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1. Introduction 

The applications of zero-knowledge proof systems to cryptography are too numerous 
and too well known to be listed here. We confine ourselves to pointing out two facts to 
which zero-knowledge proofs owe their wide applicability: firstly, the generality of the 
notion of zero-knowledge [11]; and, secondly, the ability to construct zero-knowledge 
proof systems for every NP statement (using a general intractability assumption) [10, 
Theorem 5]. However, to be of practical use, zero-knowledge proofs also have to be 
efficient. 

A very important complexity measure for (cryptographic as well as arbitrary) protocols 
is their round-complexity. Namely, the number of message exchanges taking place in the 
course of the execution. The above quoted result of Goldreich et al. [10], by which 
the existence of one-way functions implies the existence of a zero-knowledge proof 
system for every language in .MR, is obtained using proof systems with very high round- 
complexity. Alternative constructions have lower, yet nonconstant, round-complexity. 
The purpose of this work is to present zero-knowledge proof systems, with constant 
round-complexity, for.MT'. 
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1.1. Clarifications 

A few clarifications are in order. First, we stress that by saying an interactive proof 
system we mean one with a negligible e r ro r  probabil i ty .  Sometimes, interactive proof 
systems are defined as having constant, say 1/3, error probability. Such weak proof 
systems are of  limited practical value on their own, and it is implicitly assumed that they 
are repeated sufficiently many times so that the error probability is reduced as desired. 
However, sequential repetitions of  a protocol yield a corresponding increase in the round- 
complexity. In fact, in some sense, the problem addressed in this paper is how to reduce 
the error probability of weak interactive proofs, without increasing the round-complexity 
and while preserving their zero-knowledge property. Hence, for the sake of simplicity, 
we address the problem of constructing (constant-round) zero-knowledge proof systems 
with negligible error probability.I 

We also stress that we consider interactive proof systems, as defined by Goldwasser 
et al. [ 11 ], rather than computationally sound proof systems (also known as arguments), 
as defined by Brassard et al. [4]. The difference between the two is sketched below. 
In (regular) interactive proof systems, the soundness condition requires that nobody, 
regardless of  his/her computational abilities, can fool the verifier into accepting false 
statements (except with negligible probability). In computationally sound proof systems, 
the soundness condition refers only to computationally bounded cheating provers and, 
furthermore, it is typically proven to hold under some intractability assumption. 

Finally, we stress that our approach depends, in an essential manner, on the standard 
definition of zero-knowledge which allows the simulator to run in expected polynomial 
time (see [11] and [10]). We do not know whether our results can be obtained under 
a more strict definition of zero-knowledge which only allows the simulator to run in 
(strict) polynomial time. We remark that many other popular results also depend on 
the same convention. For example, Graph Isomorphism (GI) is shown to have a perfect 
zero-knowledge proof using a simulator that runs for expected polynomial time [ 10, The- 
orem 2]. To the best of  our knowledge, using a simulator that runs for strict polynomial 
time, it can only be shown that GI has an interactive proof which is almost-perfect (sta- 
tistical) zero-knowledge. Even worse, Graph Non-Isomorphism is not known to have an 
almost-perfect zero-knowledge proof (under strict polynomial-time simulators), whereas 
it has a perfect zero-knowledge proof system [10, Theorem 3] (with respect to expected 
polynomial-time simulators). 

1.2. Our Main Result 

We show how to construct constant-round zero-knowledge interactive proof systems for 
any language in AFT'. Our construction relies on the existence of collections of claw- 
free functions. Such functions exist if factoring Blum integers is hard (see [12]), or 
alternatively if the Discrete Logarithm Problem is intractable (see [3]). 

i An alternative and more complex presentation is possible by considering the "knowledge tighmess" of zero- 
knowledge proof systems with small (but nonnegligible) error probability. Loosely speaking, the knowledge 
tightness of a zero-knowledge protocol is an upper bound on the ratio between the running time of simulators 
for the protocol and the running time of the corresponding verifiers [10, Remark 18]. The aim is to construct 
constant-round proof systems with simultaneously small error probability and small knowledge tightness. 
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As usual in the area of zero-knowledge, the results are most simply stated using a 
nonuniform formalization. In this formalization the intractability assumptions are stated 
with respect to nonuniform families of polynomial-size circuits. A formalization in terms 
of uniform complexity is possible. See [7]. 

Remark. The work reported here has been cited in the literature already in 1988. How- 
ever, no version of this work has ever appeared before. 

1.3. Related Work 

Constant-round zero-knowledge computationally sound proof (i.e., argument) systems 
for .A/'P have been presented in [6] and [5]. As explained above, these protocols are 
weaker than ours in the sense that they do not constitute proof systems (with "unre- 
stricted" soundness condition). However, these works also have advantages over ours. 
The advantage of the work of Feige and Shamir is that it uses a much weaker intractabil- 
ity assumption [6]; specifically, they only assume the existence of arbitrary one-way 
functions. The advantage of the work of Brassard et al. is that their protocol is perfect 
zero-knowledge [5], rather than just being computationally zero-knowledge. 2 (The in- 
tractability assumption in [5] is incomparable with ours, and seems stronger than the 
mere existence of one-way functions.) Hence, the three works (i.e., ours and those of [6] 
and [5]) are incomparable: each has some advantage over the other two. 

Noninteractive zero-knowledge proof systems, as defined by Blum et al. [2], seem 
related to constant-round zero-knowledge proof systems. One has to be careful, though, 
and recall that in the setting of noninteractive proof systems both prover and verifier 
have access to a uniformly chosen string, called the reference string. We stress that the 
reference string is not selected by either parties, but is rather postulated to be uniformly 
chosen by some trusted third party. Clearly, combining a secure,coin-flipping protocol 
(see [ 1]) with a noninteractive zero-knowledge proof system, a zero-knowledge proof 
system can be derived. Note, however, that the round-complexity of the resulting inter- 
active proof system depends on the round-complexity of the coin-flipping protocol and 
on whether it can be securely performed in parallel many times. In fact, our work can 
be viewed as suggesting a coin-flipping protocol that remains secure even if executed in 
parallel polynomially many times. 

Other efficiency measures related to zero-knowledge proofs and arguments have been 
investigated in many works; see, for example, [15] and [16]. 

1.4. Organization 

We start with an overview of our approach and present an abstraction of a technical dif- 
ficulty encountered and resolved. We then present the building blocks of our interactive 
proof system which are two "complementary" types of commitment schemes. A detailed 
description of our interactive proof system follows and we conclude by presenting a sim- 
ulator which demonstrates that this interactive proof system is indeed zero-knowledge. 

2 The Feige-Shamir argument system, mentioned above, also has a perfect zero-knowledge version [6], but 
this version relies on seemingly stronger complexity theoretic assumptions than required for the computational 
zero-knowledge version. 



170 O. Goldreich and A. Kahan 

2. Overview 

We start by reviewing the standard zero-knowledge proof system for Graph 3-Colorability. 
This interactive proof system, presented by Goldreich et al. [10], proceeds by (a poly- 
nomial number of) sequential repetitions of  the following basic protocol. 

 9 Common input: A simple (3-colorable) graph G = (V, E). 
 9 Prover's first step (P1): Let ~p be a 3-coloring of G. The prover selects a random 

permutation, 7r, over {1, 2, 3}, and sets tp(v) dee 7t'(~/](1))), for each ~ ~ V. (Hence, 
the prover forms a random relabelling of the 3-coloring ap.) The prover sends to the 
verifier a sequence of commitments so that the ith commitment  is to the value tp(i). 

