, if M is a probabilistic Turing machine, then any input string x
defines a probability distribution, according to the coin-tosses (i.e., the random tape)
of M’s computation, on the set M[x] of possible outputs of M on input x. Thus, for
any I, {Mix]Ix e I} is an ensemble.

As a second example, suppose that (A, B) is an interactive pair of Turing machines.
For any strings x, h, let VIEWR{(A, B)[x, h]} denote the set of private "histories" that
may be written on B’s history tape during a computation that begins with input x and
B’s initial history h; each of these is B’s private view of the protocol execution. This

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 715

set has a natural probability distribution according to the random tapes of A and B.
Thus, for any set I, { VIEW{(A, B)[x, h]}lx I, h Hx} is an ensemble of strings.

As another example, for any string x let COM{(A, B)[x]} denote the set of possible
ordered sequences of messages written on the communication tapes of A and B during
a computation that begins with input x. Each of these is the public view, and in
particular that of the eavesdropper C, of a protocol execution of A and B. This set
also has a natural probability distribution. (We assume that the specified computations
do not make use of previous private or public history.) Thus, for any set /,
{COM{(A,B)[x]}Ix I} is an ensemble of strings that we call the communications
ensemble produced by the interactive system (A, B).

A distinguisher is a family D {Dxlx I} of circuits with a single Boolean output;
we assume that there is a constant c so that circuit Dx has Ixl input gates and one
output gate. D is polynomial-size if there is a constant d so that Dx has at most]xl d
nodes. Suppose that 1-I {r[x] Ix I} and 11’= {r’[x] Ix I} are ensembles of strings,
and that D is a distinguisher (all with respect to the same constant c). Let p(r[x])
be the probability that D, outputs a when it is given as input a single sample string
of length [xl c, randomly selected according to probability distribution r(x); and let
pD(r’[X]), depending on the distribution ’[x], be defined similarly. We call the two
ensembles (computationally) indistinguishable if for any polynomial-size distinguisher
D, for all n and sufficiently long x,

Ip,)([x])-p,)(’[x])l <]xl -".

This condition holds, of course, if the two ensembles are exactly identical. In this case,
for any distinguisher D the difference]pD(r[X])--pD(r’[X])[is equal to zero.

Let r and r’ be two probability distributions on strings, and suppose that the
number 3 satisfies 0 =< =< 1. We say that approximates r’with error probability if

2 IProb (r[x] s)-prob (r’[x] s) _-< 6

(where the sum is taken over all strings s in {0, 1}*). This implies that the difference
IpD(r[x])-p)(r’[x])l<=(3 for any distinguisher D, even if the definition of "distin-
guisher" is relaxed to allow as inputs to D, a set of many samples randomly chosen
either according to r[x] or according to r’[x].

2.3. Interactive proof-systems and transfer protocols. This paper is mainly devoted
to a special sort of two-party protocol, that of interactively proving or disproving
membership in a language L. A protocol that achieves this is called an interactive
proof-system for L [17]. The prover A and the verifier B share a common input x, the
string whose membership is in question. We assume that x belongs to a fixed set I,
I_ L, of input strings for (A, B). Depending on k Ixl, the length of the (binary)
representation of the input string, we allow an error probability 6(k) that vanishes
with increasing k. (In fact, all of the examples in this paper satisfy the stronger
requirement of an error probability that is exponentially vanishing in k.)

Extending the definition of 17], we distinguish between a confirming proof-system
for L, whose purpose is that the verifier confirm membership in L for the input string,
and a deciding proof-system for L, whose purpose is that the verifier decide whether
or not the input string is in L. At the end of a confirming protocol, the verifier may
either accept the proof that x L, or reject the proof; at the end of a deciding protocol,
the verifier may either accept a proof that x L, or accept a proof that x L, or reject
the proof. The execution ends normally when all of B’s messages appear as if B is

716 ZVI GALIL, STUART HABER, AND MOTI YUNG

following the protocol; if this is so, then A ends the execution in a success state. A
may halt the execution of the protocol if it detects that B is not following the protocol,
ending the execution in a failure state.

For any input string x, let k Ixl. We say that (A, B)k is a confirming interactive
proof-system for L with inputs I and error probability 6(k) if:

(1) For any x L given as input to (A, B), B accepts the proof with probability
at least 6(k).

(2) For any interactive Turing machine A*, and for any x I-L given as input
to (A*, B), B accepts the proof with probability at most 6(k).

We say that (A, B) is a deciding interactive proof-system for L with inputs ! and error
probability (k) if:

(1) For any x I given as input to (A, B), B accepts the proof, halting with the
correct value of the predicate (x L) on its output tape, with probability at
least 6(k).

(2) For any interactive Turing machine A*, and for any x I given as input to
(A*, B), B accepts a proof of the incorrect value of the predicate (x L) with
probability at most 3(k).

As part of the definition, we require that these conditions should hold independently
of the choice of the initial-history string (of length polynomial in k) that may be written
on B’s history tape at the beginning of the computation.

In the first definition, we require that (with high probability) B correctly accept
the proof for strings x L, and that no cheating adversary, no matter how powerful,
can convince B incorrectly to accept the proof for strings x L (except with vanishingly
small probability). In the second definition, we require that (with high probability),
given any input string x /, B correctly decide whether x L or x L, and that no
adversary can convince B to accept an incorrect proof (except with vanishingly small
probability). The probability is taken over all sequences of coin-tosses (i.e., over all
possible random-tape bit-strings) used by the probabilistic computations of the two
Turing machines.

The two definitions above describe correctness for protocols that transfer to B the
computed value of a Boolean predicate that supplies one bit of "knowledge" about
the input string. We can also study a more general sort of transfer protocol whose
purpose is to transfer the result F(x) of any specified computation depending on the
input string x. For example, a deciding interactive proof-system for the language L is
a transfer protocol for the function F(x) taking the value 1 or 0 according to whether
or not x L. Because the interacting machines are probabilistic, the intended result
may take values in a probability distribution whose value F(x, r) depends on x as well
as on a random input string r. As in the case of an interactive proof-system, B may
either accept or reject an execution of an interaction with another Turing machine. We
say that a given protocol (A, B) is correct for a specified probability distribution of
outputs if B’s computed result, when it interacts with A, has the intended distribution
(with very high probability), and no machine A*, no matter how powerful, can bias
the distribution of B’s outputs (except with vanishingly small probability).

In order to define "correctness" more precisely, we observe that the computations
of any interactive pair of Turing machines (A, B) determine a partial function fA, as
follows. Given strings x, rA, and rB, we define fA,l(X, rA, r) to be the result written
on B’s output tape at the end of an accepting computation of (A, B) that begins with
input x, when their random-tape strings begin with rA and r (respectively); this value
is well-defined, as long as rA and rB are sufficiently long. Notice that the choice of rA
and ru defines a probability distribution fA,(X, ",").

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 717

We say that (A, B) is a correct transfer protocol for the probability distribution
F(x, r), with inputs I and error probability 3(.), if:

(1) For each x e I, the distribution fA,u(X, "," of B’s computed outputs approxi-
mates, with error probability a(Ixl), the distribution F(x, of intended results.

(2) Let A* be any interactive Turing machine. We require that for any x e I and
for any s e {0, 1}*, the probability that B accepts the computation of (A*, B)
on input x and writes out the string s as its output is bounded by the quantity
prob (F(x,.)= s)+

Note that, according to the second part of this definition, it may be possible for a
malicious adversary A* to bias the distribution of the set of conversations of (i.e., the
set of sequences of messages exchanged by) A* and B on a particular input string x.
But A* cannot significantly increase the probability that any given result string is
accepted by B; in particular, A* cannot force B to accept an erroneous result (one
that occurs with probability zero in the distribution F(x,.)) except with probability
a(Ixl).

Observe that the probability threshold occurs twice in the above definition. In
general, there may be protocols for which it makes sense to define correctness with
two different 6’s. In all our examples, the function 6(k) is exponentially vanishing in
k; therefore, for simplicity, we use the same 6 in both places.

3. Knowledge. In the setting of complexity theory, what do we mean by "knowl-
edge"? Informally, a message conveys knowledge if it communicates the result of an
intractable computation. A message that consists of the result of a computation that
we can easily carry out by ourselves does not convey knowledge. In particular, a string
of random bits--or a string of bits that is "indistinguishable" from a random string
(as defined above)--does not convey knowledge, since we can flip coins by ourselves.

3.1. Minimum knowledge. Suppose that (A, B) is a confirming interactive proof-
system for a language L, taking inputs from the set/. Following the definition in [17],
we say that the system (A, B) is minimum-knowledge if, given any expected polynomial-
time probabilistic Turing machine B*, there exists another probabilistic Turing machine
MB*, running in expected polynomial time, such that the ensembles {MB.[x, h]lx
L, h e H,} and VIEW.{(A, B*)[x, h]}]x e L, h e H} are (computationally) indistin-
guishable. If the ensembles are identical, we say that the proof-system is perfectly
minimum-knowledge.

The output of MB., on input x e L and initial history h, is a simulation of B*’s
view of the computation that A and B* would have on the same input and the same
initial history. Note that, in this definition, we are not concerned with inputs that do
not belong to L. When it takes part in a successful execution of the protocol with input
x, B* learns that (with high probability) the predicate of language-membership associ-
ated with the protocol, x e L, is true; however, it gains no more knowledge that this.
Note that in our examples, B (the machine that acts according to the protocol
specifications) does not use its initial history string at all; however, when we worry
about the "knowledge" that a cheating machine B* may try to extract from A we have
to consider the fact that B* can use its history string.

