
J. Cryptology (1996) 9:167-189 Joumol of

CRYPTOLOGY
r 1996 International Association for
Cryptologic Research

How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP

Oded Goldreich
Department of Computer Science and Applied Mathematics,

Weizmann Institute of Science, Rehovot, Israel

Ariel Kahan
BRM Technologies, P.O.Box 45065,

Jerusalem, Israel

Communicated by Gilles Brassard

Received 10 May 1993 and revised 8 March 1995

Abstract. Constant-round zero-knowledge proof systems for every language in A/'7 9
are presented, assuming the existence of a collection of claw-free functions. In particular,
it follows that such proof systems exist assuming the intractability of either the Discrete
Logarithm Problem or the Factoring Problem for Blum integers.

Key words. Zero-knowledge proofs, NP, Claw-free functions, Commitment schemes,
Coin flipping protocols, Parallel composition of proof systems.

1. Introduction

The applications of zero-knowledge proof systems to cryptography are too numerous
and too well known to be listed here. We confine ourselves to pointing out two facts to
which zero-knowledge proofs owe their wide applicability: firstly, the generality of the
notion of zero-knowledge [11]; and, secondly, the ability to construct zero-knowledge
proof systems for every NP statement (using a general intractability assumption) [10,
Theorem 5]. However, to be of practical use, zero-knowledge proofs also have to be
efficient.

A very important complexity measure for (cryptographic as well as arbitrary) protocols
is their round-complexity. Namely, the number of message exchanges taking place in the
course of the execution. The above quoted result of Goldreich et al. [10], by which
the existence of one-way functions implies the existence of a zero-knowledge proof
system for every language in .MR, is obtained using proof systems with very high round-
complexity. Alternative constructions have lower, yet nonconstant, round-complexity.
The purpose of this work is to present zero-knowledge proof systems, with constant
round-complexity, for.MT'.

167

168 O. Goldreich and A. Kahan

1.1. Clarifications

A few clarifications are in order. First, we stress that by saying an interactive proof
system we mean one with a negligible e r ro r probabil i ty . Sometimes, interactive proof
systems are defined as having constant, say 1/3, error probability. Such weak proof
systems are of limited practical value on their own, and it is implicitly assumed that they
are repeated sufficiently many times so that the error probability is reduced as desired.
However, sequential repetitions of a protocol yield a corresponding increase in the round-
complexity. In fact, in some sense, the problem addressed in this paper is how to reduce
the error probability of weak interactive proofs, without increasing the round-complexity
and while preserving their zero-knowledge property. Hence, for the sake of simplicity,
we address the problem of constructing (constant-round) zero-knowledge proof systems
with negligible error probability.I

We also stress that we consider interactive proof systems, as defined by Goldwasser
et al. [11], rather than computationally sound proof systems (also known as arguments),
as defined by Brassard et al. [4]. The difference between the two is sketched below.
In (regular) interactive proof systems, the soundness condition requires that nobody,
regardless of his/her computational abilities, can fool the verifier into accepting false
statements (except with negligible probability). In computationally sound proof systems,
the soundness condition refers only to computationally bounded cheating provers and,
furthermore, it is typically proven to hold under some intractability assumption.

Finally, we stress that our approach depends, in an essential manner, on the standard
definition of zero-knowledge which allows the simulator to run in expected polynomial
time (see [11] and [10]). We do not know whether our results can be obtained under
a more strict definition of zero-knowledge which only allows the simulator to run in
(strict) polynomial time. We remark that many other popular results also depend on
the same convention. For example, Graph Isomorphism (GI) is shown to have a perfect
zero-knowledge proof using a simulator that runs for expected polynomial time [10, The-
orem 2]. To the best of our knowledge, using a simulator that runs for strict polynomial
time, it can only be shown that GI has an interactive proof which is almost-perfect (sta-
tistical) zero-knowledge. Even worse, Graph Non-Isomorphism is not known to have an
almost-perfect zero-knowledge proof (under strict polynomial-time simulators), whereas
it has a perfect zero-knowledge proof system [10, Theorem 3] (with respect to expected
polynomial-time simulators).

1.2. Our Main Result

We show how to construct constant-round zero-knowledge interactive proof systems for
any language in AFT'. Our construction relies on the existence of collections of claw-
free functions. Such functions exist if factoring Blum integers is hard (see [12]), or
alternatively if the Discrete Logarithm Problem is intractable (see [3]).

i An alternative and more complex presentation is possible by considering the "knowledge tighmess" of zero-
knowledge proof systems with small (but nonnegligible) error probability. Loosely speaking, the knowledge
tightness of a zero-knowledge protocol is an upper bound on the ratio between the running time of simulators
for the protocol and the running time of the corresponding verifiers [10, Remark 18]. The aim is to construct
constant-round proof systems with simultaneously small error probability and small knowledge tightness.

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 169

As usual in the area of zero-knowledge, the results are most simply stated using a
nonuniform formalization. In this formalization the intractability assumptions are stated
with respect to nonuniform families of polynomial-size circuits. A formalization in terms
of uniform complexity is possible. See [7].

Remark. The work reported here has been cited in the literature already in 1988. How-
ever, no version of this work has ever appeared before.

1.3. Related Work

Constant-round zero-knowledge computationally sound proof (i.e., argument) systems
for .A/'P have been presented in [6] and [5]. As explained above, these protocols are
weaker than ours in the sense that they do not constitute proof systems (with "unre-
stricted" soundness condition). However, these works also have advantages over ours.
The advantage of the work of Feige and Shamir is that it uses a much weaker intractabil-
ity assumption [6]; specifically, they only assume the existence of arbitrary one-way
functions. The advantage of the work of Brassard et al. is that their protocol is perfect
zero-knowledge [5], rather than just being computationally zero-knowledge. 2 (The in-
tractability assumption in [5] is incomparable with ours, and seems stronger than the
mere existence of one-way functions.) Hence, the three works (i.e., ours and those of [6]
and [5]) are incomparable: each has some advantage over the other two.

