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Abstract. 

la a previous paper [BS] we proved, using the elements of 
the Clwory of nilyotenf yroupu, that some of the /undamcn- 
la1 computational problems in mat& proup, belong to NP. 
These problems were also ahown to belong to CONP, 
assuming an unproven hypofhedi.9 concerning finilc simple 
Q’ oup,. 

The aim of this paper is t.o replace most of the (proven 
and unproven) group theory of IBS] by elementary com- 
binatorial argumenls. The rev& we prove is that relative 
to a random oracle f3, tbc meutioned matrix group prob- 
lems belong to (NPncoNP)L! 

Thr problems we consider arr membership in and order 
of a matrix group given by a list of gnrrntors. These prob- 
trms can bc vicwrd as m~lt~idimcnsio~r;lI vemiorm of a closr 
rrldivr of t.hc disrrct,r logarilhm prob1c.m. I tencc 
A’ltiro.VI’ might be the lowrst natural romplcxity rla.us 
t bry may ii1 in. 

Wr remark that the resutt,s remain valid for blark boz 
groupa where group operations are prrformcd by an oracle. 

Thcb tools we inlroduce seem interesting in their own 
right. \Ve define a new hierarchy of complexit)y ctesscs 
A.4Ak) “just above NP’, introduring Arthur ud. Merlin 
games, the bonnded-away version of Pnpadimitriou’s 
Games against Nature. We prove th:rt. in spite of their 
analogy with the polynomial time hierarchy, the finite lev- 
rls of this hierarchy collapse t,o Afsf=Ah42). Using a com- 
binatorial lemma on finite groups [IIE], we construct a 
game by whirh t.he nondeterministic player (Merlin) is able 
to coavlnre the random player (Arthur) about the rctation 
ICj=N provided Arthur trusts conclusions based on st,a- 
tisticnl rvidrnce (such as a Solovay-Strassen type “proof” 
of primatit,y ). 

One can prove that AM consists precisely of t&ose 
langungrs which belong to iV@ for almost every oracle 13. 

Our hirrarchy has an intrrcsjdng, still unclarified reta- 
tion to imother hierarchy, obt,ained by rcnloving the cen- 
t.rat ingrrdirnt from the l&r ~a. Ezpcrl games of 
(;otctwassrr, Mirati and Rarkoff. 
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1. Introduction 

1.1. Randomness vs. mathematical intractabil- 
ity: a tradeoff 

l’aul E&k has taught us that randomness can do 
miracles as tong as we don’t insist on explicit con- 
structions. If we do, quite often much heavier 
mathrmatics has to be invoked - if there is any help 
at all. The few citSes where randomness has SUCCCSS- 
futiy hccn eliminated, like for expanding graphs, point 
to the tIiITiiculty (cf. [Pin], [PipJ vs. [Mar], [CC]). 

A ra.ndom st.ring can sometimes replace the most 
forrnidahle msthelrtotical hypothesis. The Solovay- 
Strnsscn bf(JntC? Carlo primality test [SS] vs. Gary 
Mittrr’s det.erministic primality test, based on the 
Extended ltirmann Hypothesis [Mill, is one of the 
famous examples. 

The objective of this paper is to introduce some 
new random tools to replace an unproven group 
theoretic hypothesis. 

1.2. Matrix groups 

Lly far the most common wrry to represent 
groups is by matrices. This is almost the only way 
groups are being thought of in science. The term 
“ltcprceentation Theory” refers to matrix representa- 
tions, a central tool in the theory of finite groups, har- 
monic analysis, quantum mechanics and other fields. 

It s.ppears that the main reason why compn+a- 
tional group theory has so far mainly concentrated on 
permutation groups is that while many of the basic 
problems in permutation groups are solvable in poly- 
nomial time (cf.[Sinr], (FHL], (BKL]), even the sim- 
plrst questions on matrix groups seem computation- 
ally infr.asiblc. 

The membership problem (does a given matrix 
belong to a group given by a list of generators?) is 
undecida6le for 4 by 4 integral matrices (hlih]. 

It seems therefore wise to r&rict our attention 
to malrix groups over finite fields. Here the basic 
problems (membership, order) are at least finite and in 
fact easily seen to belong to PSPACE, On the other 
ha.nd, finding a polynomial time algorithm seems 
hopclcss even in the one-dimensional (number 
theoretic) case. Concerning the place of these 
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problems in the polynomial time hierarchy, the best 
we may hope for is putting them in NPflcoNP. 

We don’t quite manage to .achieve this goal but 
we get about as close to it as a Monte Carlo primality 
test to proving primality. 

We shall introduce the compIexity class AA4 
which is the randomized version of NP in the same 
way as Gill’s BPP is of P [Gil. Our main result is 
this. 

Theorem 1.1. Membcrahip in, and order of matrix 
groups over finite fields belong to AM~IcoAM. 

We shall outline the proof of this result in Section 
5. For the details see (Ba]. The necessary complexity 
theoretic machinery will be treated in detail in Sec- 
tions 2-4. 