 9 Verifier's first step (V1): The verifier uniformly selects an edge (i, j )  e E, and 
sends it to the prover. 

 9 Motivating remark: The verifier asks to inspect the colors of  vertices i and j .  
 9 Prover's second step (P2): The prover reveals the values corresponding to the ith 

and j th  commitments.  
 9 Verifier's second step (V2): The verifier accepts if and only if the revealed values are 

different elements of  { 1,2, 3} and if they indeed fit the corresponding commitments 
received in step P 1. 

It is shown in [ 10] that the basic protocol is zero-knowledge and that this property 
is preserved under sequential repetitions. Repetitions are required in order to reduce 
the error probability of  the basic protocol, which might be as large as 1 - I / IEI ,  to 
a negligible function of IG I. However, sequential repetitions are out of the question if 
round-efficient protocols are sought. Hence, the key to round-efficient error reduction is 
parallel execution of the above basic protocol)  However, as demonstrated by Goldreich 
and Krawcyzk, the protocol which results from parallel execution of the basic protocol, 
sufficiently many times, cannot be proven zero-knowledge using a universal simulator 
which uses the verifier as a black-box [8]. We note that all known zero-knowledge proto- 
cols are proven to be zero-knowledge using such a universal simulator, and, furthermore, 
that it is hard to conceive an alternative way of proving that a protocol is zero-knowledge. 
Hence, slightly different approaches are required. 

Two different approaches for resolving the above difficulties have been suggested in 
[10]. These two approaches share an underlying idea which is to let the verifier commit  
to its queries (i.e., a sequence of edges each corresponding to a different commitment  to a 
coloring of the graph) before the prover commits to a sequence of colorings of the graph. 
The two approaches vary by the manner in which the verifier commits to its queries. 

1. One possibility is to use an "ordinary" commitment  scheme (like the one used 
by the prover). 4 This will enable a computationally unbounded prover to find out 
the queries before committing to the colorings, and thus cheat the verifier causing 

3 Namely, the prover independently generates many random relabelling of the coloring ~p and commits to 
each of them. The verifier then selects a query edge for each committed coloring, and checks the revealed 
colors supplied by the prover. If all fit the corresponding commitments and each pair of colors is different, 
then the verifier accepts. 

4 See Section 3 for a more formal discussion of various types of commitment schemes. 
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it to accept also graphs that are not 3-colorable. Yet, a computationally bounded 
cheating prover cannot break these commitments and hence the proposed protocol 
may be computationally sound. 

2. The other possibility is to use a commitment scheme with perfect sgcrecy. 5 The 
disadvantage in this approach is that commitment schemes with perfect secrecy 
seem harder to construct that "regular" ones. 

Implementing the two (above-mentioned) approaches turned out to be more difficult 
than anticipated. Nevertheless, the first approach has been implemented in [6] yielding 
zero-knowledge arguments for every language in .AFT' provided that one-way functions 
exist. The current paper presents an implementation of the second approach. 

The main difficulty in implementing the second approach is in the construction of 
the simulator demonstrating the zero-knowledge of the ("parallelized") interactive proof 
system sketched above. In the rest of this section we try to provide an abstract account 
of the difficulty and our approach to resolving it. 

A Technical Problem Resolved 

Preliminaries: We call a function f :  N ~ R negligible if, for every polynomial P (.) and 
all sufficiently large n's, f(n) < 1/P(n). A function f :  N ~ R is called nonnegligible 
if a polynomial P (-) exists so that, for all sufficiently large n 's, f (n) > 1 / P (n). Note that 
a function may be neither negligible nor nonnegligible. Both notions extend naturally to 
functions from strings to reals; for example, F: {0, 1}* ~ R is said to be negligible if 
f(n) def = maxx~{0,11, {F(x)} is negligible. 

While constructing the zero-knowledge simulator for the "parallelized" interactive 
proof, a problem of the following nature arises. Suppose that we are given access to two 
probabilistic black-boxes denoted A and B. On input x e {0, 1 }n, the first black-box, 
A, outputs a "key" K with probability denoted a(x) and halts without output otherwise 
(i.e., a(x) def Prob(A(x) = 1)). On input x ~ {0, 1}" and key K, the second black-box, 
B, produces an output (in {0, 1}") with probability denoted b(x) and otherwise halts 
with no output (or outputs the empty string k). The absolute difference between a(x) 
and b(x) is negligible. We denote by D(x) the output distribution B(x, K) conditioned 
on B(x, K) ~ k (i.e., for every a, we have Prob(D(x) = or) = Prob(B(x, K) = 
aJB(x, K) :~ ~.)). On input x, our goal is to output strings according to distribution 
D (x) with probability at least a (x) and otherwise indicate failure (say by outputting k). 
Actually, we are allowed to output the strings according to D(x) with probability which is 
at most negligibly smaller than a (x). We are allowed to run in expected polynomial-time 
and invoke both black-boxes, where each invocation is charged at unit cost. 

A natural attempt to solve the problem follows. On input x, we first invoke A(x). If the 
output is not K, then we halt indicating failure, otherwise we repeatedly invoke B(x, K) 
until a nonempty output is obtained. Clearly, the expected number of times that B is 
invoked is a(x)/b(x). In case a(x) < b(x) holds for all x's, this is OK. Another good 

5 Again, see Section 3. 
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case is when the function a: {0, 1}* ~ R is nonnegligible (as in this case a(x)/b(x) 
is very close to 1). We remark that in case the function a: {0, 1}* ~ R is negligible 
we may always halt without output. The problem, however, is what to do in case the 
function a: {0, 1 }* ~ R is neither nonnegligible nor negligible and the ratio a(x)/b(x) 
is not bounded by a polynomial (e.g., occasionally, a(x) = 2 -Ixl and b(x) = 2-21xl). 

Our solution is slightly more complex. On input x, we first invoke A(x) and pro- 
ceed only if the output is K (otherwise we halt, indicating failure as before). Next, we 
approximate a(x) by invoking A(x) until we get output K for, say, Ixl 2 times. This 
yields, with very high probability, an approximation of a (x) up to a constant factor (i.e., 
the estimate is the ratio of Ixl 2 over the number of invocations of A(x)). Denote this 
estimate by t~(x) and assume that ~(x) >_ 2 -Ixl (otherwise set ~(x) = 2-1xl). We now 
invoke B(x, K), for at most (say) Ix 12/,~(x) times, until a nonempty string is obtained. 
If such a string is obtained we output it, otherwise we halt with no output. Note that in 
case the first invocation of A(x) outputs K we end up invoking the two black-boxes for 
poly(Ixl)/a(x) times. Although poly(Ixl)/a(x) may be more than a polynomial in Ixl, 
its contribution to the expected running time is scaled down by a factor of a(x), and so 
we obtain expected polynomial-time running time. 

3. Commitment Schemes 

Generally speaking commitment schemes are two-party protocols, partitioned into two 
phases, guaranteeing two conflicting requirements. The first phase, called commit, is 
supposed to commit the sender to a value without allowing the receiver to know which 
value this is. In the second phase, called reveal, the value determined by the first phase 
can be revealed. Hence, the conflicting requirements are secrecy of the value at the 
commit phase and nonambiguity of the value revealed later. These two conditions can 
be stated in information-theoretic or in computational terms. The information-theoretic 
formulation implies the computational one, but not vice versa. 

3.1. Commitment Schemes of Computational Secrecy 

The more standard commitment scheme is one in which the nonambiguity requirement is 
absolute (i.e., information theoretic) whereas the secrecy requirement is computational. 
For the sake of simplicity we refer to such schemes as commitment schemes. 

Loosely speaking, a commitment scheme is an efficient two-phase two-party protocol 
through which one party, called the sender, can commit itself to a value so the following 
two conflicting requirements are satisfied: 

1. Secrecy: At the end of the commit phase, the other party, called the receiver, does 
not gain any (computational) knowledge of the sender's value. This requirement 
has to be satisfied even if the receiver tries to cheat. 