Noninteractive zero-knowledge proof systems, as defined by Blum et al. [2], seem
related to constant-round zero-knowledge proof systems. One has to be careful, though,
and recall that in the setting of noninteractive proof systems both prover and verifier
have access to a uniformly chosen string, called the reference string. We stress that the
reference string is not selected by either parties, but is rather postulated to be uniformly
chosen by some trusted third party. Clearly, combining a secure,coin-flipping protocol
(see [1]) with a noninteractive zero-knowledge proof system, a zero-knowledge proof
system can be derived. Note, however, that the round-complexity of the resulting inter-
active proof system depends on the round-complexity of the coin-flipping protocol and
on whether it can be securely performed in parallel many times. In fact, our work can
be viewed as suggesting a coin-flipping protocol that remains secure even if executed in
parallel polynomially many times.

Other efficiency measures related to zero-knowledge proofs and arguments have been
investigated in many works; see, for example, [15] and [16].

1.4. Organization

We start with an overview of our approach and present an abstraction of a technical dif-
ficulty encountered and resolved. We then present the building blocks of our interactive
proof system which are two "complementary" types of commitment schemes. A detailed
description of our interactive proof system follows and we conclude by presenting a sim-
ulator which demonstrates that this interactive proof system is indeed zero-knowledge.

2 The Feige-Shamir argument system, mentioned above, also has a perfect zero-knowledge version [6], but
this version relies on seemingly stronger complexity theoretic assumptions than required for the computational
zero-knowledge version.

170 O. Goldreich and A. Kahan

2. Overview

We start by reviewing the standard zero-knowledge proof system for Graph 3-Colorability.
This interactive proof system, presented by Goldreich et al. [10], proceeds by (a poly-
nomial number of) sequential repetitions of the following basic protocol.

 9 Common input: A simple (3-colorable) graph G = (V, E).
 9 Prover's first step (P1): Let ~p be a 3-coloring of G. The prover selects a random

permutation, 7r, over {1, 2, 3}, and sets tp(v) dee 7t'(~/](1))), for each ~ ~ V. (Hence,
the prover forms a random relabelling of the 3-coloring ap.) The prover sends to the
verifier a sequence of commitments so that the ith commitment is to the value tp(i).

 9 Verifier's first step (V1): The verifier uniformly selects an edge (i, j) e E, and
sends it to the prover.

 9 Motivating remark: The verifier asks to inspect the colors of vertices i and j .
 9 Prover's second step (P2): The prover reveals the values corresponding to the ith

and j th commitments.
 9 Verifier's second step (V2): The verifier accepts if and only if the revealed values are

different elements of { 1,2, 3} and if they indeed fit the corresponding commitments
received in step P 1.

It is shown in [10] that the basic protocol is zero-knowledge and that this property
is preserved under sequential repetitions. Repetitions are required in order to reduce
the error probability of the basic protocol, which might be as large as 1 - I / IEI , to
a negligible function of IG I. However, sequential repetitions are out of the question if
round-efficient protocols are sought. Hence, the key to round-efficient error reduction is
parallel execution of the above basic protocol) However, as demonstrated by Goldreich
and Krawcyzk, the protocol which results from parallel execution of the basic protocol,
sufficiently many times, cannot be proven zero-knowledge using a universal simulator
which uses the verifier as a black-box [8]. We note that all known zero-knowledge proto-
cols are proven to be zero-knowledge using such a universal simulator, and, furthermore,
that it is hard to conceive an alternative way of proving that a protocol is zero-knowledge.
Hence, slightly different approaches are required.

Two different approaches for resolving the above difficulties have been suggested in
[10]. These two approaches share an underlying idea which is to let the verifier commit
to its queries (i.e., a sequence of edges each corresponding to a different commitment to a
coloring of the graph) before the prover commits to a sequence of colorings of the graph.
The two approaches vary by the manner in which the verifier commits to its queries.

1. One possibility is to use an "ordinary" commitment scheme (like the one used
by the prover). 4 This will enable a computationally unbounded prover to find out
the queries before committing to the colorings, and thus cheat the verifier causing

3 Namely, the prover independently generates many random relabelling of the coloring ~p and commits to
each of them. The verifier then selects a query edge for each committed coloring, and checks the revealed
colors supplied by the prover. If all fit the corresponding commitments and each pair of colors is different,
then the verifier accepts.

4 See Section 3 for a more formal discussion of various types of commitment schemes.

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 171

it to accept also graphs that are not 3-colorable. Yet, a computationally bounded
cheating prover cannot break these commitments and hence the proposed protocol
may be computationally sound.

2. The other possibility is to use a commitment scheme with perfect sgcrecy. 5 The
disadvantage in this approach is that commitment schemes with perfect secrecy
seem harder to construct that "regular" ones.

Implementing the two (above-mentioned) approaches turned out to be more difficult
than anticipated. Nevertheless, the first approach has been implemented in [6] yielding
zero-knowledge arguments for every language in .AFT' provided that one-way functions
exist. The current paper presents an implementation of the second approach.

The main difficulty in implementing the second approach is in the construction of
the simulator demonstrating the zero-knowledge of the ("parallelized") interactive proof
system sketched above. In the rest of this section we try to provide an abstract account
of the difficulty and our approach to resolving it.

