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Abstract. In this paper, it is proven that when both randomization and interaction are allowed, the
proofs that can be verified in polynomial time are exactly those proofs that can be generated with
polynomial space.

Categories and Subject Descriptors: F.1. 1 [Computation by Abstract Devices]: Models of Compu-
tation—bowzded-uction deuices (e.g., Turing maclzine~, random access machmes); F. 1.2 [Computa-
tion by Abstract Devices]: Modes of Computation—interactiLw co??tputation, probabdistic computa-
ttorz, relations among modes; F. 1.3 [Computation by Abstract Devices]: Complexity Classes—cow-
ple.tity hierarchies, relations among complexity classes

General Terms: Algorithms, Theorem

Additional Key Words and Phrases: Interactive proofs, 1P, PSPACE

1. Introduction

The class 1P of languages that have efficient interactive proofs of membership
was introduced by Goldwasser et al. [8], and in a slightly different form by
Babai [1] (the equivalence between these models was established by Gold-
wasser and Sipser [7]). A language L belongs to 1P if a probabilistic polynomial
time verifier V can be convinced by some prover P to accept any x G L with
overwhelming probability, but cannot be convinced by any prover P‘ to accept
any x % L with a nonnegligible probability. Goldreich et al. [6] showed that 1P
contains some languages believed not to be in NP, but its exact characteriza-
tion remained a major open problem for several years. In a breakthrough
paper, Lund et al. [10] made ingenious use of earlier results by Valiant [12],
Toda [11] Beaver and Feigenbaurrr [2] and Lipton [9] to prove that 1P contains
the polynomial hierarchy PH. In this paper, we use surprisingly simple tech-
niques to extend the previous results and prove that 1P contains PSPACE.
Since every 1P language is trivially accepted by the PSPACE machine that
traverses the tree of all the possible interactions, this result completely charac-
terizes 1P.
The interactive proofs introduced in this paper use only public coins, are

accepted with probability 1 when the prover is honest, and require only
logarithmic workspace when the verifier is given a 2-way access to his random
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tape. They can be turned into zero knowledge proofs under the sole assump-
tion that one-way functions exist by using known techniques.

2. Quantified Boolean Fomnulm

The class of quantified Boolean formulas (QBF) is defined as the closure of
the set of Boolean variables x, and their negations i, under the operations A
(and), v (or), Vxl (universal quantification), and 3x, (existential quantifica-
tion). These operations can be mixed in any order, and in particular we do not
require that all the quantifiers appear in a leftmost prefix. For the sake of
convenience, we add the boolean equality operation, denote vectors of boolean
variables by X,, and extend the operations = , V, 3 from single variables x, to
vectors of variables X, in the obvious way.
A QBF in which all the variables are quantified is called closed, and can be

evaluated to either T (true) or F (false). An open QBF with k > 0 free
variables can be interpreted as a boolean function from {T, F}A to {T, F}.
The interactive proofs presented in this paper can only handle QBFs of a

special type:

Definition. A closed QBF is called simple if in the given syntactic represen-
tation every occurrence of each variable is separated from its point of quantifi-
cation by at most one universal quantifier (and arbitrarily many other symbols).

Example. VX1VX23X3[(X1 v X2) A VX4(X2 A X3 A X41] is simple, since:

(1) xl is used once, and only VX2 separates its point of quantification from its
point of use,

(2) x, is used twice; its first use is not separated from its point of quantifica-
tion by any universal quantifiers, whereas its second use is separated only
by VX4 ,

(3) x? is used once, and separated only by VX4,
(4) XJ is used once, and not separated by any universal quantifiers.

Example. VX1VX2[(X1 A X2) A Vx3(i1 A X3)] is not simple, since the second
occurrence of xl (which is negated) is separated from its point of quantifica-
tion by both VX2 and VX3.