The authors of 17] called a confirming proof-system satisfying the above properties
"zero-knowledge." We now show how to extend this definition so as to be able to say
when a more general sort of protocol--for example, a two-party protocol whose purpose
is to transfer to one of the parties the result of a hard computation--should be called
"minimum-knowledge."

718 ZVI GALIL, STUART HABER, AND MOTI YUNG

Let (A, B) be an interactive pair of Turing machines which constitute a correct
transfer protocol for the probability distribution F(x, r), with inputs I and error
probability 6. We say that (A, B) is minimum-knowledge if, given any expected poly-
nomial-time probabilistic Turing machine B*, there exists another probabilistic Turing
machine Mu., running in expected polynomial time, such that:

(1) M. has one-time access to an F-oracle, as follows. Given any input x and
initial history h, Mu. queries the oracle with input x; the oracle returns a
value distributed according to F(x,.).

(2) The ensembles {M.[x,h]lxI,hHx and {VIEW.{(A,B*)[x,h]}Ix
I, h e Hx} are indistinguishable.

If the ensembles are identical, we say that the proof-system is perfectly minimum-

knowledge.
In order to motivate this definition, we recall that we are trying to formalize the

notion of the amount of knowledge transmitted by a sequence of messages. Speaking
informally, one gains no knowledge from a message which is the result of a feasible
computation that one could just as well have carried out by oneself. If the purpose of
a protocol followed by two interacting parties A and B is that A transmit to B a value
v chosen according to the probability distribution F(x, r), we would like to be able
to say exactly when the protocol transmits no more knowledge than this value. We
might also demand that the protocol accomplish this even if B somehow tries to
cheat--that is, even if the Turing machine B is replaced by another (polynomial-time,
but possibly "cheating") machine B*. The simple transmission of the value v can be
modelled by a single oracle query (with input x). If the provision of this oracle query
makes it possible, by means of a feasible computation, to simulate B*’s view of the
"conversation" that A and B* would have had on input x, then we can say that when
A and B* actually have a conversation (i.e., follow the protocol) with the same input,
there is no additional knowledge transmitted to B* besides the value v.

Note that if F is computable in expected polynomial time, then the F-oracle adds
no power to the machine M.. In this case M. can compute F without the assistance
of A.

In all our examples, the simulating machine Mu. uses the program of B* as a
subprogram or subroutine. This subprogram makes use of the simulator’s input tape
(containing the input string x), a virtual history tape (which is initialized to contain
the given initial history h), a virtual random tape, a virtual work tape, two virtual
communication tapes, and a virtual output tape. Without loss of generality we supply
the probabilistic machine Mu. with two random tapes; one of these is B*’s virtual
random tape. On its output tape--which is also the virtual history tape for the
subprogram B*--the simulator uses the subprogram to write records that correspond
to B*’s view of the simulated protocol execution.

While carrying on its computation, the machine Mu. may back up a few steps in
the simulated protocol and restore a previous machine configuration: It recovers the
old state of B* and the old content of the virtual work tape, and resets both the virtual
read-head of B*’s random tape and the write-head of its own output tape (the virtual
history tape) to where they had been earlier; then it proceeds with its simulation,
starting again from the old configuration but "flipping new coins" in its probabilistic
computation.

The virtual communication tapes are used to simulate the communication activities
of the simulated protocol. The simulator "sends. a message to B* by writing it on
the appropriate virtual communication tape and then activating the subprogram. The
subprogram operates for (the simulation of) one active turn and then writes a message

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 719

on the other virtual communication tape; this is the next message "received" from B*.
Just as in the interaction of B* with A, the simulator’s subprogram B* records random
bits, messages read and written, and the computed result on the virtual history tape.
The operation of the subprogram B* during a simulated active turn, beginning in a
certain state with a certain configuration of the virtual tapes, is identical to the operation
of the interactive Turing machine B* during an active turn, beginning in the same state
with the same configuration of the actual tapes, of an actual protocol execution with
A. This matter of the difference in B*’s operation, either as a subprogram of the
simulator or as a Turing machine interacting with A, is discussed further in the remark
at the end of the next section.

3.2. Concatenation of protocols. Next, we investigate how protocols may be con-
catenated in order to achieve modularity in protocol design and how properties of the
resulting protocol can be derived from the properties of its subprotocols. The protocol
presented in this paper is an example of such a modular design.

We write s. s’ for the concatenation of the two strings s and s’.
Suppose that we are given two protocols P1 (A1, B1) and P2 (A2, B2). We define

the concatenation ofthe two protocols, denoted P P1 P_, to be the following two-stage
protocol: Its first stage is P1. If at the end of this stage A1 is not in a failure state and

B1 has not rejected, the protocol continues with P2; otherwise the protocol halts. We
write A1; A2 and B1; B2 for the interacting machines of the concatenated protocol. At
the end of an execution, the history tape of B1; B2 contains the initial history-string,
followed by Bl’s private view of the execution of P1, followed by Bz’s private view of
the execution of P2.

Assume that P1 and P2 are two transfer protocols for the probability distributions

F1 and F, respectively, both taking inputs from the set /. Then the concatenated
protocol, on input x /, transfers to B1; B2 the combined result [F(x,.), F(x,.)]. As
a special case, suppose that P1 is a confirming interactive proof-system for L1 with
inputs I, and that Pz is a confirming interactive proof-system for L2 with inputs L1.
Then the concatenated protocol is a confirming interactive proof-system for L1 (3 L2,
with inputs /.

It may not be surprising that the concatenation of two correct protocols gives the
correct combined result. The more important observation is that, as we prove below,
the concatenated protocol is minimum-knowledge if P1 and P: are both minimum-
knowledge.

LEMMA. Given two protocols P1 and P as above, with error probabilities 61(k) and
6(k), respectively. Then the concatenation P= P1; P is a correct transfer protocol
for the combined result [Fl(x,), Fz(x,)] with error probability 6(k)=
61 (k) + 62(k) + 61(k) 6(k). Furthermore, if P1 and P2 are both minimum-knowledge
(or, respectively, both perfectly minimum-knowledge), then so is their concatenation.

Proof First we show that correctness of protocols is preserved by concatenation.
It is clear that if the output distribution of (A1, B1) approximates the intended distribu-
tion F1 with error probability 61, and the output of (A2, B) approximates the intended
distribution F2 with error probability 62, then (A, B) approximates [F1, F2] with error
probability at most 61 + 62.

To show that the second correctness condition holds, let x I and let sl, sz be a
pair of possible output strings, occurring with probabilities Pl and p2 in probability
distributions Fl(x," and F:(x,.), respectively. The pair (sl, s2) occurs with probability
PlP2 in the combined result distribution [F(x, .), l::2(X)]. Let us write 61 61(Ixl)
and 6= 6(Ixl). By the correctness of protocols P and P, if A* is any interactive

720 ZVI GALIL, STUART HABER, AND MOTI YUNG

Turing machine that interacts with B B; B2, then the probability that B writes out
(s, s2) is at most

(P q- 6)(P2 q- (2)--pip2+ 1p2 + 2Pl + 362<-P, P2+(6, + 32+ (1 (2),

as required.
Next we show that concatenation maintains the minimum-knowledge property.

Assume that P1 and P are both minimum-knowledge, and let B* be any probabilistic
interactive Turing machine, running in expected polynomial time, that interacts with
A; A2. We may write B*=B*; B2* to denote the two parts of B*’s program. For
convenience, let us write Vl[x, h] VIEWRT{(A, Bl*[X, h]} and V2[x, h]
VIEWR{(A2, Bz*)[x, h]}. Thus, for any input string x and any initial history h, we have
VIEWB.{(A, B*)[x, h]}= {vl" v2lv V[x, h], v2 V2[x, h. vl]}.

To show that the concatenated protocol P is minimum-knowledge we have to
show the existerce of a simulating expected polynomial-time probabilistic Turing
machine M MB. whose output ensemble {M[x, h]Jx I, h Hx} is indistinguishable
from the ensemble { VIEW.{(A, B*)[x, h]}lx I, h Hx}.

Our hypothesis on P1 implies that, given B l*, there is a simulating machine M,
running in expected polynomial time, with access to an F-oracle, so that the ensembles
{Ml[x, h]lx I, h H,} and {Vl[x, h]lx I, h H)} are indistinguishable. Similarly,
our hypothesis on P2 implies that, given B2*, there is a simulating machine M2, running
in expected polynomial time, with access to an F2-0racle, so that the ensembles
{M2[x, h][x I, h H)} and V2[x, h]lx I, h H} are indistinguishable. We specify
M to be the machine that operates as follows, given any input string x I and initial
history h H. First, M runs machine M on (x, h) to produce an output hi. Second,
if h is the simulation of a successful execution of P, then M runs M2 on (x, h) to
produce its final output; otherwise, M simply writes out h.

For any x 1, h Hx we define the sets of strings

E[x, h]= VIEW.{(A, B*)[x, h]}= {vl v21v, V[x, h], v2 V2[x, h" vl]}, and

E2[x, h] M[x, h] {ml" m2lm, Ml[x, h], m2 M2[x, h" ml] }.

(As usual, the choices of the bit-strings that are written on these probabilistic machines’
random tapes define a probability distribution on both of these sets.) We need to show
that the ensembles /l-- {E[x, h]lx I, h H.,} and /2 {E[x, h]]x I, h H} are
indistinguishable. For this purpose, we introduce the intermediate ensemble /3=
{ E3[x, h]1 x I, h H}, where

E3[x, h]= {vl rrt2lvl V[x, h], m2 Me[x, h.