2. Nonambiguity: Given the transcript of the interaction in the commit phase, at most 
one value exists which the receiver may later (i.e., in the reveal phase) accept as 
a legal "opening" of the commitment. This requirement has to be satisfied even if 
the sender tries to cheat. 
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In addition, it should be required that the protocol is viable in the sense that if both parties 
follow it, then, at the end of the second phase, the receiver gets the value committed to 
by the sender. Without loss of generality, the reveal phase may consist of merely letting 
the sender reveal the original value and the sequence of random coin tosses that it has 
used during the commit phase. The receiver will accept the value if and only if the 
supplied information matches its transcript of the interaction in the commit phase. The 
latter convention leads to the following definition (which refers explicitly only to the 
commit phase). 

Definition 1 (Bit Commitment Scheme). A bit commitment  scheme is a pair of prob- 
abilistic polynomial-time interactive machines, denoted (S, R) (for sender and receiver), 
satisfying: 

 9 Input specification: The common input is an integer n presented in unary (serving 
as the security parameter). The private input to the sender is a bit, denoted v. 

 9 Secrecy: The receiver (even when deviating from the protocol in an arbitrary 
polynomial-time manner) cannot distinguish a commitment to 0 from a commit- 
ment to 1. Namely, for every probabilistic polynomial-time machine R* interacting 
with S, the random variables describing the output of R* in the two cases, namely 
(S(0), R*)(1 n) and (S(I), R*)(ln), are polynomially indistinguishable. 

 9 Nonambiguity: 
Preliminaries: 

- -  A receiver's view of an interaction with the sender, denoted (1 n, r, fit), 
consists of the random coins used by the receiver (denoted r) and the sequence 
of messages received from the sender (denoted rh). (In what follows, we 
sometimes omit 1 n from the receiver's view.) 

- -  Let tr 6 {0, 1 }. We say that a receiver's view (of such interaction), (1 n, r, rh), 
is a possible a -commitment  if a string s exists such that th describes the 
messages received by R when R uses local coins r and interacts with machine 
S which uses local coins s and has input (~r, In). 

- -  We say that the receiver's view ( I n , r ,  f i t )  is ambiguous if it is both a possible 
0-commitment and a possible l-commitment. 

The nonambiguity requirement asserts that, for all but a negligible fraction of the 
coin tosses of the receiver, there is no sequence of messages (of the sender) which 
together with these coin tosses forms an ambiguous receiver view. Namely, for all 
but a negligible fraction of the r 6 {0, 1 }polylm there is no fit such that (l n, r, fit) is 
ambiguous. 

The secrecy requirement (above) is a computational one; whereas the nonambiguity 
requirement has an information-theoretic flavor (i.e., it does not refer to computational 
powers). A dual definition, requiring information-theoretic secrecy and computational 
infeasibility of creating ambiguities, is presented in Section 3.2. 

Naor showed that commitment schemes can be constructed using any pseudorandom 
generator [ 17], and the latter are known to exist provided that one-way functions exist 
[ 14], [ 13]. A much simpler commitment scheme can be constructed using any one-way 
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permutation f .  Using the results in [9], we may assume without loss of generality that 
the permutation f has a hard-core predicate, denoted b. 

Construction 1 (Simple Bit Commitment). Let f :  {0, 1}* ~ {0, 1}* be a one-way 
permutation, and let b: {0, 1}* w-~ {0, 1} be a hard-core predicate. 

1. Commit phase: To commit to value v 6 {0, 1} (using security parameter n), the 
sender uniformly selects s 6 {0, 1} n and sends the pair ( f ( s ) ,  b(s) ~ v) to the 
receiver. 

2. Revealphase: In the reveal phase the sender reveals the string s used in the commit 
phase. The receiver accepts the value v if f (s)  = ~ and b(s) ~ v = or, where 
(at, cr) is the receiver's view of the commit phase. 

The definition and the constructions of bit commitment schemes are easily extended 
to general commitment schemes enabling the sender to commit to a string rather than 
to a single bit. For the purposes of the current paper we need a commitment scheme by 
which one can commit to a ternary value. Extending the definition and the constructions 
to deal with this case is even more straightforward. 

In the current paper we need commitment schemes with a seemingly stronger secrecy 
requirement than defined above. Specifically, instead of requiring secrecy with respect 
to all polynomial-time machines, we require secrecy with respect to all (not necessarily 
uniform) families of polynomial-size circuits. Assuming the existence of nonuniformly 
one-way functions (i.e., efficiently computable functions that cannot be inverted even 
by nonuniform families of polynomial-size circuits) commitment schemes with non- 
uniform secrecy can be constructed, following the same constructions used in the 
uniform case. 

3.2. Perfect Commitment Schemes 

The difference between commitment schemes (as defined in Section 3.1) and perfect 
commitment schemes (defined below) consists of a switching in scope of the secrecy 
and nonambiguity requirements. In commitment schemes (see Definition 1) the secrecy 
requirement is computational (i.e., refers only to probabilistic polynomial-time adver- 
saries), whereas the nonambiguity requirement is information theoretic (and makes no 
reference to the computational power of the adversary). On the other hand, in perfect com- 
mitment schemes (see definition below) the secrecy requirement is information theoretic, 
whereas the nonambiguity requirement is computational (i.e., refers only to probabilistic 
polynomial-time adversaries). Hence, in some sense calling one of these schemes "per- 
fect" is somewhat unfair to the other (yet, we do so in order to avoid cumbersome terms 
such as a "perfectly secret and computationally nonambiguous commitment scheme"). 
We remark that it is impossible to have a commitment scheme in which both the secrecy 
and nonambiguity requirements are information theoretic. 

The Basic Definition 

Loosely speaking, a perfect commitment scheme is an efficient two-phase two-party 
protocol through which the sender can commit itself to a value so the following two 
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conflicting requirements are satisfied: 

1. Secrecy: At the end of the commit phase the receiver does not gain any information 
of the sender's value. 

2. Nonambiguity: It is infeasible for the sender to interact with the receiver so that the 
commit phase is successfully terminated and yet later it is feasible for the sender 
to perform the reveal phase in two different ways, leading the receiver to accept 
(as legal "openings") two different values. 

Again, we require that the protocol is viable in the sense that if both parties follow it, then, 
at the end of the second phase, the receiver gets the value committed to by the sender. 
Using analogous conventions to the ones used in Section 3.1, we make the following 
definition. 

Definition 2 (Perfect Bit Commitment Scheme). A p e r f e c t  b i t  c o m m i t m e n t  s c h e m e  
is a pair of probabilistic polynomial-time interactive machines, denoted (S, R) (for 
sender and receiver), satisfying: 

 9 Input specification: As in Definition 1. 
 9 Secrecy: For every probabilistic (not necessarily polynomial-time) machine R* 

interacting with S, the random variables describing the output of R* in the two 
cases, namely (S(0), R*)(l") and (S(1), R*)(I"), are statistically close. 

 9 Nonambiguity: 
Preliminaries. Fix any probabilistic polynomial-time algorithm F*. 

- -  As in Definition l, a receiver's view of a n  i n t e r a c t i o n  with the sender, 
denoted (l n, r, fit), consists of the random coins used by the receiver (r) and 
the sequence of messages received from the sender (frO. A sender's view of 
the same interaction, denoted (1 n, s, fit), consists of the random coins used by 
the sender (s) and the sequence of messages received from the receiver (fit). 
A joint view of the interaction is a pair consisting of corresponding receiver 
and sender views of the same interaction. (In what follows, we sometimes 
omit 1 n from the view.) 