The notion of simple QBFs seems to be quite restrictive. However, we can
prove:

THEOREM 1. Ellery QBF of size n can be transformed into an equiltulent
simple QBF whose size is polynomial in n.

PROOF. To turn a given QBF into a simple QBF, we completely rename all
the Boolean variables after each universal quantifier. by introducing new
existentially quantified Boolean variables x: to denote the jth name of the ith
variable, and equating each X; with its previous name .xf – 1. Consider, for
example, the QBF

qxl’dxzqx~vxq%r~ “.” Q(xl, Xz, . . . ).

in which Q is quantifier free. The transformed QBF is:

3X~VX~qXj(X~ = x!) A qx$vxfqx;qx~~x:

(x? ‘x;) A (x; ‘X!) A (xl ‘x$) A ~x” .’” Q(x{’, x\’ )5 _> . . .
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where X; I is the last name given to the initial boolean variable x:. This QBF is
simple by definition, and contains a quadratic number of variables (compared
to the original QBF). ❑

3. The Arithmetization of QBF

The problem of deciding whether a given closed QBF is true or false can be
expressed in an arithmetic form by using the following syntactic transforma-
tions:

(1)

(2)
(3)

Replace each Boolean variable xl by a new variable Z, which can range
over the (positive and negative) integers Z.
Replace each occurrence of 1, by (1 – z,).
Replace ~ by integer multiplication “, V by integer addition +, the

A

universal qua~tifica~on Vx, ‘by the integer product H.[ C{~,1), and the
existential quantifier 3x, by the integer sum Z,, ~ {0,l).

Example. Consider the true QBF:

B = VX,qXz[(Xl A Xz) V 2X3(~Z A X3)].

Its arithmetization yields:

[ 1A= ~ ~ (ZI” Z,)+ ~ (l--ZZ)” Z39

zl={~,l} z2e{o, l) Z3={0.11

which can be evaluated to the integer 2.

THEOREM 2. A closed QBF B is true iff the Llalue of its arithmetic form A is
nonzero.

PROOF. By straightforward induction on the structure of B. ❑

Remarks.

(1)

(2)

A problem may arise if we try to express a negated ~ directly as (c – A),
since the value c of the arithmetic form A of B is difficult to compute. We
avoid this difficulty by allowing negated variables but no negated expres-
sions in our definition of QBFs. This is not a real limitation, since we can
always push the negations in B all the way to the variables without
increasing its structural complexity.
We cannot replace the boolean = by arithmetic = , since we want to
interpret different non-zero integers as the same Boolean value T. We thus
have to replace xl = X, by (X, A xl) v (2, A 21) and arithmetize the expres-
sion as Z,zl + (1 – zl)(l – zj).

When B is true, the value of A can be quite large. However, we can upper
bound this value as follows:

THEOREM 3. Let B be a closed QBF of size n. Then the value of its arithmetic
form A cannot exceed 0(22”).

PROOF. For any (potentially open) subexpression B‘ of B, define v(B’) as
the maximal value of the arithmetic form of B‘ under all the possible 0/1
substitutions to the free variables.
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This value satisfies:

(1) If B’ is xl or ~,, then u(ll’) = 1.
(2) If B’ is B“ V B’”, then v(B’) < v(B”) + v(B’”).
(3) If B’ is B“ A B’”, then v(B’) s v(l?”) “ v(ll’”).
(4) If B’ is 3xlB”, then v(B’) s 2v(B”).
(5) If B’ is VX,B”, then v(B’) s V(B’’)2.
(6) When B‘ is closed, v(B’ ) coincides with the value of its arithmetic form.

It is easy to verify that 0(2zn) satisfies all the recursive inequalities. This
bound cannot be substantially improved, since for

B = ‘dxlvx~ ““”v.xn_13xn(xnv~n)$
d~xn( x,, V ,7.)) = 2, and each universal quantifier squares the previous
value. ❑

Since such large numbers cannot be handled by the polynomial time verifiers
in our interactive protocols, we reduce them modulo some smaller prime p.