A Technical Problem Resolved

Preliminaries: We call a function f : N ~ R negligible if, for every polynomial P (.) and
all sufficiently large n's, f(n) < 1/P(n). A function f : N ~ R is called nonnegligible
if a polynomial P (-) exists so that, for all sufficiently large n 's, f (n) > 1 / P (n). Note that
a function may be neither negligible nor nonnegligible. Both notions extend naturally to
functions from strings to reals; for example, F: {0, 1}* ~ R is said to be negligible if
f(n) def = maxx~{0,11, {F(x)} is negligible.

While constructing the zero-knowledge simulator for the "parallelized" interactive
proof, a problem of the following nature arises. Suppose that we are given access to two
probabilistic black-boxes denoted A and B. On input x e {0, 1 }n, the first black-box,
A, outputs a "key" K with probability denoted a(x) and halts without output otherwise
(i.e., a(x) def Prob(A(x) = 1)). On input x ~ {0, 1}" and key K, the second black-box,
B, produces an output (in {0, 1}") with probability denoted b(x) and otherwise halts
with no output (or outputs the empty string k). The absolute difference between a(x)
and b(x) is negligible. We denote by D(x) the output distribution B(x, K) conditioned
on B(x, K) ~ k (i.e., for every a, we have Prob(D(x) = or) = Prob(B(x, K) =
aJB(x, K) :~ ~.)). On input x, our goal is to output strings according to distribution
D (x) with probability at least a (x) and otherwise indicate failure (say by outputting k).
Actually, we are allowed to output the strings according to D(x) with probability which is
at most negligibly smaller than a (x). We are allowed to run in expected polynomial-time
and invoke both black-boxes, where each invocation is charged at unit cost.

A natural attempt to solve the problem follows. On input x, we first invoke A(x). If the
output is not K, then we halt indicating failure, otherwise we repeatedly invoke B(x, K)
until a nonempty output is obtained. Clearly, the expected number of times that B is
invoked is a(x)/b(x). In case a(x) < b(x) holds for all x's, this is OK. Another good

5 Again, see Section 3.

172 o. Goldreich and A. Kahan

case is when the function a: {0, 1}* ~ R is nonnegligible (as in this case a(x)/b(x)
is very close to 1). We remark that in case the function a: {0, 1}* ~ R is negligible
we may always halt without output. The problem, however, is what to do in case the
function a: {0, 1 }* ~ R is neither nonnegligible nor negligible and the ratio a(x)/b(x)
is not bounded by a polynomial (e.g., occasionally, a(x) = 2 -Ixl and b(x) = 2-21xl).

Our solution is slightly more complex. On input x, we first invoke A(x) and pro-
ceed only if the output is K (otherwise we halt, indicating failure as before). Next, we
approximate a(x) by invoking A(x) until we get output K for, say, Ixl 2 times. This
yields, with very high probability, an approximation of a (x) up to a constant factor (i.e.,
the estimate is the ratio of Ixl 2 over the number of invocations of A(x)). Denote this
estimate by t~(x) and assume that ~(x) >_ 2 -Ixl (otherwise set ~(x) = 2-1xl). We now
invoke B(x, K), for at most (say) Ix 12/,~(x) times, until a nonempty string is obtained.
If such a string is obtained we output it, otherwise we halt with no output. Note that in
case the first invocation of A(x) outputs K we end up invoking the two black-boxes for
poly(Ixl)/a(x) times. Although poly(Ixl)/a(x) may be more than a polynomial in Ixl,
its contribution to the expected running time is scaled down by a factor of a(x), and so
we obtain expected polynomial-time running time.

3. Commitment Schemes

Generally speaking commitment schemes are two-party protocols, partitioned into two
phases, guaranteeing two conflicting requirements. The first phase, called commit, is
supposed to commit the sender to a value without allowing the receiver to know which
value this is. In the second phase, called reveal, the value determined by the first phase
can be revealed. Hence, the conflicting requirements are secrecy of the value at the
commit phase and nonambiguity of the value revealed later. These two conditions can
be stated in information-theoretic or in computational terms. The information-theoretic
formulation implies the computational one, but not vice versa.

3.1. Commitment Schemes of Computational Secrecy

The more standard commitment scheme is one in which the nonambiguity requirement is
absolute (i.e., information theoretic) whereas the secrecy requirement is computational.
For the sake of simplicity we refer to such schemes as commitment schemes.

Loosely speaking, a commitment scheme is an efficient two-phase two-party protocol
through which one party, called the sender, can commit itself to a value so the following
two conflicting requirements are satisfied:

1. Secrecy: At the end of the commit phase, the other party, called the receiver, does
not gain any (computational) knowledge of the sender's value. This requirement
has to be satisfied even if the receiver tries to cheat.

2. Nonambiguity: Given the transcript of the interaction in the commit phase, at most
one value exists which the receiver may later (i.e., in the reveal phase) accept as
a legal "opening" of the commitment. This requirement has to be satisfied even if
the sender tries to cheat.

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 173

In addition, it should be required that the protocol is viable in the sense that if both parties
follow it, then, at the end of the second phase, the receiver gets the value committed to
by the sender. Without loss of generality, the reveal phase may consist of merely letting
the sender reveal the original value and the sequence of random coin tosses that it has
used during the commit phase. The receiver will accept the value if and only if the
supplied information matches its transcript of the interaction in the commit phase. The
latter convention leads to the following definition (which refers explicitly only to the
commit phase).

Definition 1 (Bit Commitment Scheme). A bit commitment scheme is a pair of prob-
abilistic polynomial-time interactive machines, denoted (S, R) (for sender and receiver),
satisfying:

 9 Input specification: The common input is an integer n presented in unary (serving
as the security parameter). The private input to the sender is a bit, denoted v.