- -  Let tr ~ {0, 1}. We say that a joint view (of an interaction), ((r, fit), (s, fit)), 
has a feasible tr-opening (with respect to F*) if, on input (s, th, fit, cr), 
algorithm F* outputs (say, with probability at least 1/2) a string s' such 
that rh describes the messages received by R when R uses local coins r and 
interacts with machine S which uses local coins s' and input (tr, ln). 
(Remark: We stress that s' may, but need not, equal s. The output of algorithm 
F* has to satisfy a relation which depends only on the receiver's view part of 
the input; the sender's view is supplied to algorithm F* as additional help.) 

- -  We say that a joint view is ambiguous (with respect to F*) if it has both a 
feasible 0-opening and a feasible l-opening (with respect to F*). 

The nonambiguity requirement asserts that, for all but a negligible fraction of the 
coin tosses of the receiver, it is infeasible for the sender to interact with the receiver 
so that the resulting joint view is ambiguous with respect to some probabilistic 
polynomial-time algorithm F*. Namely, for every probabilistic polynomial-time 
interactive machine S*, probabilistic polynomial-time algorithm F*, polynomial 
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p(.), and all sufficiently large n, the probability that the joint view of the interaction 
between R and with S*, on common input l ' ,  is ambiguous with respect to F*, is 
at most 1/p(n) .  

The nonambiguity requirement asserts that any efficient strategy S* will fail to produce 
a joint view of interaction, which can later be (efficiently) opened in two different ways 
supporting two different values. As usual, events occurring with negligible probability are 
ignored. In the formulation of the nonambiguity requirement, S* describes the (cheating) 
sender strategy in the commit phase, whereas F* describes its strategy in the reveal phase. 
Hence, it is justified (and in fact necessary) to pass the sender's view of the interaction 
(between S* and R) to algorithm F*. 

As in Definition 1, the secrecy requirement refers explicitly to the situation at the end 
of the commit phase, whereas the nonambiguity requirement implicitly assumes that the 
reveal phase takes the following form: 

1. The committer sends to the receiver its initial private input, v, and the random 
coins, s, it has used in the commit phase. 

2. The receiver verifies that v and s (together with the coins (r) used by R in the 
commit phase) indeed yield the messages R has received in the commit phase. 
Verification is done in polynomial time (by running the programs S and R). 

Construction Based on Claw-Free Collections 

Perfect commitment schemes can be constructed using a strong intractability assumption; 
specifically, the existence of claw-free collections (defined below). This assumption 
implies the existence of one-way functions, but it is not known whether the converse 
is true. Nevertheless, claw-free collections can be constructed under widely believed 
intractability assumptions such as the intractability of factoring and of DLP (see the 
Appendix). We start with a definition of claw-free collections. Loosely speaking, a claw- 
free collection consists of a set of pairs of functions which are easy to evaluate, both have 
the same range, and yet it is infeasible to find a range element together with preimages 
of it under each of these functions. We define claw-free collections in terms of the 
algorithms used to effect them; the index/function selection algorithm I, the domain- 
sampling algorithm D, and the function-evaluation algorithm F. Intuitively, algorithm 
I selects an index, i, which specifies a pair of domains, D O and D~, and a pair of 
functions, f/0 and f/l, defined over the domains D O and D~, respectively. On input cr 
and i, algorithm D selects randomly (but not necessarily uniformly) an element in the 
domain D 7. On input ty, i and x ~ D}', algorithm F computes the value of the function 
f,.~ atx.  

Definition 3 (Claw-Free Collection). A triple of algorithms, (I, D, F), is called a claw- 
free collection if the following conditions hold: 

1. The algorithms are efficient: Both I and D are probabilistic polynomial time, 
whereas F is deterministic polynomial time. We denote by fff (x) the output of F 
on input (or, i, x) ,  and by D~ the support of the random variable D(~r, i). 
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2. Identical range distribution: For every i in the range of algorithm I, the random 
variables f/0 (D (0, i)) and f/1 (D (l,  i)) are identically distributed. 

3. Hard to form claws: For every probabilistic polynomial time algorithm, A', every 
polynomial p(.), and all sufficiently large n's, 

1 
Prob(f~(Xn) = fln cyn)) < 

p(n) ' 

where In is a random variable describing the output distribution of algorithm I on 
input 1 n, and (Xn, In) is a random variable describing the output of algorithm A' 
on input (random variable) In. 

Item 2 in the definition requires that the functions f/0 and f/l induce the same distribu- 
tion when applied to elements selected at random by D(0, i) and D(1, i), respectively. 
A special case of interest is when both domains are identical (i.e., Di clef Do = D)), 
the random variable D(tr, i) is uniformly distributed over Di, and the functions, f/0 and 
f/l, are permutations over Di. Such a collection is called a collection of permutations. 
Anyhow, item 2 implies that many pairs (x, y) exist so that f/~ = fil  (y)  (e.g., in case 
of collections of permutations the number of such pairs is exactly I D; I, but in general 
the number may be larger6). Such a pair is called a claw. The claw-forming adversary 
algorithm is given as input an index i, and tries to find a claw. It is required that al- 
though many claws do exist, efficient algorithms are unable to find claws. Clearly, a 
claw-free collection of permutations (resp. functions) yields a collection of strong one- 
way permutations (resp. functions). Examples of claw-free collections are presented in 
the Appendix. At this point we present a construction of perfect commitment schemes 
that uses a restricted type of a claw-free collection; specifically, we assume that the set 
of indices of the collection (i.e., the range of algorithm I) can be efficiently recognized 
(i.e., is in B7979). 

Construction 2 (Perfect Bit Commitment). Let (I, D, F) be a triplet of efficient algo- 
rithms. 

1. Commit phase: To receive a commitment to a bit (using security parameter n), the 
receiver randomly generates an index i by invoking I ( I n) and sends it to the sender. 
To commit to value v ~ {0, 1 } (upon receiving the message i from the receiver), 
the sender checks if indeed i is in the range of I ( I n), and if so the sender randomly 
generates a domain element s by invoking D(v, i), computes c ~f F(o, i, s), and 
sends c to the receiver. (In case i is not in the range of l (1 n) the sender aborts the 
protocol announcing that the receiver is cheating.) 

2. Reveal phase: In the reveal phase the sender reveals the string s used in the com- 
mit phase. The receiver accepts the value v if F(v, i, s) = c, where (i, c) is the 
receiver's (partial) view of the commit phase. 

6 In the general case, the number of claws equals ~'-~-a N~ Nil (or), where N ~ (~) ~f [{x: f/o (x) = a}l. 
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Proposition 1. Let (I, D, F) be a claw-free collection with a probabilistic poly- 
nomial-time recognizable set of indices (i.e., the range of algorithm I is in I3T~79). 
Then the protocol presented in Construction 2 constitutes a perfect bit commitment 
scheme. 

Proof. The secrecy requirement follows directly from property 2 of a claw-free col- 
lection (combined with the test i E I (1 n) conducted by the sender). The nonambiguity 
requirement follows from property 3 of a claw-free collection, using a standard reducibil- 
ity argument. [] 

Remark 1. The definition of a claw-free collection may be relaxed in several ways 
maintaining the validity of Proposition 1. In particular, it suffices to require that the 
distributions, fi~ i)) and f/l (D(I,  i)), are statistically close (rather than identical). 
Furthermore, this need not hold for all i 's in the range of I, but rather for all i ~ I', where 
I '  is an efficiently recognizable set so that Prob(l (1 n) ~ I ') is a negligible fraction. 

Commitment Schemes with A Posteriori Secrecy 

We conclude the discussion of perfect commitment schemes by introducing a relaxation 
of the secrecy requirement, that suffices for the purposes of the current work. The ad- 
vantage in the relaxation is that it allows the construction of commitment schemes using 
any claw-free collection, thus waiving the additional requirement that the index set is 
efficiently recognizable. 

