CS 473G Lecture 10: Tail Bounds Fall 2005

10 Tail Bounds (October 18)

10.1 Markov’s Inequality

Markov’s Inequality. If X is a non-negative integer random variable, then Pr[X > t| < E[X]/t
for any t > 0.

Proof:
E[X] = Z k- Pr[X = k] [def. expectation]
k=0
= Z Pr[X > k] [algebral
k=0
t—1
> Pr[X > k] [since k < o]
k=0
t—1
> Z Pr[X > ] [since k < t]
k=0
=t-Pr[X >t [algebral
Since t > 0, we’re done. O

10.2 Chernoft’s Inequalities

Recall that random variables X and Y are independent if Pr[X =« A Y = y] = Pr[X =z] -
Pr[Y = y| for all z and y. If X and Y are independent, then E[XY] = E[X] - E[Y].

Let X = >, X; be a sum of independent random indicator variables X;. For each i, let
pi =Pr[X; =1], and let p = E[X] =), E[X;] =), ps.

1

e I
)1+5> for any § > 0.

Chernoff Bound (Upper Tail). Pr[X > (1+0)u] < ((1"‘5

Proof: The proof is fairly long, but it replies on just a few basic components: a clever substitution,
Markov’s inequality, the independence of the X;’s, The World’s Most Useful Inequality e* > 1+ =z,
a tiny bit of calculus, and lots of high-school algebra.

We start by introducing a variable ¢, whose role will become clear shortly.

Pr[X > (14 6)u] = Pr[et* > !(1+9H]

To cut down on the superscripts, I'll usually write exp(z) instead of e in the rest of the proof.
Now apply Markov’s inequality to the right side of this equation:

Elexp(t.X))]

PriX > (14d6)u] < (L1 o))

We can simplify the expectation on the right using the fact that the terms X; are independent.

Elexp(tX)] = E [exp (tZX)} —E [Uexp(Xi)} = HE [exp(tX;)]
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We can bound the individual expectations E [etXi] using The World’s Most Useful Inequality:
Elexp(tX;)] = pie’ + (1 —p;) = 1+ (¢ — 1)p; < exp((e' — 1)p;)

This inequality gives us a simple upper bound for E[etX |:

E[exp(tX)] < Hexp((et — 1)pi) < exp (Z(et - 1)pi) = exp((e' — 1))

7

Substituting this back into our original fraction from Markov’s inequality, we obtain

Elexp(tX)] _ exp((e’ —1)u)
xp(H(1+0)u) ~ exp(t(1 + d)p)
Notice that this last inequality holds for all possible values of . To obtain the final tail bound,

we will choose t to make this bound as tight as possible. To minimize e! — 1 — ¢ — tJ, we take its
derivative with respect to ¢ and set it to zero:

PriX > (1+0)u] < = (exp(et —1—-t(1+ 6)))“

d t t
—1—t(1+ = —1—-0=0.

(And you thought calculus would never be useful!) This equation has just one solution ¢t = In(1+4).
Plugging this back into our bound gives us

66 H
PriX > (14 6)u] < (exp(d — (1+0)In(1+6)))" = <(1+5)1+5>

And we’re done! O

This form of the Chernoff bound can be a bit clumsy to use. A more complicated argument
gives us the bound

Pr[X > (14 8)y] < e #9°/3

for any 0 < 9§ < 1.
A similar inequality bounds the probability that X is much smaller than its expected value:
65

o
Chernoff Bound (Lower Tail). Pr[X < (1 —d)u| < < )1_6> < e 1%/2 for any § > 0.

1-o

10.3 Treaps

In our analysis of randomized treaps, we defined the indicator variable AfC to have the value 1 if
and only if the node with the ith smallest key (‘node i’) was a proper ancestor of the node with
the kth smallest key (‘node k’). We argued that

: [i # K]
Pr[A; =1] =
rldi =1l k—i|+1
and from this we concluded that the expected depth of node k is

E[depth(k)] Y Pr[A} =1] = Hy + Hy_ — 2 < 2Inn.
=1

To prove a worst-case expected bound on the depth of the tree, we need to argue that the
mazimum depth of any node is small. Chernoff bounds make this argument easy.
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Lemma: The depth of a randomized treap with n nodes is O(logn) with high probability.

Proof: First let’s bound the probability that the depth of node k is at most 6 Inn. (There’s nothing
special about the constant 6 here; I'm being somewhat generous to make the analysis easier.) The
depth is a sum of independent indicator variables A};, so we can apply Chernoff’s inequality with
u = Eldepth(k)] < 2lnn and 6 = 2.

Pr[depth(k) > 61nn] < Pr[depth(k) > 3u]
o2\ M
“()
62 2Inn
“()

2 /a3 _ 1
— n2ln(e /3°%) nt 61n3 < —.
nQ

(The last step just uses the fact that e < 3.)

Now consider the probability that the treap has depth greater than 6lnn. Even though the
distributions of different nodes’ depths are not independent, we can conservatively bound the
probability of failure as follows:

1
Pr [m}gx depth(k) > 61n n} < ;Pr[depth(k) > 61lnn] < e

More generally, this same argument implies that for any constant A, the depth of the treap is less
than 2AInn with probability at most 1/n!t24(nA=1) .