 9 Secrecy: The receiver (even when deviating from the protocol in an arbitrary
polynomial-time manner) cannot distinguish a commitment to 0 from a commit-
ment to 1. Namely, for every probabilistic polynomial-time machine R* interacting
with S, the random variables describing the output of R* in the two cases, namely
(S(0), R*)(1 n) and (S(I), R*)(ln), are polynomially indistinguishable.

 9 Nonambiguity:
Preliminaries:

- - A receiver's view of an interaction with the sender, denoted (1 n, r, fit),
consists of the random coins used by the receiver (denoted r) and the sequence
of messages received from the sender (denoted rh). (In what follows, we
sometimes omit 1 n from the receiver's view.)

- - Let tr 6 {0, 1 }. We say that a receiver's view (of such interaction), (1 n, r, rh),
is a possible a -commitment if a string s exists such that th describes the
messages received by R when R uses local coins r and interacts with machine
S which uses local coins s and has input (~r, In).

- - We say that the receiver's view (I n , r , f i t) is ambiguous if it is both a possible
0-commitment and a possible l-commitment.

The nonambiguity requirement asserts that, for all but a negligible fraction of the
coin tosses of the receiver, there is no sequence of messages (of the sender) which
together with these coin tosses forms an ambiguous receiver view. Namely, for all
but a negligible fraction of the r 6 {0, 1 }polylm there is no fit such that (l n, r, fit) is
ambiguous.

The secrecy requirement (above) is a computational one; whereas the nonambiguity
requirement has an information-theoretic flavor (i.e., it does not refer to computational
powers). A dual definition, requiring information-theoretic secrecy and computational
infeasibility of creating ambiguities, is presented in Section 3.2.

Naor showed that commitment schemes can be constructed using any pseudorandom
generator [17], and the latter are known to exist provided that one-way functions exist
[14], [13]. A much simpler commitment scheme can be constructed using any one-way

174 O. Goldreich and A. Kahan

permutation f . Using the results in [9], we may assume without loss of generality that
the permutation f has a hard-core predicate, denoted b.

Construction 1 (Simple Bit Commitment). Let f : {0, 1}* ~ {0, 1}* be a one-way
permutation, and let b: {0, 1}* w-~ {0, 1} be a hard-core predicate.

1. Commit phase: To commit to value v 6 {0, 1} (using security parameter n), the
sender uniformly selects s 6 {0, 1} n and sends the pair (f (s) , b(s) ~ v) to the
receiver.

2. Revealphase: In the reveal phase the sender reveals the string s used in the commit
phase. The receiver accepts the value v if f (s) = ~ and b(s) ~ v = or, where
(at, cr) is the receiver's view of the commit phase.

The definition and the constructions of bit commitment schemes are easily extended
to general commitment schemes enabling the sender to commit to a string rather than
to a single bit. For the purposes of the current paper we need a commitment scheme by
which one can commit to a ternary value. Extending the definition and the constructions
to deal with this case is even more straightforward.

In the current paper we need commitment schemes with a seemingly stronger secrecy
requirement than defined above. Specifically, instead of requiring secrecy with respect
to all polynomial-time machines, we require secrecy with respect to all (not necessarily
uniform) families of polynomial-size circuits. Assuming the existence of nonuniformly
one-way functions (i.e., efficiently computable functions that cannot be inverted even
by nonuniform families of polynomial-size circuits) commitment schemes with non-
uniform secrecy can be constructed, following the same constructions used in the
uniform case.

3.2. Perfect Commitment Schemes

The difference between commitment schemes (as defined in Section 3.1) and perfect
commitment schemes (defined below) consists of a switching in scope of the secrecy
and nonambiguity requirements. In commitment schemes (see Definition 1) the secrecy
requirement is computational (i.e., refers only to probabilistic polynomial-time adver-
saries), whereas the nonambiguity requirement is information theoretic (and makes no
reference to the computational power of the adversary). On the other hand, in perfect com-
mitment schemes (see definition below) the secrecy requirement is information theoretic,
whereas the nonambiguity requirement is computational (i.e., refers only to probabilistic
polynomial-time adversaries). Hence, in some sense calling one of these schemes "per-
fect" is somewhat unfair to the other (yet, we do so in order to avoid cumbersome terms
such as a "perfectly secret and computationally nonambiguous commitment scheme").
We remark that it is impossible to have a commitment scheme in which both the secrecy
and nonambiguity requirements are information theoretic.

The Basic Definition

Loosely speaking, a perfect commitment scheme is an efficient two-phase two-party
protocol through which the sender can commit itself to a value so the following two

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 175

conflicting requirements are satisfied:

1. Secrecy: At the end of the commit phase the receiver does not gain any information
of the sender's value.

2. Nonambiguity: It is infeasible for the sender to interact with the receiver so that the
commit phase is successfully terminated and yet later it is feasible for the sender
to perform the reveal phase in two different ways, leading the receiver to accept
(as legal "openings") two different values.

Again, we require that the protocol is viable in the sense that if both parties follow it, then,
at the end of the second phase, the receiver gets the value committed to by the sender.
Using analogous conventions to the ones used in Section 3.1, we make the following
definition.

Definition 2 (Perfect Bit Commitment Scheme). A p e r f e c t b i t c o m m i t m e n t s c h e m e
is a pair of probabilistic polynomial-time interactive machines, denoted (S, R) (for
sender and receiver), satisfying:

 9 Input specification: As in Definition 1.
 9 Secrecy: For every probabilistic (not necessarily polynomial-time) machine R*

interacting with S, the random variables describing the output of R* in the two
cases, namely (S(0), R*)(l") and (S(1), R*)(I"), are statistically close.