THEOREM 4. Let B be a closed QBF of size n. Then there exists a prime p of
length polynomial i~z n such that A # O (tnodp) if B is true.

PROOF. Assume first that A is a non-zero integer. If it is zero modulo all
the polynomial size primes, then by the Chinese remainder theorem it is zero
modulo Jheir product as well. Since by the prime number theorem this product
is fl(22n ) for any desired constant d, this contradicts the assumption that A is
non-zero and at most 0(2Z”). On the other hand, if B is false, then A = O
modulo any prime. ❑

4. Interactil)e Proofs for PSPACE Languages

Since deciding the truth of (simple) QBFs is known to be PSPACE complete
(see Garey and Johnson [51), it suffices to demonstrate the existence of
interactive proofs for this problem. Given the arithmetic form A of a simple
QBF B, we want to prove that A + O (mod p) for some polynomially long
prime p. This prime can be chosen by the prover P and sent to the verifier V
(along with a written proof of primality) as the first step of the interactive
proof, since even an infinitely powerful cheating prover cannot find such a
prime if A = O. Alternatively, we can ask V to choose a random prime p, and
use the fact that for most p, A # O (mod p) iff B is true. This makes it
possible to prove both membership and non-membership by the same protocol,
but has imperfect completeness (even an honest prover maybe unable to prove
a correct statement if the verifier chooses a prime divisor of A).
Given a closed arithmetic expression A, we define its functional form A‘ by

eliminating the leftmost )2Z,~ {0,,} or ~, . {0, ,} symbol, and considering A‘ as a
polynomial function q(z,) of one free variable z,. The randomizedfo?m of A is
A’(z, = r) in which z, is set to a random number r modulo P supplied by the
verifier. This randomized form can again be
number of X and II symbols is reduced by 1.
preserved by these transformations.

Example. Consider the true QBF:

B == VXl[~l V ~X2VX3(Xl

evaluated to a’ con~{ant, bit its
Note that the simplicity of A is

A%) V~31,
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and assume that p is large enough so that the following calculations are not
affected by modular reductions. The arithmetic form of B is

[
A= ~ (I–zl)+ ~

1
JJ (2, ”2, +2,) ,

2,= {0,1} 22={0, 1) Z3={O>1)

whose value is 2. The functional form of A is:

[
A’= (I–zl)+ ~

1
~ (2,.22+23) .

Z2G{0,1) Z3={0, D

By evaluating all the summations and products, the infinitely powerful prover
can express A‘ as the polynomial

q(zl) =2; + 1.

The randomized form of A‘ with ZI = 3 can be expressed as

[

A’(Z1 = 3) = (1 – 3) + ~ ~ (322+ z3)-
226{0,1} Z3={OS0

whose value 10 can be deduced from q(3) = 32 + 1 = 10.
The polynomial q(zl) that represents A’ can have an exponentially high

degree. Consider, for example, the QBF

B = ~XlVX2 . ..vxn(xl VX2 v ““” Vxn),

whose arithmetization is

A=~~...~ (z, +Z, + ““” +Zn).
21={0,1} Z2G{0, 1} Z. G{O, l}

The polynomial q( Zl) of its functional form A‘ is the product of 2’-1 terms of
the form (z, + c) for O < c s n, which is a dense polynomial of degree 2’2-1.
Such polynomials cannot be handled by the polynomial time verifier during the
interactive proof. However, for simple QBFs we can prove:

THEOREM 5. If B is simple, then the degree of the polynomial q( z, ) that
describes the fictional form of A grows at most linearly with the size of B.