Assurne that E and E are not computationally indistinguishable. Then there is
a polynomial-size distinguisher D {D,hlX I, h H} that distinguishes between the
two ensembles. In other words, in the notation of 2.2, for some n and for infinitely
many pairs (x, h) (with x I, h H.)

Ipt)(E,[x, h])-pl)(E2[x, h])]]x]-".

This implies, by the triangle equality, that at least one of the inequalities

(1)]Pt)(E2fx, h]) PD(EaEX, h 3) --> 1/2lxl-"
(2) Ip)(E[x, h])-p)(E[x, h]) >]x

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 721

holds infinitely often, i.e., that the circuit-family D distinguishes either between E2
and E3 or between E1 and E3 (or both.) We next show that either of these possibilities
leads to a contradiction.

First, we show that if D distinguishes between E and E3 then we can construct
a distinguisher D that distinguishes between the ensembles {Ml[x, h][xe 1, h e
and {V[x, h]lx e I, h e H,}, contradicting the hypothesis that P is minimum-knowl-
edge. Let 11 be the infinite set of pairs (x, h) for which inequality (1) holds. Given as
input a string s, chosen either from M[x, h] or from V[x, h], let C,,,h be the (probabilis-
tic) circuit that does the following: It simulates the operation of M2 on input (x, s)
for a suitable multiple of its expected running time to produce either a string m2 or

(for those few sequences of coin-flips which may cause M2 to run too long) a null
output, then passes h m to the circuit D,,h, which gives its output. Since the simulation
of M is polynomial in length, and D is polynomial-size, the circuit-family C is also
polynomial-size. Inequality (1) shows that for all pairs (x, h)e I, the circuit
distinguishes between M[x, h] and V[x, h]. Therefore, C,. can be converted into a
deterministic polynomial-size circuit (D),., that distinguishes between the same two
sets.

Second, we show that if D distinguishes between E and E3 then we can construct
a distinguisher D that distinguishes between the ensembles {Mz[x, h]lxe I, he Hx}
and Vz[x, h]lxe I, he H,,}, contradicting the hypothesis that P2 is minimum-knowl-
edge. Let I2 be the infinite set of pairs (x, h) for which inequality (2) holds, and
consider the infinite set I= {(x, v)lve V[x, h], (x, h)e I2}. We define (D), to be
the circuit whose output, on input s (chosen either from M2[x, h] or from V[x, h]) is
the output of Dx., on input h.s. Since D is polynomial-size, it is clear that D is
polynomial-size, too. Inequality (2) shows that (Dz),h distinguishes between Mz[x, h]
and V2[x, h] for infinitely many pairs (x, h)--namely, for all pairs (x, v)e I.

We therefore conclude that the concatenated protocol is minimum-knowledge.
Analogous arguments show that the concatenated protocol is perfectly minimum-
knowledge if the same is true of both component protocols.

REMARK. We mention here a special case ofthe above lemma that we use implicitly
throughout the proofs in 5 and 6. Suppose that a protocol (A, B) is given, and
consider a certain point in the protocol execution when A has just sent a message and B
is about to perform its next active turn. Let P be the protocol up to this point, and
let Pz consist just of B’s next active turn. The lemma implies that if P and P are
minimum-knowledge, then so is the given protocol through the end of B’s next turn.
This allows us to specify a machine M. for our proofs below, simply by having the
machine activate a subprogram B* as explained at the end of the previous section: As
long as the subprogram, when activated, has access to a virtual history tape whose
contents are indistinguishable from the history tape of an actual protocol execution
carried on with A, its operation within MB* is identical to its operation during an
actual interaction.

3.3. Result indistinguishability. Next we introduce the eavesdropper C, as
described above. Recall that COM{(A, B)[x]} is the set of possibilities for C’s view
of the computation of A and B on input x. In all our examples of interactive pairs of
Turing machines (A, B), neither machine uses its history tape. Thus, without loss of
generality we can assume that A and B begin their computation with their history tapes
initially empty.

We call an interactive pair of Turing machines (A, B) result-indistinguishable if
an eavesdropper that has access to the communications of A and B on input x gains

722 ZVI GALIL, STUART HABER, AND MOTI YUNG

no knowledge. More precisely, the system (A, B) is result-indistinguishable if there
exists a probabilistic polynomial-time Turing machine M such that the ensembles
{Mix]Ix I} and {COM{(A, B)[x]}lx I} are indistinguishable. If the ensembles are
exactly identical, we say that the proof-system is perfectly result-indistinguishable.

Suppose that (A, B) is a transfer protocol for the probability distribution F(x, r).
Observe that unlike the simulating machine in the definition of the minimum-knowledge
property, this machine M does not have access to an oracle for F. In other words, M
can simulate the communications of A and B on input x, regardless of the value F(x, r)
(even if computing F is intractable). Since this simulation is by means of a feasible
computation that an eavesdropping adversary could carry out for itself, the adversary
gains no knowledge if it is given the text of a "conversation" belonging to the set
COM{(A,B)[x]}.

We remark that if two protocols are result-indistinguishable, then so is their
concatenation. The simulating machine for the concatenated protocol is simply the
concatenation ofthe two simulators for the component protocols; neither the interacting
parties nor the simulator makes any computation that depends on the history tapes.

4. Specification of the language
4.1. Preliminaries. We assume that the reader is familiar with the following notions

from elementary number theory. (See, for example, [19], [23] for the number theory,
and [21] for a computational point of view.) We will be working in the multiplicative
group Z* of integers relatively prime to N. Any element z Z* is called a quadratic
residue if it is a square mod N (i.e., if the equation x2= z mod N has a solution);
otherwise, z is a quadratic nonresidue rood N. Given N and z Z*, the quantity called
the Jacobi symbol of z with respect to N, denoted (), can be efficiently computed (in
time polynomial in log N) and takes on the values +1 and -1. If ()=-1, then z
must be a quadratic nonresidue rood N. On the other hand, if ()= +1, then z may
be either a residue or a nonresidue. Determining which is the case, without knowing
the factorization of N, appears to be an intractable problem, namely the quadratic
residuosity problem. (However, given the prime factorization of N, it is easy to determine
whether or not z is a quadratic residue.) Several cryptographic schemes have been
proposed that base their security on the assumed difficulty of distinguishing between
residues and nonresidues modulo an integer N that is hard to factor [16], [3], [22].

We also make use of Bernstein’s law of large numbers [25], [21]" Suppose that
the event E occurs with probability p, and let Fk(E) denote the frequency with which
E occurs in k independent trials. Then for any k-> and any positive e _-<_p(1-p),

Prob {IF()-pl => } _-<2 e -k2.
4.2. The language. The protocol introduced in [17] is a minimum-knowledge

confirming interactive proof-system for the language

{(N, z)lz Z*, z a quadratic nonresidue mod N}.

The protocol that we present below is a deciding interactive proof-system, which is
both minimum-knowledge and result-indistinguishable, for a language based on the
same problem.

We use the notation u(N) to represent the number of distinct prime factors of
an integer N.

Our protocol is concerned with integers of a special form, namely those with
prime factorization N Hi p’ such that for some i, pi 3 mod 4. Let BL (for Blum,
who pointed out their usefulness in cryptographic protocols) denote the set of such
integers. There are two equivalent formulations of membership in BL: (1) N BL if

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 723

and only if for any quadratic residue mod N, half its square roots (mod N) have Jacobi
symbol +1 and half its square roots have Jacobi symbol -1. (2) N BL if and only
if there exists a quadratic residue mod N which has two square roots with different
Jacobi symbols [2].

The special integers that we require form a subset of BL, namely

N {NIN BL, N-= mod 4, u(N) 2}.
It is not hard to see that this set may be defined equivalently as

N= {p iqJ]p # q prime, i, j >- 1, p qj_=3 mod 4}.
Finally, we define the languages

I={(N,z)INeN, zeZ*,(-)=+I} and

L {N, z) I lz a quadratic residue mod N}.
Taking I as the set of inputs, this paper gives a deciding interactive proof-system for
L. Notice that I L {(N, z) I lz a quadratic nonresidue mod N}.

4.3. Outline of the protocol. Our protocol is the concatenation oftwo subprotocols.
The first part is a confirming interactive proof-system for L If the first part is completed
successfully (i.e., if A proves to B that the input string is in I), then A and B perform
the second part of the protocol. The second part, taking inputs from the set I, is a

deciding interactive proof-system for the language L; A proves to B either that the
input string is in L or that it is not in L. Both parts are minimum-knowledge, and the
second part is result-indistinguishable as well. The eavesdropper learns that, with high
probability, the input is in/. But he gains no more knowledge than thismin particular,
he gains no computational advantage in deciding whether the input is in L or in I- L,
i.e., whether or not z is a quadratic residue mod N.

The confirmation that an input string (N, z) belongs to I in turn requires three
stages, each of which confirms a property of N or of z; these stages are carried out
in the following order:

(1) N=lmod4, u(N)>l, zZ*,and ()=+1.
(2) N BL.
(3) u(N) -< 2.
While proving that our protocol has the properties that we desire, we make no

limiting assumption about the computational power of Turing machine A. However,
we remark that the protocol can be performed by a probabilistic polynomial-time
Turing machine A which is given the factorization of the relevant integers N. (In the
cryptographic applications that we discuss later, the party that performs A’s role in
our protocol chooses N along with its prime factorization.)

We now give the details of our protocol: the confirming first part in 5, and the
deciding second part in 6.

5. Interactive confirmation of the input language. In each of the protocols that we
describe, we use the notation "A- B:..." to indicate the transmission of a message
from A to B.

5.1. Blum’s coin-flip protocol. Our confirmation protocol requires that A and B
jointly generate a sequence of bits. The verifier B has to be sure that A cannot bias
these bits. They do this by following a protocol due to glum [2].