For comparison as well as for later use, let us 
quote the two main results of [FE]. They ssscrt that 
the membership problem belongs to NP and so does 
the problem of deciding whether an inheger divides 
the order of a group. Moreover, it has been proved in 
[BS] that both problems belong to coNP as well if we 
are willing to accept a reasonably plausible but prob- 
ably very difficult new mathematical hypothesis on 
finite simple groups (the Short Presentation Conjec- 
ture [f3!3, p.23Sj). 

1.3. The ingredients 

We shall define a hierarchy of complexity classes 
denoted A, h4, MA, AM, MAIM, AM.4, etc.: the 
Arfhur-Merlin hierarchy. Trivial inclusions will 
correspond to substrings, e.g. MCA4AcMAM. More 
over, A=UPP and n4=NP. it wi1.l be straightforward 
to show that AMcXPB for almost every oracle D. 

The maio component of the proof of Theorem 1.1 
is an approrimafc upper bound algorithm of chass 
M4M. This algorithm almost certainly accepts the 
pair (G,N) if Ic’l< N and almost certainly rejects it if 
1 Gl22N. 

The algorithm is baqed on a combinatorial lcmrna 
on finite groups [BE]. 

Another ingredient is the uerificafion of the clioi- 
aora of the order of a group. This is in clsss NP by 
[BS, Theorems 0.1 8~ 10.11. One c.an, however, replace 
the group theoretic methods of [BS] by an elementary 
and much more general technique, due to Sipser [Sip] 
and based on the Carter-Wegman universal hash func- 
tions [CW], to obtain a slightly weaker, AM class 
divisibility verification. 

A combination of divisibility and approximate 
upper bound verifications puts verification of the 
czact order of a given group in hL4M. 

The last crucial ingredient is that MAM=AM or 
more generally that the hierarchy above AM collapses 
to AM This result will be treated in detail in this 
paper. 

2. A hierarchy of coxnplexity classes 

2.1. Convincing a distrustful party 

King Arthur recognizes the supernatural intcllec- 
tual abilit.ies of Merlin but doesn’t trust him. How 
should Merlin convince the intelligent but impatient 
King that a string zr belongs to a given language I., ? 

If &NP, Merlin will be able to present a u~ilneas 
which hthur can check in polynomial time. 

We shalt define a hierarchy of complexity classes 
“just above NP’ which still allow Merlin to convince 
Arthur about membership provided Arthur accepts 
stat.ist.ical evidence. 

We define these relatively low complexity classes 
in terms of a combinatorial game played by Merlin 
and Arthur. 

2.2. Combinatorial games 

The general definition of combinatorial games will 
be given in 3.1. 

IIcre we consider games whose rules depend in a 
polynomially computable way on an input string 1. 
The precise definition is this. 

In our games, two players alternate moves. 
At the beginning of the game, on input z a deter- 

ministic polynomial time bounded Turing machine 
produces a nonnegative integer t=1(1zl) and a 
sequence of positive integers nl,...,nl such that 
CL, ni< 1x1 ‘On”. 

Each player, when it is his/her turn, outputs a O-1 
string. The player at turn i outputs a string of length 
n;. 

The history of the game (the sequence of previous 
moves) is always known to each player. 

After 41~1) moves the game t.erminates and a 
det,erministic polynomial time bounded Turing 
machine, known to both players, evahmtes z and the 
sequence of moves and declares the winner. 

The length of the game is t&he total number of 
mows. The size of the game is I~+>~L, ni. 

2.3. Arthur vs. Merlin games 

In a Game against Nature Ipa] we require that 
player A (‘Nature”) be indifferent: 

(i) the moves of A are random (A just rolls the dice 
and does not care whether he/she wins or loses), 

Given such a game, let w(z) denote the probabil- 
ity that a player M, capable of optimizing his/her 
winning chances at each move, will be able to beat 
the indifferent player A. 

We shall call such B game an Arthur va. Merlin, 
game if, in addition t.o (i), the following holds: 

(ii) for any input string z, one of the following 
holds: 

(4 W) > 2/3 ,or 
P) WI4 < l/3. 

The language accepted by tbis game consists of 
those strings 2 for which ahernative (a) holds. 
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Let Ahflt(n)) denote the class of Ianguages 
accepted by Arthur-Merlin games of length t(]zj) with 
Arthur moving first. Analogously, M4t(n)t 
corrrsponds to games where Merlin moves first. Let 
further 

AM(P)=MA(P)=U{AM(n’):k>O} 
(gamn of polynomial length). For qn)=c (constant) 
let us use strings of length c to indicate the sequence 
of players. For example 

AM(3)=Ah4A, MA(I)=MAMA, MA( l)=M. 

It is the condition that winning probabilities must 
be bounded away from l/2 that makes such a game a 
“practical” way for Merlin to convince Arthur that z 
belongs to L.’ Clearly, Ihe bounded-awayness condi- 
tion (ii) makes the classes AM(f(n)) much smaller than 
the corresponding classes defined by Papadimitriou 
[Pa]. In fact, it seems very unlikely that coNP could 
be part of AhflP). 

2.4. The hierarchy collapsea 

We shall mainly be concerned with the finite iev- 
eis of this hierarchy. Clearly, h4=NP (Merlin has the 
power of nondeterminism) and A=BPP. Moreover, 
obviously, 

AM(k)uMA(k) CAM(lt+l)nMA(k+l). 
What may be slightly surprising is that this hierarchy 
collapses. 