Loosely speaking, we relax the secrecy requirement of perfect commitment schemes 
by requiring that it only holds whenever the receiver follows its prescribed program 
(denoted R). This seems strange since we do not really want to assume that the real 
receiver follows the prescribed program (but rather allow it to behave arbitrarily). The 
point is that a real receiver may disclose the coin tosses used by it in the commit phase at 
a later stage, say even after the reveal phase, and by doing so prove a posteriori that (at 
least in some weak sense) it was following the prescribed program. Actually, the receiver 
only proves that he behaved in a manner which is consistent with its program. 

Definition 4 (Commitment Scheme with Perfect A Posteriori Secrecy). A bit com- 
mitment scheme with perfect a posteriori secrecy is defined as in Definition 3.2, except 
that the secrecy requirement is replaced by the following a posteriori secrecy require- 
ment: for every string r ~ {0, 1} p~ it holds that (S(0), Rr)(1 n) and (S(1), Rr)(l n) are 
statistically close, where Rr denotes the execution of the interactive machine R when 
using internal coin tosses r. 

The above a posteriori secrecy requirement can be further relaxed by requiring that 
it holds only for every r E R', where R' is efficiently recognizable and contains all but 
a negligible fraction of the strings of length poly(n) (i.e., the number of coins used by 
the receiver on input In). This relaxation of the a posteriori secrecy requirement is used 
for carrying out the proof of the following proposition using claw-free collections which 
have the identical range property only for most indices (see Remark 1 above). 
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Proposition 2. Let (I, D, F) be a claw-free collection. Consider a modification of  
Construction 2, in which the sender's check, of  whether i is in the range of IOn),  is 
omitted (from the commit phase). Then the resulting protocol constitutes a bit commit- 
ment scheme with perfect a posteriori secrecy. 

In contrast to Proposition 1, here the claw-free collection may not have an efficiently 
recognizable index set. Hence, the sender's check must be omitted from the commit 
phase. Yet, the receiver can later prove that the message sent by it during the commit 
phase (i.e., i) is indeed a valid index by disclosing the random coins it has used in 
order to generate i (using algorithm I). This will, a posteriori, convince the sender that 
its committed value was kept secret till the reveal phase. In case we used a claw-free 
collection of the relaxed sense discussed in Remark 1, the sender must also check that 
i ~ I'. (Note that, for the purposes of the current paper, we could have further relaxed the 
definition of claw-free collections and settled for a set I', containing all but a negligible 
fraction of I f3 {0, 1 }n, such that I '  has a constant-round interactive proof system.) 

Proof. The a posteriori secrecy requirement follows directly from property 2 of a 
claw-free collection (combined with the assumption that i is indeed a valid index). The 
nonambiguity requirement follows as in Proposition 1. [] 

A typical application of a commitment scheme with perfect a posteriori secrecy is 
presented in the current work. In our setting the commitment scheme is used inside an 
interactive proof with the verifier playing the role of the sender (and the prover playing the 
role of the receiver). If the verifier a posteriori learns that the prover has been cheating, 
then the verifier rejects the input. Hence, no damage is caused, in this case, by the fact 
that the secrecy of the verifier's commitments might have been breached. 

Extensions 

As in the previous subsection, we need to extend the definitions and the constructions of 
perfect commitment schemes so that they enable the sender to commit to a string rather 
than to a single bit. The definitional extensions, omitted here, are quite straightforward. 
As for the constructions, we may use the following generalization of the commitment 
schemes presented above. In the commit phase the receiver generates and sends to the 
sender a single index i specifying a pair of functions (f/0, f/I). To commit to the bit string, 

O" m ~f Crl . . .  ~,,, the sender sends to the receiver a sequence (f/*~ (s l) . . . . .  f/ (s,,)), where 
sj is generated by invoking D(trj, i). Preservation of perfect secrecy is argued by using 
the fact that the statistical difference between two product distributions is bounded by the 
sum of the componentwise statistical differences. Computational nonambiguity is argued 
using a standard reducibility argument while observing that two different "openings" of 
a commitment-sequence yield a claw in at least one component. 

In addition, for the purposes of this paper, we need perfect commitment schemes with 
computational nonambiguity stated in nonuniform terms. Specifically, instead of re- 
quiting nonambiguity with respect to all polynomial-time machines, we require non- 
ambiguity with respect to all (not necessarily uniform) families of polynomial-size 
circuits. Assuming the existence of claw-free collections for which even nonuniform 
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polynomial-size circuits cannot form claws, perfect commitment schemes with non- 
uniform nonambiguity can be constructed. The constructions are identical to the ones 
used in the uniform case. 

4. The Interactive Proof System 

For the sake of clarity, we start by presenting a detailed description of the constant- 
round interactive proof, for Graph 3-Colorability (i.e., G3C), sketched in Section 2. This 
interactive proof employs two different commitment schemes. The first scheme is the 
simple commitment scheme (with "computational" secrecy) presented in Construction 1. 
We denote by Cs (tr) the commitment of the sender, using coins s, to the (ternary) value 
tr. The second commitment scheme is a commitment scheme with perfect secrecy (see 
Section 3.2). For simplicity, we assume that the latter scheme has a commit phase in which 
the receiver sends one message to the sender who then replies with a single message 
(e.g., the schemes presented in Section 3.2). We denote by Pm,s (or) the commitment of 
the sender to string a, upon receiving message m (from the receiver) and when using 
coins s. 

Construction 3 (A Round-Efficient Zero-Knowledge Proof for G3C). 
def def  9 Common input: A simple (3-colorable) graph G = (V, E). Let n = IVI, t = 

2n. IEl, and V = {1 . . . . .  n}. 
 9 Auxiliary input to the prover: A 3-coloring of G, denoted ~. 
 9 Prover's preliminary step (P0): The prover invokes the commit phase of the perfect 

commitment scheme, which results in sending to the verifier a message m. 
 9 Verifier's preliminary step (V0): The verifier uniformly and independently selects 

a sequence of t edges,/~ de__f ((ul, Vl) . . . . .  (ut, vt))  9 E t, and sends to the prover 
a random commitment to these edges. Namely, the verifier uniformly selects g  9 
{0, 1} p~ and sends Pm.~(E) to the prover. 

 9 Motivating remark: At this point the verifier is committed to a sequence of t edges. 
(This commitment is o f  perfect secrecy.) 

 9 Prover's step (P1): The prover uniformly and independently selects t permutations, 
7['1 . . . . .  Ytrt, over {1, 2, 3}, and sets ~0j(v) d~=f zrj(C,(v)), for each v  9 V and 1 < 
j < t. The prover uses the computational commitment scheme to commit itself 
to the colors of each of the vertices according to each 3-coloring. Namely, the 
prover uniformly and independently selects sl.1 . . . . .  sn,t  9 {0, 1 }n, computes ci, j = 

Cs,4(tpj(i)), for each i  9 V and 1 < j < t, and sends Cl.l . . . . .  C~,t tO the verifier. 
 9 Verifier's step (V1): The verifier reveals the sequence/~ = ((ul, vl) . . . . .  (ut, or)) 

to the prover. Namely, the verifier send (g,/~) to the prover. 
 9 Motivating remark: At this point the entire commitment of the verifier is revealed. 

The verifier now expects to receive, for each j ,  the colors assigned by the j th 
coloring to vertices uj and v# (the endpoints of the j th edge in/~). 