An integer N BL, N rood 4, is given.

A and B generate a random bit b:
1. B chooses u Z* at random, and computes v := u rood N;
B-A: v

724 ZVI GALIL, STUART HABER, AND MOTI YUNG

2. A chooses o-:= +1 or -1 at random, its guess for (-);
A-* B: o"

3. BA:u
4. if v- u mod N, then A halts the protocol in the FAILURE state;

otherwise, if cr () then b := 1 else b := 0

The message triple (v, o-, u) may be regarded as an encoding of the bit b =-+ (-)r.
This protocol is correct: Since B picks u at random and A picks the sign o- at

random, the bit b chosen by the protocol is random. Furthermore, the first alternate
characterization of BL (4.2) implies that no interactive Turing machine A*, no matter
what its computational power, can bias the bit produced, since it cannot guess the
Jacobi symbol of the square root of v chosen by B with probability greater than .

We remark that a cheating Turing machine B* could bias the bit solely by using
its ability to produce two numbers u and u’, both square roots (rood N) of v, with
opposite Jacobi symbols; this capacity would enable B* to factor N simply by comput-
ing the greatest common divisor (u- u’, N).

The protocol is perfectly minimum-knowledge. The reason is that A’s only task
is to transmit a guess, r +1 or -1, for a sign, a task that may easily be carried out
by a simulator interacting with B*. We formalize this argument below.

5.2. The confirmation protocol. This is a minimum-knowledge confirming inter-
active proof-system by which A proves to B that the input (N, z) is in the language I
defined above. It consists of the concatenation of three subprotocols, each of which
takes, as legal input, a string that has been confirmed (with high probability) by the
preceding subprotocol. Let k denote the length of the input string.

First Stage: The easy properties of N and z

This stage involves no communications between A and B. Given (N, z) as input,
B checks that N-= mod 4, that N is not a prime power, and that (-) +1. Each of
these is easily accomplished in time polynomial in log N [21]. If any one of these
conditions does not hold, then B REJECTS the proof (and halts the entire protocol).

Second Stage: N belongs to BL

The following protocol is due to Blum [2]. The error probability of this proof-
system is 62(k)= 2-k. This stage does not concern itself with z at all. The integer N
must satisfy N mod 4; this condition holds if the first stage has been completed
successfully.

1. repeat k times:
1.1 A chooses a quadratic residue r Z* at random;

A- B: r
1.2 B chooses r := +1 or-1 at random;

B-A: cr

1.3 if r {-1, +1}, then A halts the protocol in the ALURE state;
otherwise, A computes s such that s-= r mod N and ()= o-;
A-B: s

1.4 B checks to make sure that s satisfies the above conditions; if not, then
B RJECTS the proof (and halts the entire protocol).
.PTS the proof.2. B ACC

Third Stage: N has two prime factors

This stage also does not concern itself with z.

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 725

Let us use Z*(+I) to denote the set of elements of Z*N with Jacobi symbol +1
(respectively). This protocol relies on the fact that if N has exactly prime factors
(i.e., v(N) i), then exactly 1/2 i-1 of the elements of Z*N(+I) are quadratic residues.
A and B jointly pick random elements of Z*N(+I). If A can show that about half of
them are residues (e.g., by producing their square roots mod N), then B should be
convinced that v(N)_-< 2. Since N is not a prime power, v(N) must be equal to 2.

In order to pick a list of random elements of Z*(+I), A and B follow Blum’s
coin-flip protocol, which requires that N BL and N 1 mod 4. These conditions hold
(with very high probability) if the s’econd stage has been completed successfully.

This proof-system has error probability 3(k)= 2e-k(1/8)2.
1. A and B use Blum’s coin-flip protocol to generate k random elements

r,,..., rk Z*(+I)"
i:=0;
do until k"

a. generating it bit by bit using Blum’s coin-flip protocol, A and B choose
a number a, 0< a < N

b. if g.c.d. (a, N) (which happens with vanishingly small probability)
then rAIT the protocol

c. if ()= +1 then i:= i+ 1; r :’- a
2. for each i= 1,..., k such that ri is a quadratic residue, A computes s such

that r S mod N"
A B: (i, Si)

3. B checks that at least of the ri are quadratic residues; if so then B ACCEPTS

the proof (and otherwise B REJECTS the proof and halts the entire protocol).
THEOREM 1. This protocol is a perfectly minimum-knowledge confirming interactive

proof-system for the language I= {(N, z)l N-= rood 4, N BL, ,(N)= 2, ()= +1}.
Proof We treat each of the three subprotocol stages separately. As a consequence

of the lemma of 3.2, it then follows immediately that the concatenation of the three
has the required properties.

First Stage
The first stage is, trivially, a confirming proof-system for the language

I {(N, z) N --- mod 4, ,(N) > 1, z Z’N, ()= +1},
since each of these conditions is validated by B in polynomial time without interacting
with A at all.

Second Stage
Given an integer N 1 mod 4 (in particular, given input that has been confirmed

in the first stage), the second stage is a perfectly minimum-knowledge confirming
interactive proof-system for the language 12 {(N, z)lN BL} with error probability
62(k) 2-k

This stage requires O(k) communication rounds, during which O(k2) bits are

exchanged.
The correctness of this stage depends on the alternate characterizations of member-

ship in BL (4.2). If N BL, then each quadratic residue r sent by A has at least one
square root mod N with Jacobi symbol +1 and at least one square root mod N with
Jacobi symbol -1; no matter which sign o- B chooses, A can respond with a square
root of the appropriate sign. B accepts the proof with probability 1. On the other hand,
if N : BL then no quadratic residue mod N has two square roots with Jacobi symbols
of opposite sign. In this case, it is very likely that there is some for which A will be

726 ZVI GALIL, STUART HABER, AND MOTI YUNG

unable to send an appropriate si, and B will halt the protocol. The only way for a
cheating A* to convince B that N BL (by sending the appropriate elements si) is by
guessing the entire sign-sequence o-1," ", o-k; the probability that such a guess will
be correct is at most 2-k 2(k). Thus, this protocol is indeed a confirming interactive
proof-system for BL.

To prove the perfect minimum-knowledge property, choose any interactive Turing
maching B*; we have to specify the computation of a Turing machine M. whose
output, on input N BL and initial history h, is a simulation of B*’s view of the
computation that A and B* would have performed on the same input. This view
includes a message-history that consists of triples (r, or, s) satisfying the conditions
implicitly defined by the specification of the protocol. As described above in 3.1,
M. uses the program of B* as a subroutine. After initializing B*, M. operates as
follows:

1. repeat k times"
1.1 save the current configuration of B*;
1.2 choose s Z* at random, compute r :- s mod N, "send" r to the simu-

lated B*, and "receive" cr in return;
1.3 if r {-1, +1} then append HALT to A’S message-record in B*’s virtual

history, write out the updated virtual history, and halt;
otherwise if ()# o- then restore the saved configuration of B* and go
back to step 1.1;
(else ()= o- and the most recent exchange of messages recorded in B*’s
virtual history is the triple (r, or, s))

2. write out B*’s virtual history.

For each of the k iterations, the expected number of times the loop has to be
repeated is 2, since for any value of r the probability that ()= r is exactly 1/2; thus
the expected running time of M. is polynomial in k.

The simulated messages "sent" to B* are drawn from the same probability
distribution as the messages sent by A in an actual execution of the protocol, and the
random communications triples (r, o-, s) produced by M. satisfy the conditions s2-=

r mod N and (-/)= or. As explained in 3.2, these messages are interleaved on the
virtual history tape with the random-tape bits used by B*, exactly as they would be in
an actual interaction with A. Therefore the sets M.[N, h] and VIEW.{(A, B*)[N, h]}
are identical. This completes the proof for the second stage.

Third Stage

Given an integer from the set

{NIN BL, N.-= mod 4, u(N)> 1}

(in particular, given input that has been confirmed in the first and second stages), the
third stage is a perfectly minimum-knowledge confirming interactive proof-system for
the language I= {(N, z)[p(N) 2} with error probability 63(k)= 2e-(/s).

This stage requires O(k) communication rounds, during which O(k3) bits are
exchanged.

During the third stage, A and B together choose random elements of Z*N(+I).
Since they do this by means of Blum’s coin-flip protocol, and no Turing machine A*
can bias the bits produced by Blum’s procedure, these elements are indeed produced
at random. In order to prove that this stage is a proof-system, consider the experiment
of choosing a random element of Z*N(+I), where the experiment is a success if the
chosen element is a quadratic residue mod N; let F,(N) denote the frequency of

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 727

successes in k independent trials. Recall that B accepts N if the frequency Fk(N)=> -.
As mentioned above, the probability of success in one trial is exactly (1/2)N)-. (Since
N is known to have at least two prime factors, this probability is at most .) If u(N)
is exactly 2, then the probability that B does not accept N is, by Bernstein’s law of
large numbers,

t,(/8)Prob{Ft,(N)<}<=Prob{lF(N) 51>-1/2}-<2e =a3(k).
On the other hand, if N has more than two prime factors, the probability of success
in one trial is at most a, and thus the probability that B incorrectly accepts N (when
interacting with a cheating A*) is

e--k(1/8)2Prob{F(N)>-}<=Prob{lF,(N) 31->1/2}<2 =a3(k).