 9 Nonambiguity:
Preliminaries. Fix any probabilistic polynomial-time algorithm F*.

- - As in Definition l, a receiver's view of a n i n t e r a c t i o n with the sender,
denoted (l n, r, fit), consists of the random coins used by the receiver (r) and
the sequence of messages received from the sender (frO. A sender's view of
the same interaction, denoted (1 n, s, fit), consists of the random coins used by
the sender (s) and the sequence of messages received from the receiver (fit).
A joint view of the interaction is a pair consisting of corresponding receiver
and sender views of the same interaction. (In what follows, we sometimes
omit 1 n from the view.)

- - Let tr ~ {0, 1}. We say that a joint view (of an interaction), ((r, fit), (s, fit)),
has a feasible tr-opening (with respect to F*) if, on input (s, th, fit, cr),
algorithm F* outputs (say, with probability at least 1/2) a string s' such
that rh describes the messages received by R when R uses local coins r and
interacts with machine S which uses local coins s' and input (tr, ln).
(Remark: We stress that s' may, but need not, equal s. The output of algorithm
F* has to satisfy a relation which depends only on the receiver's view part of
the input; the sender's view is supplied to algorithm F* as additional help.)

- - We say that a joint view is ambiguous (with respect to F*) if it has both a
feasible 0-opening and a feasible l-opening (with respect to F*).

The nonambiguity requirement asserts that, for all but a negligible fraction of the
coin tosses of the receiver, it is infeasible for the sender to interact with the receiver
so that the resulting joint view is ambiguous with respect to some probabilistic
polynomial-time algorithm F*. Namely, for every probabilistic polynomial-time
interactive machine S*, probabilistic polynomial-time algorithm F*, polynomial

176 o. Goldreich and A. Kahan

p(.), and all sufficiently large n, the probability that the joint view of the interaction
between R and with S*, on common input l ' , is ambiguous with respect to F*, is
at most 1/p(n) .

The nonambiguity requirement asserts that any efficient strategy S* will fail to produce
a joint view of interaction, which can later be (efficiently) opened in two different ways
supporting two different values. As usual, events occurring with negligible probability are
ignored. In the formulation of the nonambiguity requirement, S* describes the (cheating)
sender strategy in the commit phase, whereas F* describes its strategy in the reveal phase.
Hence, it is justified (and in fact necessary) to pass the sender's view of the interaction
(between S* and R) to algorithm F*.

As in Definition 1, the secrecy requirement refers explicitly to the situation at the end
of the commit phase, whereas the nonambiguity requirement implicitly assumes that the
reveal phase takes the following form:

1. The committer sends to the receiver its initial private input, v, and the random
coins, s, it has used in the commit phase.

2. The receiver verifies that v and s (together with the coins (r) used by R in the
commit phase) indeed yield the messages R has received in the commit phase.
Verification is done in polynomial time (by running the programs S and R).

Construction Based on Claw-Free Collections

Perfect commitment schemes can be constructed using a strong intractability assumption;
specifically, the existence of claw-free collections (defined below). This assumption
implies the existence of one-way functions, but it is not known whether the converse
is true. Nevertheless, claw-free collections can be constructed under widely believed
intractability assumptions such as the intractability of factoring and of DLP (see the
Appendix). We start with a definition of claw-free collections. Loosely speaking, a claw-
free collection consists of a set of pairs of functions which are easy to evaluate, both have
the same range, and yet it is infeasible to find a range element together with preimages
of it under each of these functions. We define claw-free collections in terms of the
algorithms used to effect them; the index/function selection algorithm I, the domain-
sampling algorithm D, and the function-evaluation algorithm F. Intuitively, algorithm
I selects an index, i, which specifies a pair of domains, D O and D~, and a pair of
functions, f/0 and f/l, defined over the domains D O and D~, respectively. On input cr
and i, algorithm D selects randomly (but not necessarily uniformly) an element in the
domain D 7. On input ty, i and x ~ D}', algorithm F computes the value of the function
f,.~ atx.

Definition 3 (Claw-Free Collection). A triple of algorithms, (I, D, F), is called a claw-
free collection if the following conditions hold:

1. The algorithms are efficient: Both I and D are probabilistic polynomial time,
whereas F is deterministic polynomial time. We denote by fff (x) the output of F
on input (or, i, x) , and by D~ the support of the random variable D(~r, i).

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 177

2. Identical range distribution: For every i in the range of algorithm I, the random
variables f/0 (D (0, i)) and f/1 (D (l, i)) are identically distributed.

3. Hard to form claws: For every probabilistic polynomial time algorithm, A', every
polynomial p(.), and all sufficiently large n's,

1
Prob(f~(Xn) = fln cyn)) <

p(n) '

where In is a random variable describing the output distribution of algorithm I on
input 1 n, and (Xn, In) is a random variable describing the output of algorithm A'
on input (random variable) In.

Item 2 in the definition requires that the functions f/0 and f/l induce the same distribu-
tion when applied to elements selected at random by D(0, i) and D(1, i), respectively.
A special case of interest is when both domains are identical (i.e., Di clef Do = D)),
the random variable D(tr, i) is uniformly distributed over Di, and the functions, f/0 and
f/l, are permutations over Di. Such a collection is called a collection of permutations.
Anyhow, item 2 implies that many pairs (x, y) exist so that f/~ = fil (y) (e.g., in case
of collections of permutations the number of such pairs is exactly I D; I, but in general
the number may be larger6). Such a pair is called a claw. The claw-forming adversary
algorithm is given as input an index i, and tries to find a claw. It is required that al-
though many claws do exist, efficient algorithms are unable to find claws. Clearly, a
claw-free collection of permutations (resp. functions) yields a collection of strong one-
way permutations (resp. functions). Examples of claw-free collections are presented in
the Appendix. At this point we present a construction of perfect commitment schemes
that uses a restricted type of a claw-free collection; specifically, we assume that the set
of indices of the collection (i.e., the range of algorithm I) can be efficiently recognized
(i.e., is in B7979).