PROOF. Let x, be the leftmost quantified variable in B. The degree of z,
created by any quantifier-free subexpression of B is bounded by the size of the
subexpression. Summations over arbitrarily many other variables can change
the coefficients but not the degree of the polynomial, and each product can at
most double the degree. The result follows from the fact that in simple B such
a doubling can occur at most once. ❑

Remark. By adding sufficiently many dummy variables to the quantifier-free
subexpressions of B, this degree can be reduced to 3, and thus q( z, ) can be
represented by just four numbers in ZP. Consider for example B = Vx, B‘
where x, occurs k times in B‘. This expression can be replaced by

Vx; lx: “.”qx~(x~ =x? = “.” =x$) Al?”>
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where B“ is obtained from B‘ by using a different x: variable in each
occurrence of xl in B‘. If B is simple and the multiple equality is arithmetized
as z~”z~ ““” z,~ + (1 – z~)(l – z?) “”” (1 – z,~), the degree of each functional
form is at most 3.
The interactive protocol for proving that A # O (mod p) is very simple. The

prover P sends the claimed value a of A (mod p) to the verifier V, and
justifies this claim by considering successively smaller subexpressions of A. At
any intermediate stage of the protocol, the current expression A is split into
Al + Az or A ~ “ ,4Z where Al is a polynomial with fully instantiated variables
(whose value al can be computed by V himself), and A ~ starts with the
leftmost Z or H symbol of A. P and V then repeatedly execute the following
simplification steps:

(1) If Az is empty, V stops and accepts the claim iff a = al.
(2) If Al is nonempty, V replaces A by Az, and replaces a by a – al (mod p)

or a/al (mod p) (depending on the operator that connects ,4 ~ and A ~). If
V tries to divide a by al = O (mod p), he stops and accepts the claim iff
a = O (mod p).

(3) Otherwise, P sends the polynomial descriptions q(zl ) of xl’ to V. V checks
that a = q(0) + q(l) (mod p) or a = q(0) “ q(l) (mod p) (depending on the
first symbol of Az), sends a random r ● ~P to P, replaces A by A’(zZ = r)
(mod p), and replaces a by q(r) (mod p).

Example. Consider once more the expression A of the previous example,
whose claimed value is a = 2. When P sends its polynomial q( z, ) = z: + 1 to
V, V checks that q(0) “ q(l) = 1 “ 2 = a, sends ZL = 3 to P, replaces A by
A’(zl = 3), and replaces a by q(3) = 10. The new A starts with a nonempty Al,
whose value al = (1 – 3) = – 2 can be computed by V. A and a are now
adjusted to

A= ~ ~ (3 Z2+Z3),
Z,e{o,l} 23={0$1}

a= lo-(-2)=12.

The functional form of this A is

A’ = ~ (3z, +Z3),
:1={0,1)

whose polynomial representation is q( Zz ) = 9z~ + 3ZZ. When V gets this
polynomial from P, he checks that q(0) + q(l) = O + 12 = 12 = a, and picks
~2 = 2 as his random choice. A and a are again adjusted to

a=q(2) =9.4+3.2=42.

P now sends q(z~) = Zj + 6 as the polynomial representation of A’, and V
checks that q(0) . q(1) = 6 “ 7 = 42 = a. Finally, V chooses z~ = 5, and verifies
by himself that the value of

A’(z3 =5) = (6+5) = 11

is the same as a = q(5) = 5 + 6 = 11.
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THEOREM 6

(1) l?%en B is true and P is honest, V always accepts the proof.
(2) When B is false, V accepts the proof with negligible probability.

PROOF

(1) An honest P can always justify his claimed values and polynomials.
(2) The proof of this part is similar to the one used by Lund et al. [10] in their

permanent proving protocol. A cheating prover who supplied an incorrect
value of a must provide an incorrect polynomial q( z, ) to support his claim,
since a is checked against q(0) + q(l) (mod p) or q(0) oq(l) (mod p). By
the interpolation theorem, such an incorrect polynomial of degree t can
agree with the correct polynomial on at most t of the p points in ZP. When
the value of t is a polynomial and the value of p is exponential in the size
of B, there is only a negligible probability that the incorrect q yields a
correct value when evaluated at a random point r chosen by V. As a result,
a cheating P is forced to provide incorrect values for successively smaller
subexpressions, until he is exposed with overwhelming probability when V
evaluates the final subexpression by himself. ❑