To prove the minimum-knowledge property, given an interactive Turing machine
B* we have to specify the computation of a simulating Turing machin4 MB.. The
ensemble that M. must simulate includes a sequence of Blum coin-flips, so we begin
by showing that Blum’s coin-flip protocol is perfectly minimum-knowledge. To prove
this, we must specify the computation of a probabilistic polynomial-time Turing
machine Mco, whose output, on input N (satisfying N BL and N-= mod 4), and
initial history h, provides a simulation of the ensemble WEWu.{(A, B*)[N, hi}, which
includes a message triple (v, r, u) encoding a bit as described in 5.1 above. Modelling
the result oracle for the protocol, Mcon is given as additional input a (presumably
random) bit b.

Given any bit b, Mcoin (initializes B* and) proceeds as follows"
a. execute the protocol with B*:

1. let B* "send" v (simulating step 1)
2. save the current configuration of B*
3. simulate A’s action in step 2 by choosing o-:= +1 at random and

"sending" it to B*
4. let B* "send" u (simulating step 3)

b. if the bit encoded by (v, o-, u) is b, then write out B*’s virtual history (which
includes the triple (v, r, u)) and halt; otherwise"

1. restore the saved configuration of B*
2. simulating step 2 again, "send" -o- (instead of r) to B*
3. let B* "send" u’
4. write out B*’s virtual history (which includes the triple (v,-or, u’))

Note that if B* does not follow the protocol, it may happen that the numbers u
and u’ are not the same; if their Jacobi symbol is the same the outcome of the protocol
is the same random bit b and this has no effect on the output distribution of Mco
(since B*, when interacting with A, can decide to send either u or -u). On the other
hand, if they have opposite Jacobi symbols mod N, then the outcome bit 1- b has
been determined by B* and not chosen at random. As noted above, this can only
happen if B* can factor N, in which case it indeed has the ability to dictate the outcome
of the protocol, regardless of whether it is interacting with A or acting as a subroutine
for Mcoin.

Whether the virtual history of B* written out by Mcoin was generated in step a or
step b of the simulation, the distribution of its possible values (and thus the probability
distribution of the bit encoded by the message triple) is identical to that of
VIEWB.{(A, B*)[N h]}. Thus the coin-flip protocol is perfectly minimum-knowledge.

Next we describe the simulation by MB. of the third stage of our protocol. The
set VIEWB.{(A, B*)[N, h]} that MB* must simulate begins with a sequence of Blum

728 ZVl GALIL, STUART HABER, AND MOTI YUNG

coin-flips, which are used to generate random elements of Z*N. This simulation can be
performed by following the program Mcoin as just described; the difficulty for MB*, a
polynomial-time machine that may not be able to factor N, is that those elements
which are quadratic residues must be randomly generated along with their square roots.

Given as input an integer N that has been confirmed by the first two stages and
that satisfies ,(N)= 2, and given an initial history h, MB. proceeds as follows:

1. := 0; A :-- the empty list
2. do until k:

choose a random number a, 0 < a < N;
if g.c.d. (a, N) (which happens with vanishingly small probability) then
FLAG the number a, adjoin it to A, and go to step 3;
else:
choose a random bit b (to decide the Jacobi symbol of the next element
generated);
if b--0 then adjoin to A a random element of Z’N(--1);
else:

a. i:= i+1
b. choose si Z*N at random
c. choose a random bit bi (to decide whether the next element generated

should be a quadratic residue);
if bi =0 then r := s rood N (a random residue in Z*N(+I))
else r:=-s mod N (a random nonresidue in Z*N(+I))

d. adjoin ri to A
3. (simulate as many executions as needed of Blum’s coin-flip in order to generate

the sequence of bits in the list A)
for each bit b in the representation of each number in A:

follow the procedure above for Mcoin (using B* as a subroutine), recording
the numbers u (and possibly u’) "sent" by B*;

if the outcome of the coin-flip simulation is indeed b, then continue with the
next bit in A;

otherwise B* has "forced" the complementary outcome 1- b by "sending"
u and u’ with ()# (), in which case"

a. use u and u’ to factor N
b. discard the rest of A
c. repeatedly execute Blum’s coin-flip with B* (as originally specified,

without backtracking to restore previous configurations of B*) in order
to choose elements of Z’N, bit by bit, until the resulting list contains k
elements (r,..., rk, say) with Jacobi symbol +1; again let A denote
the new list

4. if the last number in A is FLAGGED then halt
5. discard the elements in A with Jacobi symbol -1
6. if B* has not "forced" the outcome of any of the coin-flip simulations of step

3, then for each r in A such that bi =0 "send" (i, si) to B*;
otherwise, use the factorization of N to test each ri in A to see whether it is a

2quadratic residue; if it is, then compute s such that r-= s mod N and "send"
i, si to B*

7. write out the virtual history of B*.

If 9(N)= 2, then a randomly chosen element of Z’N--in particular, one that has
been chosen by A interacting with a machine B* that does not "force" the outcome

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 729

of any Blum coin-flipsmwill have Jacobi symbol +1 with probability ; among these,
quadratic residues will occur with probability . If B*, as a subprogram of the simulator
MB., does not "force" any (simulated) Blum coin-flips, then the simulator generates
elements of ZN with exactly the same probabilities, and then perfectly simulates the
generating coin-flips; on the other hand, if B* does "force" a coin-flip, then MB. simply
performs with it a sequence of Blum coin-flips, exactly as in the specification of the
protocol. Either way, MB. generates lists of elements of ZN with the same distribution
as do A and B*, and B* makes identical use of bits from its random tape, so that the
sets VIEWB.{(A, B*)[N, h]} and M[N, h] are identical. This completes the proof for
the third stage.

Finally, to conclude the proof of Theorem 1, we see by the.concatenation lemma
that, given any input string at all, the concatenation of the three stages is a
perfectly minimum-knowledge confirming interactive proof-system for the language
I (-] I2 (] I3= L [q

6. Interactive decision of quadratic residuosity. If the confirming part of our pro-
tocol has been successfully completed, then with high probability the input string
(N, z) is in the language L In particular, we know that ,(N) 2, that z Z*, and that
()--+1; these are the properties that are required of the inputs to the next part of
the protocol.

This part is a deciding interactive proof-system for L, taking inputs from I. The
proof-system is both perfectly minimum-knowledge and perfectly result-indistinguish-
able. As noted above, a pair (N, z) that is known to belong to I either is or is not also
a member of L according to whether or not z is a quadratic residue mod N.

To make the exposition clearer, we present three successive versions of our
protocol.

Let y-=-1 mod N. Everything that follows holds for any nonresidue y Z* that
has Jacobi symbol +1. As long as N BL and N= mod 4, we can take y =-1.
(Remark. If another nonresidue y is desired, A can prove to B, as a preliminary
subprotocol stage, that y is a nonresidue by following the minimum-knowledge inter-
active proof-system of 17].)

Let us fix some notation. For any x Z* we define the predicate"

jo if x is a quadratic residue mod N,
RESu(x)

otherwise.

Recall that Z*(+I) denotes the set of elements of Z* with Jacobi symbol +1. Since
,(N) 2, half of these are quadratic residues mod N, and half of them are nonresidues.

Our protocol relies on the fact that if r Z* is chosen at random, then r2 mod N
is a random quadratic residue in the set Z*(+I) and yr mod N is a random quadratic
nonresidue in Z*(+I); similarly, zr mod N is either a random residue or a random
nonresidue in Z*(+I) according to whether or not z is a residue mod N.

This interactive proof-system has error probability 6(k)--2e-4’/8.

First version: A deciding proof-system

i. Repeat k times:
1. B chooses r Z* and c {1, 2, 3} at random, and computes CASE c of:

l:x:= r mod N
2: x:-yr2modN
3: x:=zrmodN

BA:x

730 ZVI GALIL, STUART HABER, AND MOTI YUNG

2. A computes b := RES N (x);
A-B: b

3. B checks that ifc=l then b=0, ifc=2then b-l, andifc=3 then
b is consistent with any previous case-3 iterations; if not then B REJECTS

the proof and halts the protocol
ii. B ACCEPTS the proof that RESN(z) is equal to the consistent value of b for

case-3 iterations.

As explained above, if z is a quadratic residue then x’s constructed in case are
indistinguishable from x’s constructed in case 3. If A acts as specified, then when the
protocol finishes B will be convinced that z is a residue. The only way that a cheating
A* can convince B that z is not a residue is by correctly guessing, among all iterations
during which B has sent a residue x, which of these were constructed in case and
which of them in case 3; if there are ck such iterations in a particular execution of the
protocol, then the probability of successful cheating is 2-Ck. Since c is very likely to
be close to _, a simple calculation using Bernstein’s law of large numbers shows that
the probability of successful cheating is at most 2e -4t’/81. Similarly if z is a quadratic
nonresidue. Hence the above version is a deciding interactive proof-system for L.

However, this version is not result-indistinguishable. An observer of an execution
of the protocol can easily tell whether he is watching an interactive proof that
RESu(z) or a proof that RESu(z)--0 by keeping a tally of the bits b sent by A
in step 2 of each iteration.

Second version: A result-indistinguishable proof-system

A simple modification of the above protocol does hide the result from an eavesdrop-
per. The only change is that at the beginning (before step i), A flips a fair coin in order
to decide whether to use R(x)= RESn(x) or R(x)--1-RESu(x) as the bit b to be
sent to B in step 2 of each iteration throughout the protocol. R(x) can be regarded as
an encoding, chosen at random for the entire protocol, of RESN(x).

In step 3, B checks for consistency in the obvious way: B should receive the same
bit b in all case-1 iterations and the complementary bit in all case-2 iterations; B should
receive a consistent bit b in all case-3 iterations, and its value indicates to B whether
or not z is a quadratic residue. As before, if in step 3 of any iteration B finds that the
value of b is not consistent then B halts the protocol, REJECTing the proof.

