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10 Tail Bounds (October 18)

10.1 Markov’s Inequality

Markov’s Inequality. If X is a non-negative integer random variable, then Pr[X ≥ t] ≤ E[X]/t
for any t > 0.

Proof:

E[X] =
∞∑

k=0

k · Pr[X = k] [def. expectation]

=
∞∑

k=0

Pr[X ≥ k] [algebra]

≥
t−1∑

k=0

Pr[X ≥ k] [since k <∞]

≥
t−1∑

k=0

Pr[X ≥ t] [since k < t]

= t · Pr[X ≥ t] [algebra]

Since t > 0, we’re done. !

10.2 Chernoff’s Inequalities

Recall that random variables X and Y are independent if Pr[X = x ∧ Y = y] = Pr[X = x] ·
Pr[Y = y] for all x and y. If X and Y are independent, then E[XY ] = E[X] · E[Y ].

Let X =
∑

i Xi be a sum of independent random indicator variables Xi. For each i, let
pi = Pr[Xi = 1], and let µ = E[X] =

∑
i E[Xi] =

∑
i pi.

Chernoff Bound (Upper Tail). Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

for any δ > 0.

Proof: The proof is fairly long, but it replies on just a few basic components: a clever substitution,
Markov’s inequality, the independence of the Xi’s, The World’s Most Useful Inequality ex > 1 + x,
a tiny bit of calculus, and lots of high-school algebra.

We start by introducing a variable t, whose role will become clear shortly.

Pr[X > (1 + δ)µ] = Pr[etX > et(1+δ)µ]

To cut down on the superscripts, I’ll usually write exp(x) instead of ex in the rest of the proof.
Now apply Markov’s inequality to the right side of this equation:

Pr[X > (1 + δ)µ] <
E[exp(tX)]

exp(t(1 + δ)µ)
.

We can simplify the expectation on the right using the fact that the terms Xi are independent.

E [exp(tX)] = E
[

exp
(
t
∑

i

Xi

)]
= E

[∏

i

exp(Xi)
]

=
∏

i

E [exp(tXi)]
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We can bound the individual expectations E
[
etXi

]
using The World’s Most Useful Inequality:

E[exp(tXi)] = pie
t + (1− pi) = 1 + (et − 1)pi < exp

(
(et − 1)pi

)

This inequality gives us a simple upper bound for E[etX ]:

E [exp(tX)] <
∏

i

exp((et − 1)pi) < exp
( ∑

i

(et − 1)pi

)
= exp((et − 1)µ)

Substituting this back into our original fraction from Markov’s inequality, we obtain

Pr[X > (1 + δ)µ] <
E[exp(tX)]

exp(t(1 + δ)µ)
<

exp((et − 1)µ)
exp(t(1 + δ)µ)

=
(
exp(et − 1− t(1 + δ))

)µ

Notice that this last inequality holds for all possible values of t. To obtain the final tail bound,
we will choose t to make this bound as tight as possible. To minimize et − 1 − t − tδ, we take its
derivative with respect to t and set it to zero:

d

dt
(et − 1− t(1 + δ)) = et − 1− δ = 0.

(And you thought calculus would never be useful!) This equation has just one solution t = ln(1+δ).
Plugging this back into our bound gives us

Pr[X > (1 + δ)µ] <
(
exp(δ − (1 + δ) ln(1 + δ))

)µ =
(

eδ

(1 + δ)1+δ

)µ

And we’re done! !

This form of the Chernoff bound can be a bit clumsy to use. A more complicated argument
gives us the bound

Pr[X > (1 + δ)µ] < e−µδ2/3

for any 0 < δ < 1.
A similar inequality bounds the probability that X is much smaller than its expected value:

Chernoff Bound (Lower Tail). Pr[X < (1− δ)µ] <

(
eδ

(1− δ)1−δ

)µ

< e−µδ2/2 for any δ > 0.

10.3 Treaps

In our analysis of randomized treaps, we defined the indicator variable Ai
k to have the value 1 if

and only if the node with the ith smallest key (‘node i’) was a proper ancestor of the node with
the kth smallest key (‘node k’). We argued that

Pr[Ai
k = 1] =

[i &= k]
|k − i| + 1

,

and from this we concluded that the expected depth of node k is

E[depth(k)]
n∑

i=1

Pr[Ai
k = 1] = Hk + Hn−k − 2 < 2 ln n.

To prove a worst-case expected bound on the depth of the tree, we need to argue that the
maximum depth of any node is small. Chernoff bounds make this argument easy.
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Lemma: The depth of a randomized treap with n nodes is O(log n) with high probability.

Proof: First let’s bound the probability that the depth of node k is at most 6 lnn. (There’s nothing
special about the constant 6 here; I’m being somewhat generous to make the analysis easier.) The
depth is a sum of independent indicator variables Ai

k, so we can apply Chernoff’s inequality with
µ = E[depth(k)] < 2 ln n and δ = 2.

Pr[depth(k) > 6 ln n] < Pr[depth(k) > 3µ]

<

(
e2

33

)µ

<

(
e2

33

)2 ln n

= n2 ln(e2/33) = n4−6 ln 3 <
1
n2

.

(The last step just uses the fact that e < 3.)
Now consider the probability that the treap has depth greater than 6 lnn. Even though the

distributions of different nodes’ depths are not independent, we can conservatively bound the
probability of failure as follows:

Pr
[
max

k
depth(k) > 6 ln n

]
<

∑

k

Pr[depth(k) > 6 ln n] <
1
n

.

More generally, this same argument implies that for any constant ∆, the depth of the treap is less
than 2∆ lnn with probability at most 1/n1+2∆(ln∆−1). !
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