 9 Prover's step (P2): The prover checks that the message just received from the 
verifier is indeed a valid revealing of the commitment made by the verifier at 
Step V0. Otherwise the prover halts immediately. We denote the sequence of t 
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edges, just  revealed, by (u l, ol) . . . . .  (ut, Or). The prover uses the reveal phase of  
the computational commitment  scheme in order to reveal (to the verifier), for each 
j ,  the j t h  coloring of  vertices uj and vj. Namely, the prover sends to the verifier 
the sequence of  fourtuples 

(s. , . i ,  ~ol (ul). s~,.l. ~ol (vt) ) . . . . .  (s.,,,. ~o, (u,), sv,.t, ~o,(v,)). 

 9 Verifier's step (V2): The verifier checks whether, for each j ,  the values in the 
j t h  fourtuple constitute a correct revealing of the commitments c,s.j and cvj,j, 
and whether the corresponding values are different. Namely, upon receiving 
(sl ,  crt, s'~, r l )  through (st, crt,s;, rz), the verifier checks whether, for each j ,  it 
holds that c,s,j = Csj(trj ), cvl.j = Cs~(rj), and trj ~ rj (and both are in {1, 2, 3}). 
If all conditions hold, then the verifier accepts. Otherwise it rejects. 

We first assert that Construction 3 is indeed an interactive proof  for G3C. Clearly, the 
verifier always accepts a common input in G3C. Suppose that the common input graph, 
G --- (V, E),  is not in G3C. Clearly, each of  the "committed colorings" sent by the prover 
in Step P1 contains at least one illegally colored edge. Using the perfect secrecy of  the 
commitments sent by the verifier in Step V0, we deduce that at Step PI the prover has 
"no idea" which edges the verifier asks to see (i.e., as far as the information available 
to the prover is concerned, each possibili ty is almost equally likely7). Hence, although 
the prover sends the "coloring commitment" after receiving the "edge commitment," the 
"edge commitment" is (almost) statistically independent of  the "coloring commitment." 
It follows that the probability that all the "committed edges" have legally "committed 
coloring" is at most ( ,  )' 

1 Igl + /z(IEI)  < e-", 

where # is smaller than any nonnegligible function (and in part icular /x(m) < 1/2m). 
Hence, we get: 

Proposition 3. Construction 3 constitutes an interactive proof system for Graph 3- 
Colorability. 

5. The Simulator 

We now turn to show that Construction 3 is indeed zero-knowledge (in the liberal sense al- 
lowing expected polynomial- t ime simulators). For every probabilistic (expected 8) 

7 The negligible difference in likelihood is due to the fact that the definition of perfect secrecy only requires 
the commitment distributions to be statistically close. 

s Verifier strategies which run in expected polynomial time but not in strict polynomial time are considered 
for sake of elegance; see [ 11] and [ 10]. There are two common alternative definitions for the (expected) running 
time of an interactive machine; one alternative is to consider its executions with the prescribed counterpart 
(in our case the honest prover) and the other is to consider its executions with an arbitrary (i.e., worse-caso) 
counterpart. Here we may use the more liberal alternative and consider all verifiers which run in expected 
polynomial time when the expectation is taken over the coin tosses of both the verifier and the honest prover. 
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polynomial-time interactive machine, V*, we introduce an expected polynomial-time 
simulator, denoted M*. The simulator starts by selecting and fixing a random tape, r,  for 
V*. Next, M* simulates Step P0 by invoking the commit phase (of the perfect commit- 
ment scheme) and producing a message m. Given the input graph G, the random tape 
r, and the prover message m, the commitment message of the verifier V* (for Step V0) 
is determined. Hence, M* invokes V*, on input G, random tape r, and message m, and 
gets the corresponding commitment message, denoted CM.  The simulator proceeds in 
two steps. 

S1. 

$2. 

Extracting the query edges: The simulator M* generates a sequence ofn . t  random 
commitments to dummy values (e.g., all values equal 1), and feeds it to V*. (These 
commitments are via the regular commitment scheme and feeding them to V* 
corresponds to the prover's Step P1.) In case V* replies by revealing correctly a 
sequence of t edges, denoted (Ul, vl) . . . . .  (ut, vt), the simulator records these 
edges and proceeds to the next step. In case the reply of V* is not a valid revealing 
of the commitment message C M ,  the simulator halts outputting the current view 
of V* (e.g., G, r, and the commitments to dummy values). Note that halting in 
such a case is consistent with the prover's behavior (in Step P2). 
Generating an interaction that satisfies the query edges (oversimplified exposi- 
tion): Let (u l, Vl) . . . . .  (ut, vt) denote the sequence of edges recorded in Step S 1. 
The simulator M* generates a sequence of n  9 t commitments, c1,1 . . . . .  Cn.t, so 
that, for each j = 1 . . . . .  t, it holds that cuj,j and coj,j are random commitments 
to two different random values in { 1,2, 3} and all the other ci,j's are random 
commitments to dummy values (e.g., all values equal 1). The underlying values 
are called a pseudocolorings. The simulator feeds this sequence of commitments 
to V* (which has been invoked from scratch with the same random-tape r and 
the same (Step Pl)-message m). (Again, these commitments are via the regular 
commitment scheme and feeding them to V* corresponds to the prover's Step PI.) 
If V* replies by revealing correctly the above-recorded sequence of edges, then 
M* can complete the simulation of a "real" interaction of V* (by revealing the 
colors of the endpoints of these recorded edges). Otherwise, the entire Step $2 is 
repeated (until success occurs). 

To illustrate the behavior of the simulator, assume that the program V* always reveals 
correctly the commitment made in Step V0. In such a case the simulator will find out 
the query edges in Step S1, and using them in Step $2 it will simulate the interaction 
of V* with the real prover. Using ideas as in [10], it can be shown that the simulation is 
computationally indistinguishable from the real interaction. Note that in this case (i.e., 
when V* always replies properly), Step $2 of the simulator is performed only once. 

Consider now a more complex case in which, on each possible sequence of internal 
coin tosses r, program V* correctly reveals the commitment made in Step V0 only with 
probability 1/3. The probability in this statement is taken over all possible commitments 
generated to the dummy values (in the simulator Step S1). We first observe that the 
probability that V* correctly reveals the commitment made in Step V0, after receiving 
a random commitment to a sequence ofpseudocotorings (generated by the simulator 
in Step $2), is approximately 1/3. (Otherwise, we derive a contradiction to the compu- 
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tational secrecy of the commitment scheme used by the prover.) Hence, the simulator 
reaches Step $2 with probability 1/3, and each execution of Step $2 is completed suc- 
cessfully with probability p ~ 1/3. It follows that the expected number of times that 
Step $2 is invoked when running the simulator is (1/3)  9 ( I / p )  ~ 1. 

We now consider the general case. Let q(G, r) denote the probability that program 
V*, on input graph G and random tape r, correctly reveals the commitment made in 
Step V0, after receiving random commitments to dummy values (generated in Step S 1). 
Likewise, we denote by p(G, r) the probability that V* (on input graph G and random 
tape r) correctly reveals the commitment made in Step V0, after receiving a random 
commitment to a sequence ofpseudocolorings (generated by the simulator in Step $2). 
As before the difference between q (G, r) and p(G, r) is negligible (in terms of the size 
of the graph G), otherwise a contradiction to the computational secrecy of the prover's 
commitment scheme is derived. We conclude that the simulator reaches Step $2 with 

def . -- probability q = q(U, r), and each execution of Step $2 is completed successfully with 
probability p dee p(G, r). It follows that the expected number of times that Step $2 is 
invoked when running the simulator is q/p.  Here is the bad news: we cannot guarantee 
that q /p  is approximately 1 or even bounded by a polynomial in the input size (e.g., 
let p = 2 -n and q = 2 -n/2, then the difference between them is negligible and yet 
q/p  is not bounded by poly(n)). This is why the above description of the simulator is 
oversimplified and a modification is indeed required. 