Construction 2 (Perfect Bit Commitment). Let (I, D, F) be a triplet of efficient algo-
rithms.

1. Commit phase: To receive a commitment to a bit (using security parameter n), the
receiver randomly generates an index i by invoking I (I n) and sends it to the sender.
To commit to value v ~ {0, 1 } (upon receiving the message i from the receiver),
the sender checks if indeed i is in the range of I (I n), and if so the sender randomly
generates a domain element s by invoking D(v, i), computes c ~f F(o, i, s), and
sends c to the receiver. (In case i is not in the range of l (1 n) the sender aborts the
protocol announcing that the receiver is cheating.)

2. Reveal phase: In the reveal phase the sender reveals the string s used in the com-
mit phase. The receiver accepts the value v if F(v, i, s) = c, where (i, c) is the
receiver's (partial) view of the commit phase.

6 In the general case, the number of claws equals ~'-~-a N~ Nil (or), where N ~ (~) ~f [{x: f/o (x) = a}l.

178 O. Goldreich and A. Kahan

Proposition 1. Let (I, D, F) be a claw-free collection with a probabilistic poly-
nomial-time recognizable set of indices (i.e., the range of algorithm I is in I3T~79).
Then the protocol presented in Construction 2 constitutes a perfect bit commitment
scheme.

Proof. The secrecy requirement follows directly from property 2 of a claw-free col-
lection (combined with the test i E I (1 n) conducted by the sender). The nonambiguity
requirement follows from property 3 of a claw-free collection, using a standard reducibil-
ity argument. []

Remark 1. The definition of a claw-free collection may be relaxed in several ways
maintaining the validity of Proposition 1. In particular, it suffices to require that the
distributions, fi~ i)) and f/l (D(I, i)), are statistically close (rather than identical).
Furthermore, this need not hold for all i 's in the range of I, but rather for all i ~ I', where
I ' is an efficiently recognizable set so that Prob(l (1 n) ~ I ') is a negligible fraction.

Commitment Schemes with A Posteriori Secrecy

We conclude the discussion of perfect commitment schemes by introducing a relaxation
of the secrecy requirement, that suffices for the purposes of the current work. The ad-
vantage in the relaxation is that it allows the construction of commitment schemes using
any claw-free collection, thus waiving the additional requirement that the index set is
efficiently recognizable.

Loosely speaking, we relax the secrecy requirement of perfect commitment schemes
by requiring that it only holds whenever the receiver follows its prescribed program
(denoted R). This seems strange since we do not really want to assume that the real
receiver follows the prescribed program (but rather allow it to behave arbitrarily). The
point is that a real receiver may disclose the coin tosses used by it in the commit phase at
a later stage, say even after the reveal phase, and by doing so prove a posteriori that (at
least in some weak sense) it was following the prescribed program. Actually, the receiver
only proves that he behaved in a manner which is consistent with its program.

Definition 4 (Commitment Scheme with Perfect A Posteriori Secrecy). A bit com-
mitment scheme with perfect a posteriori secrecy is defined as in Definition 3.2, except
that the secrecy requirement is replaced by the following a posteriori secrecy require-
ment: for every string r ~ {0, 1} p~ it holds that (S(0), Rr)(1 n) and (S(1), Rr)(l n) are
statistically close, where Rr denotes the execution of the interactive machine R when
using internal coin tosses r.

The above a posteriori secrecy requirement can be further relaxed by requiring that
it holds only for every r E R', where R' is efficiently recognizable and contains all but
a negligible fraction of the strings of length poly(n) (i.e., the number of coins used by
the receiver on input In). This relaxation of the a posteriori secrecy requirement is used
for carrying out the proof of the following proposition using claw-free collections which
have the identical range property only for most indices (see Remark 1 above).

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 179

Proposition 2. Let (I, D, F) be a claw-free collection. Consider a modification of
Construction 2, in which the sender's check, of whether i is in the range of IOn), is
omitted (from the commit phase). Then the resulting protocol constitutes a bit commit-
ment scheme with perfect a posteriori secrecy.

In contrast to Proposition 1, here the claw-free collection may not have an efficiently
recognizable index set. Hence, the sender's check must be omitted from the commit
phase. Yet, the receiver can later prove that the message sent by it during the commit
phase (i.e., i) is indeed a valid index by disclosing the random coins it has used in
order to generate i (using algorithm I). This will, a posteriori, convince the sender that
its committed value was kept secret till the reveal phase. In case we used a claw-free
collection of the relaxed sense discussed in Remark 1, the sender must also check that
i ~ I'. (Note that, for the purposes of the current paper, we could have further relaxed the
definition of claw-free collections and settled for a set I', containing all but a negligible
fraction of I f3 {0, 1 }n, such that I ' has a constant-round interactive proof system.)

Proof. The a posteriori secrecy requirement follows directly from property 2 of a
claw-free collection (combined with the assumption that i is indeed a valid index). The
nonambiguity requirement follows as in Proposition 1. []

A typical application of a commitment scheme with perfect a posteriori secrecy is
presented in the current work. In our setting the commitment scheme is used inside an
interactive proof with the verifier playing the role of the sender (and the prover playing the
role of the receiver). If the verifier a posteriori learns that the prover has been cheating,
then the verifier rejects the input. Hence, no damage is caused, in this case, by the fact
that the secrecy of the verifier's commitments might have been breached.