Theorem 2.1. For any constant k>2, 

AM = Ah4(I;) = MA(k+l). 

Sections 3 and 4 are devoted to the proof of this 
result. 

Theorem 2.1 says that the advantage Merlin gains 
if we force Arthur to reveal ail his moves in advance 
is not too great. Note, however, that the cost of this 
reduction is a substantial increase of the size of the 
game. We have to essentially square the game size for 
each alternation saved. Thus, the following question 
remains open. 

Problem 2.2. Is AM = AM(P) ? 

A short hierarchy still survives: 

NFUBPPCMAC:AMcAMP)cPSPACE. 

These inclusions seem more likely to be proper. 

2.6. Relation fo the poiynomial time hierarchy 

It is known, that BPP is contained within the 
polynomial time hierarchy [Sip]; in fact it is contained 
in Cz~l12 (P. G&s, see [Sip]). Perhaps the most 
elegant proof of this fact was given by Clemens Lau- 
temann [Lau]. His proof directly generalizes to AM 
and MA and gives the following result. 

Proposition 2.3. (a) AMG&. 
(b) MACII,nll,. 

The idea of the proof is, that, as in the proof of 
thr result on BPP, the “random” quantifier (9 ) can 
be repiactld by an existmtinl and a universal 
quantifiers, in either order. Membership of a string z 

in a lnngua e @AM can be defined hy an expression 
of the form h yg.zd(z y,r), hence in this case sy has to 
be replaced by Vudv to yield (a). The proof of (b) 
goes analogously, using, in addition, our result that 
h4ACAh4. We omit the details. # 

It remains an open pioblem whether the 
unbounded levels of the Arthur-Merlin hierarchy are 
contained in a finite level of the polynomial time 
hierarchy. We believe the answer is yes. 

Conjecture 2.4. AMP)sC, for some (finite) k. 

Another relation we believe is true is that AM 
(and even AM(P)) does not contain CONI? This, of 
course would imply NP#coNP. Nevertheless some 
supporting evidence might be found. For instance one 
might hope to be able to prove such a separation 
result relative to a (random) oracle. 

2.6. Random oracles 

It is straightforward to prove that AM CNPB 
for n.lmost every oracle B. 

I!sing methods standard in recursion theory (cf. 
[iiu],(Sac, Ch. lo]), one can actually prove the foilow- 
ing 

Proposition 2.6. 
(i) Bf’l’ consists of precisely those languages 

which belong to Ps for almost every oracle ir. 
(ii) Ah4 consists of precisely those languages 

which belong to NP” for almost every oracle B. 

This observation shows that AM is a fairly 
natural complexity class. 

2.7. Another hierarchy 

Our aim was to put malriz group order in as low 
a compicxity class as possible. This is how the class 
AM arose. 

Going in the other direction, one might wonder 
what is the largest complexity class still giving Merlin 
(or rathrr: the Expert) a chance to convince Arthur 
(or rather: the IJser) that 61% 

“Intt*ractivc proofs with minimum information”, 
a not.ion recently intzoduced by Goldwasser, Micali 
and Rackoff [C‘MR], motivate the following definition. 
(Jscr and Kxpcrt arc playing a cardgame (as opposed 
to the chessgame of Arthur and Merlin). IJser draws 
sll the cards at random at her first move and hides 
them from Expert. When it is her turn, User feeds the 
history of the game (including the input string 2) into 
a polynomial time bounded Turing machine (known 
to Expert) and reveals the output of the computation 
to Expert. Expert has unlimited computational power. 
She prints a string of polynomial length. When the 
game terminaks, a polynomial time bounded Turing 
machine, known to both players, evaluates the history 
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of the game and declares tbe winner. 
We suggest to call such a game a 

User vs. Ezpert game if Expert’s chances of winning 
are bounded away from l/2. Thus we can deEne the 
complexity classes EU(Yn)) and Uqt(n)) in analogy 
with the corresponding Arthur-Merlin classes. 

Iu4~~&&0: 
that ,4M(YnK VE(f(nh 

Further., E’=M= NP, 
V=A=@P, EU=MA. The first open question is 
whether the inclusion AMCVIS is proper. Perhaps 
more intriguing is the quest& whether there is a col- 
lapse in the IJscr-Expert hierarchy. And the final ques- 
tion: is Crfl/‘) (polynomial length User-Expert games) 
the ultimate random version of PIP ? Observe t.hat 
even UhlP) is unlikely to contain CONF’. 

Finally, can one prove that at least for constant k 
the class Lrflk) is on a finite level of the polynomial 
time hierarchy? (Recall that AJfik)=.4M&ll,.) 

3. Arthur-Merlin games 

In this section we build the machinery for the 
proof of Theorem 2.1. Tbe proof will be compl&d in 
Sect ion 4. 

3.1. Randomized combinatorial games 

Let D,, . . . ,D, be noncmpty finite sets and / a 
function defined over the Cartesian product 

dor@=D,x . . * x D,. 