With this modification, the protocol is stillmarguing as above--a deciding inter-
active proof-system for L. Furthermore, it is result-indistinguishable. An eavesdropper
expects to overhear one bit about of the time during step 2 of each iteration and the
complementary bit the remaining of the time; whether the majority bit in a particular
execution of the protocol is 0 or gives him no knowledge. A formal proof of
result-indistinguishability of the full protocol is presented below.

However, the version so far presented is not minimum-knowledge. For example,
a cheating B* that wanted to find out whether a particular number--17, saymis a
quadratic residue mod N could, during one of the iterations, send x 17 in step 1
instead of an element x constructed at random according to B’s program. A’s response
in step 2 will convey to B* the value RESu(17), which is something that B* could not
have computed by itself.

Third version: A minimum-knowledge result-indistinguishable proof-system

We can make this a minimum-knowledge protocol by refining step 1 of the version
just presented; the refinement consists of several interactive substeps by which B gives
to A what amounts to a minimum-knowledge proof that the element x that it sends

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 731

was constructed in one of the three ways specfied (without giving A any knowledge
about which of the three ways). The rest of the protocol is unchanged.

1.0 B chooses r e Z* and e e {1, 2, 3} at random, and computes CASE c of:
1: X :’- r mod N
2: x:=yr2modN
3: x:-zr2modN

BA:x
1.1 B chooses sie Z* at random (i= 1,...,4k) and computes:

Tl { t ", tk ti s mod N},
T { tk+, t2 t-- ys mod N},
r {t2k+l, t3k [t -- ZS2i mod N},
T4 { tag+l, ", t4k ti -- YZS2i mod S};
taking this to be matrix of 4 rows [T, T2, T3, T4] and k columns (where
column j contains the elements tj, tk+j, t2k+.j, t3k+j), B randomly permutes
each column of the matrix, resulting in a matrix T;
B--> A: T

1.2 A chooses S {1,. , k} at random (a query indicating a random subset of
T’s columns);
A-+B: S

1.3 for each j S, for each ti 6 column j, B--> A: si
(These numbers show A that B has correctly computed the jth column of T
for each j S and convince A that it is very likely that at least one other
column of T was also computed correctly.)

1.4 A verifies (for each such ti) that ti either s, ys ZS2i, or yzsi, mod N, with
each congruence being satisfied once in each column j e S;
if not, then A halts the protocol in the FAILURE state

1.5 for each j S, for each t; e column j, B computes wi according to Table 1: if
x was chosen as case e of step 1.0 and ti TI, then wi := the table-entry in
the /th row and cth column;

TABLE 1. (Step 1.5.)
(All computations of table entries are modulo N.)

X--..oo

ys

yzsi T4

yr zr

(c=l) (c=2) (c=3)

rs x/-((xt yrsi x/y(xt zrsi x/z(xti)

yrsi) yrsi (x/i) yzrsi x/yz(xt

zrs) yzrsi x/yz(xti) zrsi Ni/-((xti)

yzrs, x/)(xt,) yzrs, #7(-X7,) yzrs,

1.6

(For each j S, these four numbers show A that if B has correctly computed
the jth column of T, then B has correctly computed x.)
for each such ti, B- A: wi.
A verifies (for each such ti) that w/--either (xti), y(xti), z(xti), or
yz(xt) mod N, with each congruence being satisfied once in each column
j_S;
if not, then A halts the protocol in the FAILURE state.

732 ZVI GALIL, STUART HABER, AND MOTI YUNG

The protocol now continues as before. A sends b= R(x) to B (step 2), and B
checks b for consistency (step 3); and then they continue with step 1 of the next
iteration. Note that it is in A’s "interest" to choose S at random in step 1.2, so that
with overwhelming probability both S and {1,..., k}-S are reasonably large (and
thus the probability that any particular column of T will be queried is close to 1/2).

The idea is that any machine playing the role of B (and desiring that the protocol
succeed) must follow the protocol, because if it tries to cheat during any iterationm
either by sending a number x in step 1.0 for which it does not "know" the corresponding
number r, or by sending numbers ti in step 1.1 for which it does not "know" the
corresponding numbers si--then A will, with overwhelming probability, detect its
cheating either in step 1.6 or in step 1.4. This is formalized in the following proof.

THEOREM 2. Given input belonging to I {(N, z) lN mod 4, N c BL, ,(N) 2,
()- + 1}, this protocol is a perfectly minimum-knowledge and perfectly result-indistin-
guishable deciding interactive proof-system for L= {(N, z)c I Iz a quadratic residue
mod N}.

Proof First we prove that the protocol is a deciding proof-system for L. Since we
have already shown that the second version presented above is a proof-system, it
suffices to show that the refinement of step preserves this property.

Suppose that z is a quadratic residue. The question is whether a cheating A*meven
if it does not choose S at random in step 1.2--can use the numbers sent by B during
step to distinguish correctly between case-1 iterations (x r mod N for a random
r) and case-3 iterations (x zr mod N). Since B has chosen them at random, A* is
unable to distinguish between residues ti of the form s and residues t of the form
zs2. Table 2, the subtable of Table corresponding to these four possibilities, has rows
that are permutations of each other, and thus A* is not able to tell whether B is using
column c or column c 3 of the whole table.

TABLE 2
A subtable of Table 1.

c=l c=3

(xt,

V/Z(Xli /-(Xli

Similarly for nonresidues t of the form ys2 or yzs2. A like analysis holds if z is
a nonresidue mod N. Hence the protocol is indeed a deciding interactive proof-system
for L.

In order to prove the minimum-knowledge property, we choose an interactive
Turing machine B* that runs in expected polynomial time; we must describe the
computation of a simulating machine M MB..

M has one-time access to an oracle for the result of the protocol, as explained in
3.1. M begins by querying the oracle on the input string (N, z), and learns (with very

high probability) the value of RESN(z). The rest of the simulation is similar to that
of the proof that the protocol of [17] is minimum-knowledge.

As its next step, M flips a coin to simulate A’s choice of whether to compute
R(x)= RESN(x) or R(x)= 1-RESN(x) during the protocol.

In each iteration, M carries on the protocol through the end of (the refinement
of) step in a straightforward manner: M uses B* to perform its own version of B’s
role, and M easily simulates A’s role, choosing a random query S in step 1.2 and

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 733

checking several congruences mod N in steps 1.4 and 1.6. If these congruences do
satisfy the check, the difficulty comes in simulating A’s communication in step 2, which
consists of the bit R(x); how can M quickly calculate the correct value of RESN(x)?
M accomplishes this by following the EXTRACTION procedure described below.

After B* has performed its computations in the simulation of step 1.1 and "sent"
the matrix T, M saves the current configuration Co of B*. At this point, given Co (which
includes a fixed random-tape string) and any fixed query-set S_ {1,..., k} that A
might choose in step 1.2, the lists of numbers that B* would "send" in steps 1.3 and
1.5 in answer to the query S are determined. Let us call S a satisfiable query if these
answers would satisfy A’s verifying checks of steps 1.4 and 1.6, causing the protocol
to continue with step 2. (A query that is not satisfiable would cause A to halt the
protocol in its failure state.) It is easy to check whether or not a query S is satisfiable,
by setting B*’s configuration to Co, "sending" S to B*, and checking the numbers that
B* "sends" in return.

In its simulation, M makes use of an auxiliary matrix T’ that contains two data
fields for each entry ti of the matrix T, one for the number si and one for the number
wi (where si and wi are related to ti as in the specification of the protocol). Note that
if M succeeds in filling both fields for any single entry ti, then M can easily deduce
the value R(x) that it needs in order to simulate step 2: M can use si to see how ti
was computed in step 1.1 (i.e., which set T; contains ti, and hence which row of the
table B* must use in step 1.5); next M can use wi to see which column c of the table
B* must use; and then the choice of column gives M the value of RESN(x), and hence
of R(x).

Next we describe the EXTRACrION procedure that M performs in each iteration
following the simulation of step 1.1.

1. save the current machine configuration Co
2. choose a query S 1, , k at random, store it, and "send" it to B* (simulat-

ing step 1.2)
3. let B* "send" its answers to S (the numbers s of step 1.3 and w, of step 1.5),

and check the congruences of steps 1.4 and 1.6;
if the congruences do not check, then halt the simulation;
otherwise, store B*’s answers in the auxiliary matrix T’ and repeat the following
two loops concurrently until success:

a. sampling the query space (without repetition):
i. restore configuration Co

ii. choose a new query S’ (1,..., k at random that has not
already been chosen (if there is one; if none exists, then halt
the sampling loop);
store S’ and "send" it to B*

iii. let B* "send" its answers to S’
iv. for each j k if B*’s answers for column j of the matrix

T satisfy the congruences of 1.4 (if j S’) or of 1.6 (if j S’),
then enter them in the auxiliary matrix T’;
if any of these new entries is an s for which T’ already contains

w or vice versa, then (as explained above) use s, w to compute
R(x) and set success :- TRUE

b. use any factoring algorithm F to factor N:
i. until (success or (F has successfully factored N) do the next

step of F
ii. use the prime factors of N to compute RESt(x) and R(x),

and set success :- TRUE

734 ZVI GALIL, STUART HABER, AND MOTI YUNG

4. restore configuration Co and "send" to B* the original query S
5. let B* "send" its answers and update its history tape (exactly as it did the first

time it received the query S)
Simulating step 2, M sets b := R(x) (as computed either in a or b of the last inner
loop) and "sends" b to B*, which performs its version of step 3 of the protocol. If B*
is following the instructions of step 3, then it is indeed "expecting" the computed
value of b, and the simulation continues with the next iteration.