Remark. A single application of this protocol suffices to make the probabil-
ity of cheating exponentially small, and there is no need to iterate it as in other
interactive proofs. However, the protocol seems to be inherently sequential,
and it is a major open problem whether it can be executed with a small (e.g.,
logarithmic) number of rounds. Note that the existence of a constant round
protocol for 1P would collapse the polynomial hierarchy to its second level, as
shown by Boppana et al. [3].

5. Space-Bounded Verifiers

The interactive proofs introduced in Section 4 require polynomial time and
polynomial space verifiers. In this section, we prove that the space bound can
be greatly improved.

Definition. A verifier is called weak if

(1) its running time is polynomial,
(2) its workspace is logarithmic,
(3) it has a two-way read-only access to a random tape,
(4) its messages consist solely of the random bits it reads.

THEOREM 7. Any PSPACE language can be accepted by a weak Lerifler.

Remarks. Since the accessible portion of the random tape is polynomial, we
cannot “cheat” by using the head position or the location of desirable sub-
strings as super-logarithmic auxiliary storage. Note that without the two-way
access, Fortnow and Sipser [4], proved that only languages in P can be
accepted by such verifiers, and without condition 4, Condon and Rompel
[private communication] have already shown that logspace verifiers can accept
all of 1P.

PROOF (SKETCH). To use such weak verifiers in our interactive proofs, we
consider the particular PSPACE complete class of QBFs obtained by the
standard reduction from deterministic polynomial space Turing machine com-
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putations. We encode each configuration of such a computation (which consists
of the contents of the tape, the position of the head, and the internal state) as
a polynomially long vector X of Boolean variables. If Xj and Xz are two
configurations, then we can recursively express the existence of a legal transi-
tion of length 2h (k > 1) between them by:

Q(X1, X2,2’) = 2X3VX43X53X6{[X4- (x, =x,) ~ (x, = x,)]
~[zd + (XS =X3) A (Xb =Xz)] A Q(X~, Xc,2~- 1)}.

The final Q( X,, X,+ ~, 1) is the quantifier free 3CNF formula that characterizes
a single move of the given Turing machine. In this expression X3 represents
the middle configuration of the computation, the single Boolean variable XJ
chooses which half of the computation we consider, X5 and Xc are new
configuration names, and the rest of the expression states that both halves are
legal transitions of length 2k -‘. When Xl is the initial configuration and Xz is
the unique accepting configuration (with tape, initial head position, and accept-
ing state), we can express the acceptance condition by the polynomially long
QBF obtained by unrolling this recursive definition.
Such QBFs are simple by definition. Their innermost 3CNF formulas can be

arithmetized with de Morgan’s laws (replacing each clause such as z, + ZJ + z~
by the logically equivalent 1 – (1 – Zl)(l – Z])(l – Zk)) to yield only 0/1
values. Such values are preserved by the products that result from universal
quantifiers. Since the Turing machine computation is deterministic, the exis-
tentially quantified configurations X3, X5, and X6 are uniquely determined by
the endpoint configurations Xl, X2, and the selector XJ. When such a 3X, is
arithmetized, at most one of the exponentially many summands can be non-zero.
We can thus prove by induction that the arithmetized value of such QBFs is
either O or 1 (rather than 0(2zn )), and allow the prover to use primes of
logarithmic size.
The constant degree polynomials with logarithmic coefficients can be easily

handled by weak verifiers. However, to evaluate the quantifier-free subexpres-
sions by themselves, such verifiers need access to the random values assigned
to the O(n) variables, which require too much storage space. We overcome this
difficulty by giving the verifiers a two-way read-only access to their random
tapes, where these values are stored as consecutive blocks of O(log n) bits. ❑
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