If the range of / is {O,i} then J’ clrfint~ a rombinn- 
lotial game. In this game, two players, hcncrf0rt.h 
clpnotpd M anti ,4, altcrrratc! IIIOVP:~. (WC idcntily our- 
sclvcs with M ; :I is ttre adversary.) The 1’” move of 
the game consists of pirkin 

1 
an rlrmrnt Z,fl)i. The 

game tcrminatcss after the 1’ move. Player M wins if 
nr,, . . ,rJ=l. The sequence (xi, . . ,YJ is the hi+ 
fory of the game and darn(j), the set of all possible his- 
tories is the game space. The lrire of the ga,rne is 
logldom(j)J (base 2 logarithm). 

nf may or may not be the the first player. In order 
to properly specify the Tame we have to tell who 
moves first. The game is specifie,d by the pair (/,Q) 
whcrc Q is the first player. (&=A or n4.) 

If the range of / is the interval [O,l] then (j,Q) 
defines a randomited game played as follows. The two 
players make a total of t moves aa before and then the 
referee flips a biased coin and with probability 
P=n+ . . . ,PJ declares M to be the winner. 

We call f the payofl~uncfion of this game. 
In such games, the strategy of A4 should aim at 

maximizing the probability of winning. 

3.2. Games against an indifferent adversary 

\\‘e shall assume that the adversary (player A) is 
indi//erenf, and setccts a uniformly distributed ran- 
dom element of Di for the c” move. On the other 
hand, MS moves will be assumed to be optimal (M has 
immense computational power). In order to express 
the winning chance of A4 in this game, the following 
formalism will be helpful. 

For a function f taking real wlues over t,he 
nonempty finite domain D=don{fi, we shall use the 

notat.ion Aznz) and A4zfiz) for t,he average and max- 
imum operators: 

Arj(z)=C D s 9, MzAs)==max{JTz)\zCD}. 

Functions AZ,,..., ZJ defined over the Cartesian 
product D,X * * . x Dt of the respective domains of 
the variables permit prefixes . of lhe form 
QP, * . Qfzf whrrc Q,==M or A. 

In a game played optimally against an indifferent 
ndvrrsary, t,he probability that A4 wins is clearly 

,Uz,~zqA4~ . . . QzJq,...,ir,) 
if M IIIOVPS first (Q is A or M depending on the parity 
of t), and 

3.3. Simulation of biased games 

We shall be interested in games where one of the 
players has a significant advantage. These are the 
games to be played between Arthur and Merlin; 
Arthur’s moves are random. Note that in our model, 
we know that the game is biased but not in whose 
favor. 

Such games will be used to recognize, by a reliable 
slatistical test, which of the players has the advan- 
tage. We define t.he uncertainty of the game to be 

wtlrrr p is the probability that A4 wins. (Q has the 
first move, 1 is the payoff function.) The greater the 
bi.a.s, the smaller is the uncertainty (of the outcome of 
the game). 

Our aim is to simulate the given game (A&) by 
another biased game (/‘,Q’) with fewer rnoveq such 
that the following requirements arc met.: 

(i) The bi.as of the new game goes in favor of the 
same player as in the original game. 
(ii) The game spore (the domain of the payoff func- 
tion) does not increase significantly. 
(iii) The uncert.ainty decreases (or at Ieast does not 
increase substantially). 
(iv) It should be easy to simulate /’ from f What 

this means is that given a history u for J’ one can 
easily compute a small family of histories v],...,u, for / 
such that the referee’s decision a in r is an easity 
computed function of the decisions pi corrc+sponding 
to Vi and possibly of additional independent coin 
tosses. (The ,9; and (z a,re random 0-l variables with 
expected values nl,i) and f(u), resp.) 

CondiGon (i) expresses that the new game simu- 
lafes the original one. Conditions (ii) - (iv) guarantee 
that the complexity of the game does not increase 
significantly. 
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3.4. Increasing the bias 

The first step is to turn a modeel bias into an 
overwhelming one. This is easily aceomplisbcd by Iet- 
ting the players play the game in parallel on several 
“boards” and declaring M the winner if he wins on 
more than hd~of the boards. 

In order to formalize this, let us define the game 
(P,Q) as follows. The domain of /is 

vfx . . . XDf. 
The game has the same number of move (1) a~ (I,&). 
Let US denote the Ii” move by (ZiI,...rZik) where Zi~~~~. 
Let pj = Azv..,,z,.) and let f(~ll,...,~J be the proba- 
bility that out of k independent random Q-1 variables 
sj where Ij;lsj)=pj, more than half come out to be 1. 

Proposition 3.1. Suppose unc(/,Q) < l/3. Then 
unc(P,Q) < tk where c==2&/3 = 0.9428...< 1. 

Proof. The number of boards where the favored 
player loses is the number of successes in a sequence 
of k Bernoulli trials each with probability of success 
less than l/3, Standard calculation shows that the 
probability that this number is at least k/2 is less 
than ck. 0 

Of course, similar result holds if we replace l/3 by 
any constant less than l/2. 

3.5. Switching moves 

In this section we show, how a two-move biased 
MA game (Merlin first, Arthur second) can be simu- 
lated by a two-move AM game in the sense that con- 
ditions (i) - (iv) will hold. We describe the simulation 
after this handy preliminary lemma. 