We need to show that M’s expected running time is polynomial (in k, the length
of the input) and that its output ensemble is identical to B*’s view. To bound the
running time, it suffices to prove a polynomial bound on the expected time required
by each of the k iterations of M’s program. First observe that the outer loop of the
EXTRACTION procedure takes polynomial time. The same is true for any single execution
of the inner loop: queries may be stored in a lexicographically ordered tree (so that
choosing a new one costs O(k)); the rest of the sampling loop is polynomial-time,
and in each inner loop only one step of the factoring algorithm is performed. Therefore,
it is enough to show that, for any fixed configuration Co, the expected number of
repetitions of the inner loop is polynomial in k.

In fact, we show that this number is constant. In configuration Co, let p (0 -< p =< 2k)
be the number of queries that are satisfiable. When M performs the EXTRACTION

procedure, with probability 1-p/2k its first query S will not be satisfiable, in which
case the inner loop is not executed at all. If p--0, we have no other case to consider;
so assume p-> 1. With probability p/2k, S is satisfiable, and the inner loop is repeated
until success is set to TRtE (either in the sampling process or after factoring N). Each
sampling loop begins with the choice of a new random query. Of the 2k- possible
queries, at least the p-1 satisfiable queries (besides S) lead to success; that is, the
probability of a successful inner loop is at least (p-1)/(2k- 1). Hence if p> 1, the
expected number of attempts after choosing a satisfiable original query is at most
(2k--1)/(p--1); overall, the expected number of repetitions of the inner loop is at
most (p/2k) (2k- 1)/(p-1)=<2. We consider below the special case p= 1.

Next, we show that the sets VIEW.{(A, B*)[(N, z), hi} and M[(N, z), hi are
identical; following the Remark of 3.2, it suffices to show that this is so for any one
of the k iterations of the protocol. Consider, therefore, an iterationmeither of an actual
protocol execution by A and B* or of the simulation by Mmat the beginning of which
B* sends the matrix T, and let p (0 =< p-< 2k) be the number of satisfiable queries. With
probability l-pk a randomly chosen query is not satisfiable, causing either the
protocol execution or the simulation to halt; in this case, the actual history and the
virtual history are identical. If p 0, then this is the only case that occurs. Otherwise,
with probability p/2k, the original query S is satisfiable, and both the actual protocol
and the simulation continue with step 2. As long as p-> 2, there is at least one other
query that leads to success in the inner loop of M’s EXTRACTION procedure, enabling
M to "send" in its simulation of step 2 the correct value of b R(x), the same one
that A would send during an actual execution. The factoring algorithm may be faster
then the sampling process, in which case the correct value of b is computed directly.
Either way, the actual history and the virtual history are identical.

If p 1, then the probability that M’s original query is satisfiable is only 2-. In
this rare case, the sampling process in the inner loop of the EXTRACTION procedure
might never lead to success; the inner loop might not terminate until after N has been
factored. Since the cost of factoring N is less than O(2k), the total expected number
of repetitions of the inner loop when p is less than 2-g. 2k= 1. In this case, as

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 735

before, the actual history and the virtual history are identical. This concludes the proof
that the protocol is perfectly minimum-knowledge.

In order to prove that the protocol is result-indistinguishable, we must specify the
computation of a probabilistic Turing machine M’, running in expected polynomial
time, that simulates the communications ensemble COM{(A, B)[N, z]}. (Recall that
M’ does not have access to any oracle.) M’ begins by flipping a coin to decide whether
to simulate the choice R(z)=0 or the choice R(z)= 1. Then in each iteration M’
simulates the specified computations of A and B, except for the following changes. In
(simulated) step 1.0, M chooses x := zr mod N with probability and x := yzr mod N
with probability 3. In (simulated) step 2, M’ outputs b R(z) if x zr and b 1 R(z)
if x=yzr2. (Here the simulation of step 2 is much simpler than in the minimum-
knowledge proof above, since M’ "knows" how each x was constructed.) In (simulated)
step 1.5, M’ outputs wi computed according to Table 3.

zs

yzs

TABLE 3

zr yzr

zrs,) yzrsi x/yz(xti)

yzrsi x/yz(xti) yzrsi x/z(xti)

zrsi (x/-(-i) yzrsi x/y(xti)

yzrs x/y(xt yzrsi v/-((xti)

The numbers x output by M’ have the same distribution as the numbers x output
by B; the same is true of the si and the wi. Hence, as required, the set of outputs
M’[N, z] is identical to the set COM{(A, B)[N, z]}, so the protocol is perfectly result-
indistinguishable.

As presented, the protocol takes O(k) communication rounds during which O(k3)
bits are exchanged. However, all k iterations of the main loop can be performed in
parallel, taking O(1) rounds. The simulator M can perform in parallel all k iterations
of its main loop, and its expected running time is still polynomial in k. Similarly, M’
can operate in parallel. Thus the parallelized version of the protocol is also perfectly
minimum-knowledge and perfectly result-indistinguishable. This concludes the proof
of Theorem 2.

We note that there is another modification of the first version of our protocol that
also achieves result-indistinguishability. A can always respond in step 2 with the true
value of RESN(x) if B computes each x in step according to a random choice among
four varieties: to the types r2, yr, and zr2 mod N we add the fourth type yzr mod N.
If the protocol is to be minimum-knowledge as well, we can refine step as in the
third version of our protocol, adding an appropriate fourth column to the table used
to compute wi.

7. Cryptographic applications. In all our applications, we let N be the public key
of a user A who knows its factorization. Within the set N, it is most advantageous to

736 ZVl GALIL, STUART HABER, AND MOTI YUNG

A to choose N to be of the form N pq, with p and q of approximately the same
size. A can follow our confirming protocol in order to prove to any other user that
N BL and u(N) 2. For these applications, we assume that the residuosity problem
is intractable.

When A communicates with another user B, any element zZ*(+l) can serve
as an encoding of the bit RESN(z), as soon as A has used our protocol to prove to B
the value of this bit. According to need, z can be chosen by A or by both A and B
together (say, by flipping coins). Because of the result-indistinguishability of the
protocol, this encoding is cryptographically secure.

In contrast, the conventional approach to hiding knowledge from an eavesdropper
is to use encryption. (For example, given two different protocols, one for membership
in a language L and the other for nonmembership in L, one could "pad" the protocols
so that they both caused messages of the same length to be sent at each round of
communications, and then encrypt all messages.) However, in this approach,, proving
a theorem about the security of the protocol against eavesdroppers usually’requires
an assumption about the security of the encryption scheme used.

The result-indistinguishability of our protocol suggests two different ways that it
can be used in a public-key encryption scheme that is secure against chosen-ciphertext
attack.

(1) A sequence of random elements zl, z2,’’" can serve as a probabilistic
encryption [16] of the bit-sequence RESN(zl), RES(z2), which in turn
can be used as a one-time pad to encode a message sent either from A to B
or from B to A.

(2) Instead of using the zi directly to encrypt the bits RESu(zi), we can define a
much more efficient scheme for probabilistic encryption by using a short
bit-sequence RESu(z), RESu(z2), as the random seed for a cryptographi-
cally secure pseudorandom bit generator [5], [27], [6] whose security may be
based on the unknown factorization of N (e.g., [3], [4]). Sharing the seed, A
and B can efficiently generate polynomially many bits and use them as a (very
long) one-time pad with which to send messages back and forth. The pad bits
alone are secure against any polynomially bounded adversary; furthermore,
the adversary gains no computational advantage in guessing any pad bit when
he is given probabilistic encryptions of the bits of the seed, nor when he is
allowed to overhear the protocol interactions that define these encrypted bits.
Because our protocol is only used in order to initialize the system, this scheme
has low amortized cost.

Whether the bits RESN(zi) are used directly or to form the seed of a pseudorandom
bit generator, the resulting schemes have the minimum-knowledge property with respect
to B as well as with respect to an eavesdropper C. In particular, they are provably
secure against both chosen-message and chosen-ciphertext attack. For precise
definitions of levels of cryptographic security, and for further study of the power that
interaction seems to add to public-key cryptography, see [13], [10].

Another application of our protocol gives a new private unbiased coin-flip,
generated jointly by A and B. The two users simply choose z at random--for example,
choosing its bits by means of Blum’s coin-flip. Note that the bits of z are public; it is
RESts(z), the result of the coin-flip, which is private.

In certain applications we can omit the confirming proof that N is of the required
form. Suppose in fact that N has more than two prime factors. For any z Z*(+I),
A can carry out the deciding protocol as before. Now, however, if y and z--both
quadratic nonresidues in Z*(+ 1)--have different quadratic character modulo several

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 737

of the prime factors of N, then A can distinguish numbers of the form r from numbers
of the form yr2 mod N and can distinguish each of these from numbers of the form
zr2 mod N. (This is not true if v(N)= 2; recall that for such N any nonresidue in
Z*(+I) is a nonresidue modulo both prime factors of N.) Thus A can, at will, use
our deciding protocol to "prove" to B either that z is a residue or that z is a nonresidue.
In either case, the interactively proved value of RESN(z)mwhether or not it is the
true valuemis cryptographically secure. This value gives B no knowledge whatever.
The "proof" only convinces B that A can distinguish between numbers with different
quadratic characters mod N, without releasing to B any information about the quadratic
character mod N of any particular number. (This can be formalized in terms of a
simulator M MB. for any given verifier B*. Note that at the beginning of the program
for M given in the proof of Theorem 2, we can replace the oracle query for RESN(z)
with a simple coin-flip; then exactly as in that proof, the two sets

VIEWB.{(A, B)[(N, z), h]}

and

M[(N,z),h]

are identical.) Thus, we may say that in this case, the protocol is result-indistinguishable
even with respect to B.