Extensions

As in the previous subsection, we need to extend the definitions and the constructions of
perfect commitment schemes so that they enable the sender to commit to a string rather
than to a single bit. The definitional extensions, omitted here, are quite straightforward.
As for the constructions, we may use the following generalization of the commitment
schemes presented above. In the commit phase the receiver generates and sends to the
sender a single index i specifying a pair of functions (f/0, f/I). To commit to the bit string,

O" m ~f Crl . . . ~,,, the sender sends to the receiver a sequence (f/*~ (s l) f/ (s,,)), where
sj is generated by invoking D(trj, i). Preservation of perfect secrecy is argued by using
the fact that the statistical difference between two product distributions is bounded by the
sum of the componentwise statistical differences. Computational nonambiguity is argued
using a standard reducibility argument while observing that two different "openings" of
a commitment-sequence yield a claw in at least one component.

In addition, for the purposes of this paper, we need perfect commitment schemes with
computational nonambiguity stated in nonuniform terms. Specifically, instead of re-
quiting nonambiguity with respect to all polynomial-time machines, we require non-
ambiguity with respect to all (not necessarily uniform) families of polynomial-size
circuits. Assuming the existence of claw-free collections for which even nonuniform

180 O. Goldreich and A. Kahan

polynomial-size circuits cannot form claws, perfect commitment schemes with non-
uniform nonambiguity can be constructed. The constructions are identical to the ones
used in the uniform case.

4. The Interactive Proof System

For the sake of clarity, we start by presenting a detailed description of the constant-
round interactive proof, for Graph 3-Colorability (i.e., G3C), sketched in Section 2. This
interactive proof employs two different commitment schemes. The first scheme is the
simple commitment scheme (with "computational" secrecy) presented in Construction 1.
We denote by Cs (tr) the commitment of the sender, using coins s, to the (ternary) value
tr. The second commitment scheme is a commitment scheme with perfect secrecy (see
Section 3.2). For simplicity, we assume that the latter scheme has a commit phase in which
the receiver sends one message to the sender who then replies with a single message
(e.g., the schemes presented in Section 3.2). We denote by Pm,s (or) the commitment of
the sender to string a, upon receiving message m (from the receiver) and when using
coins s.

Construction 3 (A Round-Efficient Zero-Knowledge Proof for G3C).
def def 9 Common input: A simple (3-colorable) graph G = (V, E). Let n = IVI, t =

2n. IEl, and V = {1 n}.
 9 Auxiliary input to the prover: A 3-coloring of G, denoted ~.
 9 Prover's preliminary step (P0): The prover invokes the commit phase of the perfect

commitment scheme, which results in sending to the verifier a message m.
 9 Verifier's preliminary step (V0): The verifier uniformly and independently selects

a sequence of t edges,/~ de__f ((ul, Vl) (ut, vt)) 9 E t, and sends to the prover
a random commitment to these edges. Namely, the verifier uniformly selects g 9
{0, 1} p~ and sends Pm.~(E) to the prover.

 9 Motivating remark: At this point the verifier is committed to a sequence of t edges.
(This commitment is o f perfect secrecy.)

 9 Prover's step (P1): The prover uniformly and independently selects t permutations,
7['1 Ytrt, over {1, 2, 3}, and sets ~0j(v) d~=f zrj(C,(v)), for each v 9 V and 1 <
j < t. The prover uses the computational commitment scheme to commit itself
to the colors of each of the vertices according to each 3-coloring. Namely, the
prover uniformly and independently selects sl.1 sn,t 9 {0, 1 }n, computes ci, j =

Cs,4(tpj(i)), for each i 9 V and 1 < j < t, and sends Cl.l C~,t tO the verifier.
 9 Verifier's step (V1): The verifier reveals the sequence/~ = ((ul, vl) (ut, or))

to the prover. Namely, the verifier send (g,/~) to the prover.
 9 Motivating remark: At this point the entire commitment of the verifier is revealed.

The verifier now expects to receive, for each j , the colors assigned by the j th
coloring to vertices uj and v# (the endpoints of the j th edge in/~).

 9 Prover's step (P2): The prover checks that the message just received from the
verifier is indeed a valid revealing of the commitment made by the verifier at
Step V0. Otherwise the prover halts immediately. We denote the sequence of t

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 181

edges, just revealed, by (u l, ol) (ut, Or). The prover uses the reveal phase of
the computational commitment scheme in order to reveal (to the verifier), for each
j , the j t h coloring of vertices uj and vj. Namely, the prover sends to the verifier
the sequence of fourtuples

(s. , . i , ~ol (ul). s~,.l. ~ol (vt)) (s.,,,. ~o, (u,), sv,.t, ~o,(v,)).

 9 Verifier's step (V2): The verifier checks whether, for each j , the values in the
j t h fourtuple constitute a correct revealing of the commitments c,s.j and cvj,j,
and whether the corresponding values are different. Namely, upon receiving
(sl , crt, s'~, r l) through (st, crt,s;, rz), the verifier checks whether, for each j , it
holds that c,s,j = Csj(trj), cvl.j = Cs~(rj), and trj ~ rj (and both are in {1, 2, 3}).
If all conditions hold, then the verifier accepts. Otherwise it rejects.

We first assert that Construction 3 is indeed an interactive proof for G3C. Clearly, the
verifier always accepts a common input in G3C. Suppose that the common input graph,
G --- (V, E), is not in G3C. Clearly, each of the "committed colorings" sent by the prover
in Step P1 contains at least one illegally colored edge. Using the perfect secrecy of the
commitments sent by the verifier in Step V0, we deduce that at Step PI the prover has
"no idea" which edges the verifier asks to see (i.e., as far as the information available
to the prover is concerned, each possibili ty is almost equally likely7). Hence, although
the prover sends the "coloring commitment" after receiving the "edge commitment," the
"edge commitment" is (almost) statistically independent of the "coloring commitment."
It follows that the probability that all the "committed edges" have legally "committed
coloring" is at most (,)'

1 Igl + /z(IEI) < e-",

where # is smaller than any nonnegligible function (and in part icular /x(m) < 1/2m).
Hence, we get:

Proposition 3. Construction 3 constitutes an interactive proof system for Graph 3-
Colorability.