Switching Lemma 3.2. Let X and I’ be two 
nonempty finite sets and let H(z,y) be a non-negative 
function defined over XX Y. Then 

AyMzH(2,y) <_ pq42.4yH(z,y)* 

Proof. For *Y, let z(y) be Merlin’s optimal reply in 
the AMgame: M~W*,Y)=W(~Y),Y)- Let 
I~z)={ ye Y 1 z(y)=z}. Clearly, the Y(z) partition Y. 

Let +=M~Ay~l(z,y). It follows that for every 6X, 

Of course simply switching the order of moves will 
give Merlin an unfair advantage, capable of reversing 
the odds. In order to balance this advantage, we shall 

ask Arthur to start with independent random first 
LOVES on a large number of boards. Merlin will have 
to give the same response on all boards and still win 
the majority. We are going to formalize this idea. 

Let X and Y again be two nonempty finite sets 
and flr,y) a payoff function on XX I’, i.e. O<flz,y)<_l. 
WC shall simulate the MA-game (I,M) by the AM- 
game (!‘,A) defined as follows. 

The game (F,A). We select a positive integer m. 
The game space will be dom(fl = Y’“XX. A game 
history is described by a sequence ($z) where ZEX 
and J=(y,, * 9 * ,y,), y,f Y. Merlin is the winner if he 
wins more lhnn halj of the (j&I)-games (2,~;) 
(izl, . . . ,n). (These tn events are independent; the 
4” one has probability /lz,yi).) 

Upper Bound Lemma 3.3. Let $~=MzAyl(z,y) be 
the probability that Merlin wins in the MA-game (/,I%!) 
(the game to be simulated). Then his chance of win- 
ning in the simulating AM game (F,A) defined above 
is 

Proof. Let I denote a subset of size [m/21 of 
(I,...,m}. Clearly, the probability q&r) that Merlin 
wins after game history (J,z) is at most the sum over I 
of the probabilities that he wins all games {(z,yJ:iEI) 
in the (/,M)-game. The latter probability is 
rli~~~,yi). We conclude that for every *X, 

Since this inequality holds for every z, we obtain that 
MnlgIQz) 5 2m$m/2. 

Now an application of the Switching Lemma to F 
and I’“’ in the roles of H and Y, resp., completes the 
proof. 8 

The proof of the tower bound is more straightfor- 
ward. We consider the same game (F,A) 89 above. 
I-$=I-MzAyffz,y) is the chance that Merlin loses in 
the (/,M)-game. We want to show that if l-$J is small 
then so is ~--AJMzF(J;z). 

Lower Bound Lemma 3.4. The probability that 
Merlin loses in (F,A) is 

I -ng4zqy,z) < 2”( l-$4”/? (3.2) 

Proof. Let ‘Jf==AJMzfl~z). Let % be Merlin’s 
optimal opening move in the (f,M)-game. Clearly, 
$=AyAz,,,y) and q>AgflJ,zJ. The right hand side 
in the last inequality is Merlin’s chance of winning in 
(F,A) using the strategy that, no matter what Arthur’s 
opening move he selects I+ The probability that 
Merlin loses at least half of m independent games 
under this strategy is less than the sum over all sub- 
sets I of {I,..., m) of cardinality rrn/21 of the probabil- 
ity t.hat Merlin loses each of the games indexed by 
iEI, i.e. l--9 5 C/l-ti)lq 5 Zrn(i-$~)~P. ) 



4. The collapse 

In this section we complete the proof of Theorem 
2.1. We have to show how to simularte any combinatorial 
game by an AM-game. 

Let (g,A) be a game of length t>3 starting with 
Arthur’s move. Let dom(g)=D, x * * * X D,. We shall 
switch the second and third moves in this game in the 
way (F,A) was constructed from (f,M) in Section 3.5. 
Thus, we select a positive integer m and construct the 
new game space 

dom(G)=(D,~D$‘)xD~x~l:_~&“. 
The parentheses indicate that the 

hav;;;e less move than (g,A). 

~((zl,B),zz,z,,~,...rZt) ‘3MG-l 
we define G(ri?) to be the probability 
more than half of the m (/,A)-games 

game (G,A) will 

that Merlin wins 

~i7;=(Z]r22123i,24i,..,, Z~i) (i=1,2 !,..., m). 
We shall prove that if unc(g,A)i is not too large and 

m is chosen appropriately then G simulates g in the 
sense of Section 3. 

Let n=max{b, t 
loglDs1]} (base 4! logarithm). 

Recall that the size of a game is the base 2 loga- 
rithm of the order of the game space. 

Theorem 4.1. Let m=3n and assume unc( g,A)<1/18 
Then 

(a) (G,A) simulates (g,A) (the same player has the 
advantage in both). 

&I unc(GA)L9une(g,A). 
(c) sire( G,A)s(size(g,A))2, provided aize(g,A)>20. 