We make the simulator expected polynomial time by modifying Step $2 as follows. 
We first add an intermediate step, denoted S 1.5, to be performed only if the simulator did 
not halt in Step S 1. The purpose of Step S 1.5 is to provide a good estimate of q (G, r). The 
estimate is computed by repeating the experiment of Step S 1 until a fixed (polynomial 
in IGI) number of correct 9 V*-reveals are encountered (i.e., the estimate will be the 
ratio of the number of successes divided by the number of trials). We stress that, in case 
Step S1.5 is performed, the number of trials (in it) is not necessarily a polynomial but 
is rather poly(IGI)/q(G, r), on the average. By fixing a sufficiently large polynomial, 
we can guarantee that with overwhelmingly high probability (i.e., 1 - 2 -p~ the 
estimate is within a constant factor of q(G, r). Step $2 of the simulator is modified by 
adding a bound on the number of times it is performed, and if none of these executions 
yields a correct V*-reveal, then the simulator outputs a special symbol indicating time- 
out. Specifically, Step $2 will be performed at most poly(I G I)/Ft times, where ~ is the 
estimate to q(G, r) computed in Step S1.5. In addition, we modify the simulator so that 
if the verifier ever reveals a correct opening of the commitment that is different from the  
one recorded in Step S 1, then the simulator halts outputting a special symbol indicating 
ambiguity. It can easily be verified that the modified simulator has an expected running 
time bounded by q(G, r). poly(lGI)/q(G, r) = poly(IGI). Hence: 

Claim 1. The modified simulator runs in expected polynomial time. 

9 We do not require here that the revealed string matches the one recorded in Step S 1. The distinction, 
however, is immaterial in view of the last modification described below. 
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It is left to analyze the output distribution of the modified simulator. We start by 
reducing this analysis to the analysis of the output distribution of the original simulator. 
The modified simulator, hereafter denoted M**, differs from the original one (i.e., M*) 
in two types of executions in which M** outputs special symbols, specifically "time-out" 
and "ambiguity," whereas the original simulator proceeds to the next iteration of Step $2. 
Hence, we need to bound the probability that these executions occur. 

Claim 2. The probability that the modified simulator outputs the time-out symbol is a 
negligible function of IGI. 

Proof. Let A(G, r) denote the probability that, on input a graph G and coin tosses r, 
the modified simulator outputs a special time-out symbol. Then 

i>_l 

< q ( G , r ) . ( P r o b ( q ( G ' r )  ~ _ ~ ) ( l ) ) . ( 1 - p ( G , r ) )  p~ 

+ Prob ( q ( - ~  r) 5k |  

< q(G, r)  9 (l - p(G, r)) p~ -}- 2 -IGI. 

In what follows, we ignore the additive 2 -I~1 term. We now show that A(G, r) is a 
negligible function of I GI. Assume, to the contrary, that there are a polynomial P (.), an 
infinite sequence of graphs {Gn} (with I Gn I -- n), and an infinite sequence of random 
tapes {rn}, such that A(Gn, rn) > l /P(n) .  It follows that for each such n we have 
q(Gn. r,) > l / P(n). We consider two cases. 

Case l : For infinitely many of these n 's, it holds that p(G,,, r,) >_ q (G,, rn)/2. In such 
a case we get, for these n's, 

A(G,,, r .)  < (1 - p(G,,, rn)) p~ 

< (1 q(G2'rn))p~ .... ) 

< 2-P~ rIG.[)/2, 

which contradicts our hypothesis that A (Gn, r .)  > 1/poly(n). 

Case 2: For infinitely many of these n 's, it holds that p(Gn, r.) < q(Gn, rn)/2. It 
follows that for these n's we have Iq(G., r.) - p(G.,  rn)] > P(n)/2, which leads 
to contradiction of the computational secrecy of the commitment scheme (used by the 
prover). 

Hence, contradiction follows in both cases. [] 

Claim 3. The probabili~ that the modified simulator outputs the ambiguity symbol is 
a negligible function of lGI. 
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Proof, Intuitively, the claim follows by using the (computational) nonambiguity prop- 
erty of the verifier's commitment scheme. However, when trying to carry out the standard 
argument the following difficulty is encountered. The standard argument proceeds by 
contradiction and uses the machine V*, invoked by the simulator, to do things assumed 
impossible (i.e., produce ambiguous commitments). The problem is that V* might have 
revealed different values when invoked more than polynomially many times. Recall 
that the number of times Step $2 is performed is not bounded by a polynomial; only 
the expected number of times that Step $2 is performed (by the modified simulator) is 
bounded by a polynomial. Nevertheless, the problem is easily resolved by disregard- 
ing the executions of the modified simulator in which Step $2 is performed too many 
times. Specifically, assume by contraction that the "ambiguity" symbol is output with 
probability at least 1 / P (IG I), for a polynomial P (.) and an infinite sequence of graphs. 
Then we can truncate the executions of M** in which Step $2 is performed more than 
2T(IGI) . P(IGI) times, where T(.) denotes the expected running time of M**. By 
an averaging argument it also follows that in these truncated executions M** outputs 
an "ambiguity" symbol with nonnegligible probability (i.e., with probability at least 
1/2P (IG I))- Contradiction now follows using the standard techniques. [] 

To conclude, it suffices to show that the output of the original simulator (i.e., M*) is 
computationally indistinguishable from the output of verifier V* (when interacting with 
the prover). 

Claim 4. The ensemble {M*(G)}6~cac is computationally indistinguishable from the 
ensemble {(P, V*)(G)}G~G3C, where (P, V*)(G) denotes the output of V* after an 
interaction with the prover on common input G. 

Proof. When trying to carry out the standard argument (i.e., as in [10]), we again 
encounter the difficulty mentioned in the proof of the previous claim. Namely, the 
standard argument proceeds by contradiction and uses the machine M* to do things 
assumed impossible (i.e., distinguish computationally secure commitments to differ- 
ent values). However, here M* is not strictly polynomial time, and furthermore M* 
is not even guaranteed to be expected polynomial time. Yet, again, the problem is re- 
solved by truncating the rare executions of M* which are too long. Specifically, as- 
sume that the above ensembles are distinguished (by an efficient algorithm A) with gap 
e(G) (i.e., e(G) = IProb(A(M*(G)) = 1) - Prob(A((P, V*)(G)) = 1)1), and that 
e(G) > 1/P(IGI) for apolynomial P(.) and an infinite sequence of graphs {G~: n ~ S} 
(with IG~ I = n). Defining a predicate R so that R(y) = 1 if y is an interaction-transcipt 
in which the verifier correctly reveals the commitment made in Step V0 and R(y) = 0 
otherwise, we consider two cases: 

Case 1: For infinitely many n E S, it holds that Prob( R ( ( P , V*)(Gn)) = 1) > e ( G n ) / 3. 
On these Gn's, it is guaranteed that the expected number of times that Step $2 is performed 
(by M*) is at most 3/e (Gn) < 3 P (IGn I). Hence, runs of M* in which Step $2 is repeated 
more than T(IG~I) de___f 6P(iGnl) 2 times occur with probability at most 1/2P(IG~I). 
Thus, truncating the execution of M* after T (IG~ I) repetitions of Step $2 yields output 
that is at most 1/2P(IG, l) away (in statistical distance) from the output of the original 
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M*. It follows that algorithm A still distinguishes, with gap at least e(G~) - I/2P(IGn I), 
the output of the truncated M* from the real interaction with the prover. At this 
point, we may apply the standard techniques (see [10], but actually the proof here is 
simpler). 

