10 Tail Bounds (October 18)

10.1 Markov's Inequality

Markov's Inequality. If X is a non-negative integer random variable, then $\operatorname{Pr}[X \geq t] \leq \mathrm{E}[X] / t$ for any $t>0$.

Proof:

$$
\begin{array}{rlr}
\mathrm{E}[X] & =\sum_{k=0}^{\infty} k \cdot \operatorname{Pr}[X=k] & \text { [def. expectation] } \\
& =\sum_{k=0}^{\infty} \operatorname{Pr}[X \geq k] & \text { [algebra] } \\
& \geq \sum_{k=0}^{t-1} \operatorname{Pr}[X \geq k] & \\
& \geq \sum_{k=0}^{t-1} \operatorname{Pr}[X \geq t] & \\
& =t \cdot \operatorname{Pr}[X \geq t] & {[\text { since } k<\infty]} \\
& \text { [algebra] }
\end{array}
$$

Since $t>0$, we're done.

10.2 Chernoff's Inequalities

Recall that random variables X and Y are independent if $\operatorname{Pr}[X=x \wedge Y=y]=\operatorname{Pr}[X=x]$. $\operatorname{Pr}[Y=y]$ for all x and y. If X and Y are independent, then $\mathrm{E}[X Y]=\mathrm{E}[X] \cdot \mathrm{E}[Y]$.

Let $X=\sum_{i} X_{i}$ be a sum of independent random indicator variables X_{i}. For each i, let $p_{i}=\operatorname{Pr}\left[X_{i}=1\right]$, and let $\mu=\mathrm{E}[X]=\sum_{i} \mathrm{E}\left[X_{i}\right]=\sum_{i} p_{i}$.

Chernoff Bound (Upper Tail). $\operatorname{Pr}[X>(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$ for any $\delta>0$.
Proof: The proof is fairly long, but it replies on just a few basic components: a clever substitution, Markov's inequality, the independence of the X_{i} 's, The World's Most Useful Inequality $e^{x}>1+x$, a tiny bit of calculus, and lots of high-school algebra.

We start by introducing a variable t, whose role will become clear shortly.

$$
\operatorname{Pr}[X>(1+\delta) \mu]=\operatorname{Pr}\left[e^{t X}>e^{t(1+\delta) \mu}\right]
$$

To cut down on the superscripts, I'll usually write $\exp (x)$ instead of e^{x} in the rest of the proof. Now apply Markov's inequality to the right side of this equation:

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\frac{\mathrm{E}[\exp (t X)]}{\exp (t(1+\delta) \mu)}
$$

We can simplify the expectation on the right using the fact that the terms X_{i} are independent.

$$
\mathrm{E}[\exp (t X)]=\mathrm{E}\left[\exp \left(t \sum_{i} X_{i}\right)\right]=\mathrm{E}\left[\prod_{i} \exp \left(X_{i}\right)\right]=\prod_{i} \mathrm{E}\left[\exp \left(t X_{i}\right)\right]
$$

We can bound the individual expectations $\mathrm{E}\left[e^{t X_{i}}\right]$ using The World's Most Useful Inequality:

$$
\mathrm{E}\left[\exp \left(t X_{i}\right)\right]=p_{i} e^{t}+\left(1-p_{i}\right)=1+\left(e^{t}-1\right) p_{i}<\exp \left(\left(e^{t}-1\right) p_{i}\right)
$$

This inequality gives us a simple upper bound for $\mathrm{E}\left[e^{t X}\right]$:

$$
\mathrm{E}[\exp (t X)]<\prod_{i} \exp \left(\left(e^{t}-1\right) p_{i}\right)<\exp \left(\sum_{i}\left(e^{t}-1\right) p_{i}\right)=\exp \left(\left(e^{t}-1\right) \mu\right)
$$

Substituting this back into our original fraction from Markov's inequality, we obtain