Proof. Checking (c) is simple arithmetic. To prove (a) 
and (b), let Q be the favored player in (g,A) and let 
c=unc(g,A). Then c is the prob:ability that Q loses. 
Notice that winning probabilities don’t change if we 
truncate the game at any given level, assigning Merlin’s 
winning probabilities at the leaves of the truncated 
game tree as payoff function values to the corresponding 
(short) histories. Moreover, truncating after t,he third 
move is interchangeable with the operation of construct- 
ing G from g. Therefore we may henceforth assume t=3. 
(Observe that the notion of randomized games enables 
this simplification.) 

For greater clarity, we shall write X for Dr, Y for Dz 
and Z for 4. 

Let z denote Arthur’s opening move in the (g,A)- 
game. This can also be interpreted ss part of the open- 
ing move in the (G,A)-game. Once z is fixed, we are left 
with. two two-move residual games: the MA-game (g,,M) 
and the AMgame (G,,A) defined on YX Z and Z’“X Y, 
resp. They are related to each other precisely in the way 
(F,A) was constructed from (/,M) in Section 3.5. 

Let u(z) and yz) denote the probabilities that Q 
loses in (gnM) and (G,A), resp. Then a combination of 
the Upper and Lower Bound Lemmas (3.3, 3.4)‘implies 
that for every 6X, 

u(z)~2”~ +(2)“‘9524”u(z)J”P (4-l) 

It is easy to see that for u(z)<1/8, the right hand 
side of (4.1) is not greater than u(z). On the other hand, 
for a random 2EX, 

Prob(u(z)>l/8)<8E(u(z))=8c (4.2) 

and therefore the probability that Q loses in the (C,A)- 
game is 

Ry our assumption c<l/lSthis means that Q is still 
the favored player, proving (a), and that unc( G,A) is the 
probability that Q loses, thus less than 96, proving (b). 0 

Corollary 4.2. Let (/,Q) be a biased t-move combina- 
torial game. Then (j,Q) can be simulated by a combina- 
torial AMgame (F,A) such that 

where c1 is a constant, depending on t, the bias of (/,Q) 
and the desired bias of (F,Q). 

Note that here we insist that the games be combina- 
torial, i.e. the values of the of the payoff functions are 
0,l. This is necessary for the proof of Theorem 2.1. 

Proof. First, at a price of an oft) increase in size we 
achieve that (j,Q) has uncertainty 9-’ (Proposition 3.1). 
Then we apply Theorem 4.1 repeatedly at most t/2- 
times. (If Q=M, we may introduce a dummy first move 
for Arthur for convenience.) Finally we use Proposition 
3.1 again to achieve the desired bias. Clearly both con- 
structions used preserve the combinatorial nature (91 
payoff) of the games (although the proof required a 
detour into randomized games). I 

This result immediately implies Theorem 2.1. ( 

Problem 4.9. Give some evidence, perhaps in 
model, that m-games are not strong enough 
late AMgames. 

a limited 
to simu- 

6. Statistical verification of the 
order of a matrix group 

5.1. Statement of the problems 

We shall consider matrix groups C over a finite field 
F. Each group will be given by a list of generators. We 
are mainly concerned with the following two problems. 

Membership: the set of pairs (g,G) where EC. 
Ezact order: the set of pairs (N,G) where ICI-N. 

In addition, we need the following classes. 
p-groupa: {(p,G): IG( is a power of the prime p}. 
Divisor oj order{(N,C): the integer N divides Iq}. 
Loloer bound {(N,G): N<lGj} 
Upper bound {(N,C): Iq<N). 

It is easy to see that if ezact order belongs to NP 
then it also belongs to coNP and so does membership aa 
well. If divisor o/order belongs to NP then so does 
lower bound. If both lower and upper bound belong to 
NP then so does ezact order. 

Furthermore, all these statements relstivize to any 
oracle and in particular remain true if NP is replaced by 
AM everywhere. 
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5.2. Approximate bounds 

The problems of verifying approximate upper or 1) . . . lower bounds cannot be stated as language recognlclon 
problems. Randomized complexity classes such as those 
related to the Games against Nature - with a “continu- 
ous” spectrum of accepatance probabilities - are particu- 
larly suited for formalization of approximate verification 
problems. 

Let C=AM(t(n)) or MA(f(n)) be one of the complex- 
ity classes discussed in Section 2. 

We shall say that the apptozimafe upper bound 
problem belong8 to elasa C if there exists a correspond- 
ing Game against Nature of length t(n) (not necessarily 
satisfying 2.3 (ii)) taking input strings of the form (N,G’) 
such that 

(if if ICI 2 2N th en VN,c)< l/3; 
(ii) if IGI<N then w(N,C)> 2/3. 

(Recall that wN,C’) denotes the probability that Merlin 
is able to win on input (N,C).) 

We define the complexity of approzimafe lower 

bound8 analogously. 

5.3. Main results 

We outline those partial results which will add up 
to a proof of Theorem 1.1. The central part is the fol- 
lowing. 

Theorem 6.1. The approzimafe upper bound problem 
belongs to MAM. 

On the other hand, a technique of Sipser [Sip] 
implies quite generally (not only for groups, but for 
level-sets of any N&set of strings) that 

Theorem 5.2. The apptozimate lower bound problem 
belongs to AM. 