Case 2: For infinitely many n ~ S, it holds that Prob( R( ( P, V*)( Gn) ) = 1) < e( Gn) /3. 
It follows that, on these Gn's, with probability at least 1 - e(Gn)/3, the interaction of 
V* with the real prover is suspended at Step V1. There are two subcases to consider: 

 9 In the first subcase we assume that the simulator halts in Step S 1 with probability at 
most 1 - e(G~)/2. Thus, there is a gap, of at least e(G~)/6 between the probability 
that V* correctly reveals its commitments when interacting with the prover and 
the probability that V* correctly reveals its commitments when "interacting" with 
the simulator. In this case V* is used to distinguish the commitments to dummy 
values (as produced by the simulator) from commitments to legal coloring (as pro- 
duced by the prover), in contradiction to the computational secrecy of the prover's 
commitment scheme. 

 9 In the second subcase we assume that the simulator halts in Step S 1 with probability 
at least 1 - e(Gn)/2. This means that both the real and the simulated interactions 
are suspended with probability at least 1 - e(G,)/2. Hence, algorithm A must dis- 
tinguish such suspended interactions with gap at least e (Gn)/2. It follows that algo- 
rithm A distinguishes commitments to dummy values (as appearing in suspended 
interactions produced by the simulator) from commitments to legal coloring (as 
appearing in suspended interactions with the prover). 

Since in all cases we reached contradiction to the computational secrecy of the prover's 
 9 commitment, the claim follows. [] 

Combining the above four claims, we get: 

Proposition 4. Construction 3 is zero-knowledge. 

6. Conclusion 

Construction 3 can be modified so that weaker forms of perfect commitment schemes 
can be used. We refer specifically to commitment schemes with perfect a posteriori 
secrecy (see Section 3.2). In such schemes the secrecy is only established a posteriori 
by the receiver which discloses the coin tosses it has used in the commit phase. In our 
case the prover plays the role of the receiver, and the verifier plays the role of the sender. 
Hence, the prover may establish the secrecy of the verifier's commitment (of Step V0) by 
revealing, in Step P2, the coins it has used as receiver in Step P0. This suffices since, in 
case secrecy is not established, the verifier may reject. In such a case no harm has been 
caused since the secrecy of the perfect commitment scheme is used only to establish 
the soundness of the interactive proof. Hence, combining the above discussion with 
Propositions 2--4 we get: 
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Theorem 1. I f  a claw-free collection exists, then every language in A l p  has a constant- 
round zero-knowledge interactive proof  system. 
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Appendix. Examples of Claw-Free Collections 

The following examples of claw-free collections have been discovered independently 
by many researchers. In particular, the DLP Claw-Free Collection has appeared in [3], 
and the Factoring Claw-Free Collection is an obvious modification of the construction 
appearing in [ 12]. 

A. 1. The DLP Claw-Free Collection 

We start by presenting a claw-free collection under the assumption that the Discrete 
Logarithm Problem (DLP) is intractable. Here we refer to the DLP for fields of prime 
cardinality. Namely, the input to DLP consists of a prime P, a primitive element of 
the multiplicative group mod P, and an element of the group. The problem is, given 
such a triplet (P, G, Y), to find an x such that G x =- Y mod P. The DLP intractability 
assumption asserts that any efficient algorithm succeeds only with negligible probability 
(where the probability is taken over all possible inputs of specific length and the coin 
tosses of the algorithm). 

Following is the description of the algorithms defining a collection of claw-free per- 
mutations (based on the above assumption). On input I n, the index selection algorithm 
loLp selects uniformly a prime, P, such that 2 n-I < p < 2 n, a primitive element G 
in the multiplicative group modulo P, and an arbitrary member Z of that group, and 
outputs the index (P, G, Z). The domain of both functions with index (P, G, Z) is 
identical and equals the set { 1 . . . . .  P - 1 }. The domain sampling algorithm, DoLp, uni- 
formly selects an element of this set (i.e., DDLp(a, (P, G, Z)) is uniformly distributed 
over {1 . . . . .  P - 1}, for both tr ~ {0, 1}). As for the functions themselves, we set 
FoLP(tr, (P, G, Z), x)  de=f Z~ . GX mod P, for both a ~ {0, 1}. The reader can easily 
verify that both functions are permutations over { 1 . . . . .  P - 1 }. Also, the ability to form 
a claw for the index (P, G, Z) yields the ability to find the discrete logarithm of Z mod 
P to base G (since G x -- Z  9 G y mod P yields G x-y -- Z mod P). Hence, the ability 
to form claws for a nonnegligible fraction of the index set translates to a contradiction 
to the DLP intractability assumption. 

The above collection does not have the additional property of having an efficiently 
recognizable index set, since it is not known how to recognize primitive elements modulo 
a prime efficiently. This can be amended by making a slightly stronger assumption 
concerning the intractability of DLP. Specifically, we assume that DLP is intractable 
even if one is given the factorization of the size of the multiplicative group (i.e., the 
factorization of P - 1) as additional input. Such an assumption allows us to add the 
factorization of P -  1 into the description of the index. This makes the index set efficiently 
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recognizable (since P can first be tested for primality, as usual, and next test whether G 
is a primitive element by raising it to powers of the form (P - l ) /Q  where Q is a prime 
factor of P - 1). If DLP is hard also for primes of the form 2Q + l, where Q is also a 
prime, life is even easier. To test whether G is a primitive element mod P just compute 
GE(mod P) and G~e-l)/E(mod P), and check whether either of them equals 1. 

We remark that the above description assumes the existence of probabilistic polyno- 
mial-time algorithms for uniformly selecting primes and primitive elements. We only 
know of expected polynomial-time algorithms for these tasks. Furthermore, primality 
testers with no error are quite impractical, and therefore it is reasonable to use fast ran- 
domized algorithms (with negligible error probability) instead. Doing so we get some- 
thing that is very close to a claw-free collection but does not quite achieve one (as 
with negligible probability the algorithms fail). We stress that this issue has no practical 
significance, yet if we wish to state a precise result, then the definition of claw-free col- 
lections needs to be slightly modified. Relaxing the definition of a claw-free collection 
requires a similar relaxation of the definition of perfect commitment schemes, so that 
Construction 2 remains valid. Details are omitted. 

A.2. The Factoring Claw-Free Collection 

We now show that a claw-free collection (of functions) does exist under the assumption 
that integer factorization is intractable for integers which are the product of two primes 
each congruent to 3 mod 4. Such composite numbers, hereafter referred to as Blum 
integers, have the property that the Jacobi symbol of - 1 (relative to them) is 1 and half 
of the square roots of each quadratic residue, in the corresponding multiplicative group 
(modulo this composite), have Jacobi symbol 1. Let j+ l  (resp. j~ l )  denote the set of N. 
residues in the multiplicative group modulo N with Jacobi symbol +1 (resp. -1) .  

The index-selecting algorithm, denoted IFCa', uniformly selects a Blum integer, by 
uniformly selecting two (n-bit) primes each congruent to 3 mod 4, and outputs their 
product, denoted N. The domains of the two functions with index N is j+ l  and j~ l ,  
respectively. The domain-sampling algorithm, DFCT, on input cr and N, uniformly selects 
an element of J(~- Ir (by uniformly selecting residues rood N and computing their Jacobi 
symbol). Finally, the functions themselves are defined by FFcr(tr, N, x) def f~c(X) def 
X 2 mod N, for both tr ~ {0, 1}, where x e J~ -I)~ . Note that each of the two functions is 
2-to- 1. 

The reader can easily verify that both f~ N)) and f~(D(1,  N)) are uniformly 
distributed over the set of quadratic residues mod N. The difficulty of forming claws 
follows from the fact that a claw yields two residues, x and y, of different Jacobi symbol, 
(thus x ~ q-y) such thatx 2 - y2 (mod N), and such residues yield a factorization of N. 
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