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\frac{\mathrm{E}[\exp (t X)]}{\exp (t(1+\delta) \mu)}<\frac{\exp \left(\left(e^{t}-1\right) \mu\right)}{\exp (t(1+\delta) \mu)}=\left(\exp \left(e^{t}-1-t(1+\delta)\right)\right)^{\mu}
$$

Notice that this last inequality holds for all possible values of t. To obtain the final tail bound, we will choose t to make this bound as tight as possible. To minimize $e^{t}-1-t-t \delta$, we take its derivative with respect to t and set it to zero:

$$
\frac{d}{d t}\left(e^{t}-1-t(1+\delta)\right)=e^{t}-1-\delta=0
$$

(And you thought calculus would never be useful!) This equation has just one solution $t=\ln (1+\delta)$. Plugging this back into our bound gives us

$$
\operatorname{Pr}[X>(1+\delta) \mu]<(\exp (\delta-(1+\delta) \ln (1+\delta)))^{\mu}=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

And we're done!
This form of the Chernoff bound can be a bit clumsy to use. A more complicated argument gives us the bound

$$
\operatorname{Pr}[X>(1+\delta) \mu]<e^{-\mu \delta^{2} / 3}
$$

for any $0<\delta<1$.
A similar inequality bounds the probability that X is much smaller than its expected value:
Chernoff Bound (Lower Tail). $\operatorname{Pr}[X<(1-\delta) \mu]<\left(\frac{e^{\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}<e^{-\mu \delta^{2} / 2}$ for any $\delta>0$.

10.3 Treaps

In our analysis of randomized treaps, we defined the indicator variable A_{k}^{i} to have the value 1 if and only if the node with the i th smallest key ('node i ') was a proper ancestor of the node with the k th smallest key ('node k '). We argued that

$$
\operatorname{Pr}\left[A_{k}^{i}=1\right]=\frac{[i \neq k]}{|k-i|+1},
$$

and from this we concluded that the expected depth of node k is

$$
\mathrm{E}[\operatorname{depth}(k)] \sum_{i=1}^{n} \operatorname{Pr}\left[A_{k}^{i}=1\right]=H_{k}+H_{n-k}-2<2 \ln n
$$

To prove a worst-case expected bound on the depth of the tree, we need to argue that the maximum depth of any node is small. Chernoff bounds make this argument easy.

Lemma: The depth of a randomized treap with n nodes is $O(\log n)$ with high probability.
Proof: First let's bound the probability that the depth of node k is at most $6 \ln n$. (There's nothing special about the constant 6 here; I'm being somewhat generous to make the analysis easier.) The depth is a sum of independent indicator variables A_{k}^{i}, so we can apply Chernoff's inequality with $\mu=\mathrm{E}[\operatorname{depth}(k)]<2 \ln n$ and $\delta=2$.

$$
\begin{aligned}
\operatorname{Pr}[\operatorname{depth}(k)>6 \ln n] & <\operatorname{Pr}[\operatorname{depth}(k)>3 \mu] \\
& <\left(\frac{e^{2}}{3^{3}}\right)^{\mu} \\
& <\left(\frac{e^{2}}{3^{3}}\right)^{2 \ln n} \\
& =n^{2 \ln \left(e^{2} / 3^{3}\right)}=n^{4-6 \ln 3}<\frac{1}{n^{2}} .
\end{aligned}
$$

(The last step just uses the fact that $e<3$.)
Now consider the probability that the treap has depth greater than $6 \ln n$. Even though the distributions of different nodes' depths are not independent, we can conservatively bound the probability of failure as follows:

$$
\operatorname{Pr}\left[\max _{k} \operatorname{depth}(k)>6 \ln n\right]<\sum_{k} \operatorname{Pr}[\operatorname{depth}(k)>6 \ln n]<\frac{1}{n} .
$$

More generally, this same argument implies that for any constant Δ, the depth of the treap is less than $2 \Delta \ln n$ with probability at most $1 / n^{1+2 \Delta(\ln \Delta-1)}$.