A simple application of Sylow’s Theorem and the 
Reachability Theorem (BS, p.2321 shows that Theorem 
5.2 automatically implies its stronger version, namely 

Corollary 5.3. Divisor of order belongs to AM. 

Proof. In order to verify that N divides the order of G, 
Merlin guesses and verifies the prime factorization of N. 
For each prime power dividing N, he guesses a 
corresponding Sylow psubgroup P of order, say, p’. He 
verifies that P is a subgroup of G (membership test) and 
that P is a pgroup. (Both properties belong to NP [IS].) 
Then he verifies (via Theorem 5.2) that 14>p’//2. This 
implies that p’ divides ICI. a 

Corollary 5.3 clearly implies that lower bound 
bel6ngs to AM. 

We remark that divisor o/order actually belongs to 
NP (this is the main result of [IN]; its proof occupies the 
Brst ten sections of that paper) but we don’t need that 
fact now. 

Finally, Corollary 5.3 and Theorem 5.1 immediately 
imply that exact order belongs to MAM. As a matter of 
fact, if we know that the order of C is divisible by N 
and is less than 2N then by Lagrange’s theorem we con- 
clude that I c]=N. 

Therefore, by Theorem 2.1, ezaef order belongs to 
AM. Thus, in view of the comments in Section 5.1, 
Theorem 1.1 follows. 0 

5.4. A combinatorial lemma 

The approzimate upper bound algorithm of class 
MAM will be based on the following elementary result. 

Lemma 5.4. [BE] Let G be a finite group of order N 
and let 

f= LlogN+log In N+3J 
Then there exist elements z,,...,z,~C such that every 
member of G occurs among the 2’ subproducts 
z;l . . . zI( where ti= 0,l. 

(log and in stand for base 2 and base e logarithms, 
w4 

6.5. The “approximate upper bound- game 

We outline the proof of Theorem 5.1. 
First we note, that for the parameters of Lemma 

5.4, 2*/N <8 In N. Hence, “on average”, each element of 
G is represented a small number of times; small meaning 
at most a constant times the length of the input. (In a 
uniform encoding, the strings representing the elements 
of C cannot be shorter than log N. - The average 
referred to above should be interpreted as harmonic 
mean, i. e. the reciprocal of the arithmetic mean of the 
reciprocals.) 

This observation makes it possible for Merlin, having 
guessed zlr...,zl, to convince Arthur that there are 
unlikely to be more than, say, 9N/8 elements of C 
represented by the set S of the 2’ subproducts of the 2;. 
To this end, the players proceed aa follows. 

Merlin declares the values of N and t and exhibits a 
sequence z,,...,z( of elements of G. Arthur picks m=P 
random subproducts 8’ of the Zi (choosing any of the 2’ 
possibilities with equa I probability each time). For each 
j, Merlin exhibits a number l~ri~8 of representations 
of 8j as products of dilferent subsets of the z+ The aver- 
age T of the numbers 2L/rj is calculated. If T<17N/16 
then Merlin is declared the winner and Arthur accepts 
the inequality 1 Cl <QN/8. 

Clearly, Merlin’s optimal strategy is to exhibit as 
many representations for each 8j as possible. If 8j is 
represented in n. different ways as a subproduct, let 4 
= min{ ni,P}. #laying optimally, Merlin demonstrates 
that there are at least q representations of + It, is easy 
to see that the numbers l/nj are unbiased estimators of 
1512-L. Their variance is clearly less than their expected 
value (this is true of any random variable with range 
between 0 and 1). Therefore with increasing m, a con- 
stant relative error becomes exponentially unlikely. The 
effect of replacing nj by 4 is clearly negligible if t is 
large. This argument proves that the above strategy 
guarante? an almost certain win for Merlin if )Sl<N 
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and no strategy will give him 8 non-neg!igih!C winning 
chance if ]q>SN/S. 

The other task of Merlin is to convince Arthur that 
S contains nearly a!! members of c, say ]4<8]4/7. 

One can prove that for sufficiently large t the fo!- 
lowing two claims imply ]Gl<8]4/7: 

(i) the z; generate G ; and 
(ii) for each Zi, IS-- SZ~] < ]:{/t2. 

Merlin will have to produce a short proof of (i). 
This is possible because mem6erahip belongs to NP [BS]. 

The verification of (ii) require8 another AM class 
statistical test (which can be performed in parallel with 
the above described statistical verification of the ine- 
quality ]4<9N/8). Arthur, as before, selects a large 
number of random subproducts aj of the z+ Merlin 
responds by presenting, for each k, .l< k< t and for each 
of Arthur’s dj(S 8 representation of a$ & a member of 
S, i.e. a subproduct of the zi. Merlin wins if he is able to 
produce such a represent.ation for each pair (j,k). 
Clearly, if S=G then Merlin will be able to win 
(always). If, however, (ii) fails, then he has a neg!igib!e 
chance of winning. 

Putting this all together we conclude that if Merlin 
wins in both games then ]C] must be less t.han 9N/7 
unless Merlin was improbably lucky. On the ot,her hand, 
if lC]s N then Merlin is able to win in both games 
almost a!ways.This proves Theorem 5.1.. 