In this situation, when N has more than two prime factors, we can define the
following game: A picks a random nonresidue z with quadratic character different
from that of y. A then "proves" to user B1 that RESu(z)= bl, and "proves" to user

B2 that RESc(z)=b2. The "proven" value of RESN(z) in each execution of the
protocol is shared only by the prover A and the verifier B or B2. In fact, user B has
absolutely no computational advantage in deciding whether or not b b2, and neither
does user B2.

8. Conclusions. Approaching knowledge from the point of view of computational
complexity, we have studied the interactive transmission of computational results. The
protocol that we introduce gives a proof of the value, 0 or 1, of a number-theoretic
predicate, RESN(.). In a sense that we make precise (extending the definitions of
[17]), the verifier gains no more knowledge from an execution of the protocol than
this value; this is the "minimum-knowledge" property of the protocol. Furthermore,
we are able to analyze the difference between the knowledge gained by the active
verifier and that gained by a passive eavesdropper of equal computational powder; the
protocol is "result-indistinguishable," in that an eavesdropper gains no knowledge at
all by overhearing the messages passed during an execution.

Recent work on minimum-knowledge protocols has taken several different direc-
tions. Feige, Fiat, and Shamir adapted the result-indistinguishable protocol of this
paper (originally presented in [11]) and the protocols of [17] in order to give an
efficient minimum-knowledge (and therefore cryptographically secure) identification
scheme [9]. Their paper proposes a formalization, similar to that of Tompa and Woll
[26], of the notion that a protocol can supply a "proof" that the prover knows some
fact or possesses some computational ability, while completely hiding this piece of
knowledge. (For example, in case N has more than two prime factors, our deciding
proof-system for RESu(. may be regarded as demonstrating the prover’s ability to
distinguish between numbers with different quadratic characters mod N; see 7.)

Goldreich, Micali,-and Wigderson proved that, under the assumption that one-way
functions exist, every language in NP has a minimum-knowledge confirming interactive
proof-system; this result has important consequences for the design of cryptographic

738 ZVI GALIL, STUART HABER, AND MOTI YUNG

protocols [14]. Under the assumption that certain number-theoretic computations are
infeasible, a similar result was proved by Brassard and Crepeau, both for prover and
verifier as described in this paper [7], and for the dual situation in which a resource-
bounded prover interacts with a verifier of unlimited computational power [8]. (Our
formalization of the requirement that a two-party transfer protocol be minimum-
knowledge applies to protocols that depend on such "cryptographic assumptions;"
and under the appropriate assumption, the concatenation lemma of 3.2 holds in the
cryptographic setting.) Impagliazzo and Yung gave a construction for the direct
minimum-knowledge transfer of the result of any given computation (both for the
usual and for the dual model of the computational power of the prover and the verifier);
the dual protocol is implemented under the more general assumption that any of a
large class of one-way functions exist [20]. Their construction applies to probabilistic
as well as deterministic computations, and in particular it provides a minimum-
knowledge interactive proof-system for any language possessing a confirming inter-
active proof-system at all (i.e., for any language in the complexity class IP [1], [18]).

In a recent paper, instead of considering only protocols for transferring a computa-
tional result from one party to another, Yao studied a broad class of two-party protocols
for what may be called "crytographic computation," in which the (polynomially
bounded) users combine their private inputs in order to compute private outputs in a
minimum-knowledge fashion, preserving the privacy of these inputs and outputs and
hiding partial computational results as much as possible; it may also be required that
both users compute their final results simultaneously [28]. Under the asssumption that
factoring is hard, Yao showed how to design such a protocol for any given cryptographic
computation problem. Continuing this work, Goldreich, Micali, and Wigderson proved
similar results for multiparty protocols, assuming that one-way trapdoor functions
exist, and showed how such protocols could be made to tolerate faults [15]. Galil,
Haber, and Yung simplified and extended these constructions for cryptographic compu-
tation, giving new methods for the design of fault-tolerant multiparty cryptographic
protocols 12].

In summary, the complexity-theoretic approach to measuring and controlling the
knowledge transmitted in various distributed and cryptographic settings has proved
to be a useful tool in protocol design.

Acknowledgments. We would like to thank Silvio Micali and Charles Rackoff for
their helpful discussions, and Paul Beame, Gilles Brassard, Joan Feigenbaum, Shaft
Goldwasser, David Lichtenstein and Adi Shamir for their insightful remarks.

Note added in proof. The concatenation lemma of 3.2 was proved independently
in Y. Oren, On the cunning power of cheating verifiers: Some observations about zero-
knowledgeproofs, Proc. 28th Annual IEEE Symposium on the Foundations of Computer
Science, 1987, pp. 462-471, and in [26].

REFERENCES

[1] L. BABAI, Trading group theory for randomness, Proc. 17th Annual ACM Symposium on the Theory
of Computing, 1985, pp. 421-429.

[2] M. BLUM, Coin flipping by phone, Proc. IEEE COMPCON, 1982, pp. 132-137.
[3] L. BLUM, M. BLUM, AND M. SHUB, A simple unpredictable pseudo-random number generator, SIAM

J. Comput., 15 (1986), pp. 364-383.
[4] M. BLUM AND S. GOLDWASSER, An efficient probabilistic public-key encryption scheme which hides all

partial information, in Proc. Crypto ’84, Springer-Verlag, New York, Berlin, 1984, pp. 289-299.

MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 739

[5] M. BLUM AND S. MICALI, How to generate cryptographically strong sequences ofpseudo-random bits,
SIAM J. Comput., 13 (1984), pp. 850-864.

[6] R.B. BOPPANA AND R. HIRSCHFELI), Pseudorandom generators and complexity classes, in Advances
in Computer Research, Volume on Randomness and Computation, JAI Press, to appear.

[7] G. BRASSARD AND C. CREPEAU, Zero-knowledge simulation of Boolean circuits, Proc. Crypto ’86,
Springer-Verlag, New York, Berlin, 1987, pp. 223-233.

[8] , Non-transitive transfer of confidence: A perfect zero-knowledge interactive protocol for SAT and
beyond, in Proc. 27th Annual IEEE Symposium on the Foundations of Computer Science, 1986,
pp. 188-195.

[9] U. FEIGE, A. FIAT, AND A. SHAMIR, Zero knowledge proofs of identity, Proc. 19th Annual ACM
Symposium on the Theory of Computing, 1987, pp. 210-217.

10] Z. GALIL, S. HABER, AND M. YUNG, Symmetricpublic-key encryption, Proc. Crypto ’85, Springer-Verlag,
New York, Berlin, 1985, pp. 128-137.

11 ,A private interactive test ofa Boolean predicate and minimum-knowledge public-key cryptosystems,
Proc. 26th Annual IEEE Symposium on the Foundations of Computer Science, 1985, pp. 360-371.

12] , Cryptographic computation: Securefault-tolerant protocols and the public-key model, Proc. Crypto
’87, Springer-Verlag, New York, Berlin, 1988, pp. 135-155.

13] Symmetric public-key cryptosystems, 1989, submitted.

[14] O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their validity and a

methodology ofcryptographic protocol design, Proc. 27th Annual IEEE Symposium on Foundations
of Computer Science, pp. 174-187.

15] ,How to play any mental game, Proc. 19th Annual ACM Symposium on the Theory of Computing,
1987, pp. 218-229.

[16] S. GOLDWASSER AND S. MICALI, Probabilistic encryption, JCSS, 28 (1984), pp. 270-299.
17] S. GOLDWASSER, S. MICALI, AND C. RACKOFF, The knowledge complexity ofinteractive proofsystems,

Proc. 17th Annual ACM Symposium on the Theory of Computing, 1985, pp. 291-304; SIAM J.
Comput., 18 (1989), pp. 186-208.

[18] S. GOLDWASSER AND M. SIPSER, Private coins versus public coins in interactive proof systems, Proc.
18th Annual ACM Symposium on the Theory of Computing, 1986, pp. 59-68.

[19] G. H. HARDY AND E. M. WRIGHT, An Introduction to the Theory of Numbers, Oxford University
Press, London, 1954.

[20] R. IMPAGLIAZZO AND M. YUNG, Direct minimum-knowledge computations, Proc. Crypto ’87, Springer-
Verlag, New York, Berlin, 1988, pp. 40-51.

[21] E. KRANAKIS, Primality and Cryptography, John Wiley, New York, 1986.
[22] M. LUBY, S. MICALI, AND C. RACKOFF, How to simultaneously exchange a secret bit by flipping a

symmetrically-biased coin, Proc. 24th Annual IEEE Symposium on the Foundations of Computer
Science, 1983, pp. 11-22.

[23] I. NIVEN AND H. S. ZUCKERMAN, An Introduction to the Theory of Numbers, John Wiley, New York,
1972.

[24] C. H. PAPADIMITRIOU, Games against nature, Proc. 24th Annual IEEE Symposium on the Foundations
of Computer Science, pp. 446-450.

[25] A. RENYi, Foundations of Probability, Holden-Day, New York, 1970.
[26] M. TOMPA AND H. WOLL, Random self-reducibility and zero knowledge interactive proofs ofpossession

of information, Proc. 28th Annual IEEE Symposium on the Foundations of Computer Science,
1987, pp. 472-482.

[27] A. C. YAO, Theory and applications of trapdoorfunctions, Proc. 23rd Annual IEEE Symposium on the
Foundations of Computer Science, 1982, pp. 80-91.

[28] ., How to generate and exchange secrets, Proc. 27th Annual IEEE Symposium on the Foundations
of Computer Science, 1986, pp. 162-167.