0. Black box group8 

As in [BS], matrices really have little to do with 
these results. We only need two prolperties of the matrix 
groups over finite fields: 

(i) The elements of the group are encoded by strings 
of uniform length. 

(ii) Group operations are performed in polynomial 
time. 

Note that integer matrices violate (i). 

A blnek boz group is defined by (i) and 

(ii’) Group operations are performed by an oracle. 

We should also wsume (in contrast to [BS]) that the 
codes are unique, i.e. each string corresponds to at most 
one element of the group. (This is true for matrix 
groups, but not for their factor groups. Induction argu- 
ments involving factor groups motivat.ed the omission of 
this assumption in [BS].) 

Al! results of this paper remain valid under these 
virtually minimal assumpt.ions. 

References 

[Ad] L. Adlernan, Two theorems on ranc!:)m polyno- 
mial time, in: Proc. 19th IEEE Symp. Found. 
Comp. Sci., 1078, pp. 75-83 

[Ba] L, Babsi, On the complexity of matrix group 
problems II, in preparation 

[BE] L. Babai and P. ErdGs, Representation of 
group c!ement,s as short products, in: Theory 
ant! Practice of Combinatorics (A. Rosa et a!. 
eds.), Annals of Discr. Math. 12 (1982), pp. 
27-30 

[!3S] L. Babai and E. Szemerddi, On the complexity 
of matrix group problems I, in: Proc. 25tb 
IEEE Symp. Found. Comp. Sci., Palm Beach, 
FL 1984, pp. 229240 

[BG] C. Il. Bennett and J. Gil!, Relative to a ran- 
dom oracle A, P’c#NP’#coNP” with probability 
1, SIAM J. Comp. 10 (1981), 9G113 

[BKL] L. Babai, W. M. Kantor and E. M. Luks, 
Computational complexity and the 
c!a.&fication of finite simple groups, in: Proc. 
24th IEEE Symp. Found. Comp. Sci., Tucson 
AZ 1983, pp. 162-171 

[CW] J. 1,. Carter and M. N. Wegman, Universal 
classes of hash functions, JCSS 18, no.2 
(1970), 143-154 

(FIIL] M. L. Furs& J. Hopcroft and E. M. Luks, 
Polynomial-time algorithms for permutation 
groups, in: Proc. 21st IEEE Symp. Found. 
Comp. Sci., Syracuse, N. Y. 1980, pp. 3641 

[CG] 0. Gaber and Z. Gali!, Explicit construction of 

]Gi] 

linear sized superconcentrators, J. Camp., Syst. 
Sci. 22 (1981), 407-420 

J. Gil!, Computational complexity of proba- 
bilistic Turing machines, SIAM J. Comp. 6 
(1977), 675-695 

428 



[GMR] S. Goldwasser, S. Micali and C. Rackoff, The 
knowledge complexity of interactive protocols, 
in: Proc. 17th ACM Symp. Theory of Comp., 
Providence, R. I. 1985 (this volume) 

[Ku] S. A. Kurtz, Randomness and genericity in the 
degrees of unsolvability, Ph. D. Thesis, Univ. 
of Illinois at Urbana, 1981 

[Sim] 

[Lau] C. Lautrmann, E/‘/J and thr polynomial hierar- 
chy, info. Proc. Lett,crs 17, no.4 (1983) 215-217 

[Sip] 
[Mar] G. A. Margulis, Explicit constructions of con- 

centrators, Probl. Percd. Info. 9 (1973) 71-80 
(English ‘transl. in Probl. Info. Transm. 
(1975) 325-332) 

PSI 

M. Sips”, A complexity theoretic approach to 
randomness, in: Proc. 15th ACM Symp. on 
Theory of Cornp., Hoston 1983, 330-336 

[Mih] K. A. Mihailova, The occurrence problem for 
direct products of groups (Russian), Dokl. 
Akad. Nauk SSSR 119 (1958), 1103-1105 and 
Mat. Sb. (N. S.) 70 (112) (1966), 241-251 

R. Soiovay and V. Strassen, A fast Monte 
Carlo test for primality, SIAM J. Comp. 6 
(1977) 84-85 

[St] J,. Stockmeyer, The polynomial time hiarsr- 
thy, Theor. Camp. Sci. 3, no. 1 (1976), l-22 

N. Pippenger, Superconcentrators, SIAM J. 
Comp. 6 (1977) 298-304 

Gerald E. Sacks, Degrees of unsolvability, 
Anualx of Math. Stud& 55, Princeton Univ. 
Press, Princeton N.J. 1966 (2nd ed.) 

C. C. Sims: Some group theoretic algorithms, 
in: Lcct. Notes in Math., Springer, N. Y. 1978, 
pp. 108-124 

[hlil] G. L. M II i er, Riemann’s hypothesis and tests 
for primnlity, J. Comput. System Sci. 13 - 
(1976) 306-317 

[Pa] C. H. Papadimitriou, Games against Nature, 
in: Proc. 24th IEEE Symp. Found. Comp. 
Sci., Tucson AZ, 1983, pp. 446450 

[Pin] M. Pinskrr, On the complexity of a concentra- 
tor, 7th Internat. Teletraflic Conf., Stockholm 
1973, 318/l-4 

429 