5. The Simulator

We now turn to show that Construction 3 is indeed zero-knowledge (in the liberal sense al-
lowing expected polynomial- t ime simulators). For every probabilistic (expected 8)

7 The negligible difference in likelihood is due to the fact that the definition of perfect secrecy only requires
the commitment distributions to be statistically close.

s Verifier strategies which run in expected polynomial time but not in strict polynomial time are considered
for sake of elegance; see [11] and [10]. There are two common alternative definitions for the (expected) running
time of an interactive machine; one alternative is to consider its executions with the prescribed counterpart
(in our case the honest prover) and the other is to consider its executions with an arbitrary (i.e., worse-caso)
counterpart. Here we may use the more liberal alternative and consider all verifiers which run in expected
polynomial time when the expectation is taken over the coin tosses of both the verifier and the honest prover.

182 O. Goldreich and A. Kahan

polynomial-time interactive machine, V*, we introduce an expected polynomial-time
simulator, denoted M*. The simulator starts by selecting and fixing a random tape, r, for
V*. Next, M* simulates Step P0 by invoking the commit phase (of the perfect commit-
ment scheme) and producing a message m. Given the input graph G, the random tape
r, and the prover message m, the commitment message of the verifier V* (for Step V0)
is determined. Hence, M* invokes V*, on input G, random tape r, and message m, and
gets the corresponding commitment message, denoted CM. The simulator proceeds in
two steps.

S1.

$2.

Extracting the query edges: The simulator M* generates a sequence ofn . t random
commitments to dummy values (e.g., all values equal 1), and feeds it to V*. (These
commitments are via the regular commitment scheme and feeding them to V*
corresponds to the prover's Step P1.) In case V* replies by revealing correctly a
sequence of t edges, denoted (Ul, vl) (ut, vt), the simulator records these
edges and proceeds to the next step. In case the reply of V* is not a valid revealing
of the commitment message C M , the simulator halts outputting the current view
of V* (e.g., G, r, and the commitments to dummy values). Note that halting in
such a case is consistent with the prover's behavior (in Step P2).
Generating an interaction that satisfies the query edges (oversimplified exposi-
tion): Let (u l, Vl) (ut, vt) denote the sequence of edges recorded in Step S 1.
The simulator M* generates a sequence of n 9 t commitments, c1,1 Cn.t, so
that, for each j = 1 t, it holds that cuj,j and coj,j are random commitments
to two different random values in { 1,2, 3} and all the other ci,j's are random
commitments to dummy values (e.g., all values equal 1). The underlying values
are called a pseudocolorings. The simulator feeds this sequence of commitments
to V* (which has been invoked from scratch with the same random-tape r and
the same (Step Pl)-message m). (Again, these commitments are via the regular
commitment scheme and feeding them to V* corresponds to the prover's Step PI.)
If V* replies by revealing correctly the above-recorded sequence of edges, then
M* can complete the simulation of a "real" interaction of V* (by revealing the
colors of the endpoints of these recorded edges). Otherwise, the entire Step $2 is
repeated (until success occurs).

To illustrate the behavior of the simulator, assume that the program V* always reveals
correctly the commitment made in Step V0. In such a case the simulator will find out
the query edges in Step S1, and using them in Step $2 it will simulate the interaction
of V* with the real prover. Using ideas as in [10], it can be shown that the simulation is
computationally indistinguishable from the real interaction. Note that in this case (i.e.,
when V* always replies properly), Step $2 of the simulator is performed only once.

Consider now a more complex case in which, on each possible sequence of internal
coin tosses r, program V* correctly reveals the commitment made in Step V0 only with
probability 1/3. The probability in this statement is taken over all possible commitments
generated to the dummy values (in the simulator Step S1). We first observe that the
probability that V* correctly reveals the commitment made in Step V0, after receiving
a random commitment to a sequence ofpseudocotorings (generated by the simulator
in Step $2), is approximately 1/3. (Otherwise, we derive a contradiction to the compu-

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 183

tational secrecy of the commitment scheme used by the prover.) Hence, the simulator
reaches Step $2 with probability 1/3, and each execution of Step $2 is completed suc-
cessfully with probability p ~ 1/3. It follows that the expected number of times that
Step $2 is invoked when running the simulator is (1/3) 9 (I / p) ~ 1.

We now consider the general case. Let q(G, r) denote the probability that program
V*, on input graph G and random tape r, correctly reveals the commitment made in
Step V0, after receiving random commitments to dummy values (generated in Step S 1).
Likewise, we denote by p(G, r) the probability that V* (on input graph G and random
tape r) correctly reveals the commitment made in Step V0, after receiving a random
commitment to a sequence ofpseudocolorings (generated by the simulator in Step $2).
As before the difference between q (G, r) and p(G, r) is negligible (in terms of the size
of the graph G), otherwise a contradiction to the computational secrecy of the prover's
commitment scheme is derived. We conclude that the simulator reaches Step $2 with

def . -- probability q = q(U, r), and each execution of Step $2 is completed successfully with
probability p dee p(G, r). It follows that the expected number of times that Step $2 is
invoked when running the simulator is q/p. Here is the bad news: we cannot guarantee
that q /p is approximately 1 or even bounded by a polynomial in the input size (e.g.,
let p = 2 -n and q = 2 -n/2, then the difference between them is negligible and yet
q/p is not bounded by poly(n)). This is why the above description of the simulator is
oversimplified and a modification is indeed required.

We make the simulator expected polynomial time by modifying Step $2 as follows.
We first add an intermediate step, denoted S 1.5, to be performed only if the simulator did
not halt in Step S 1. The purpose of Step S 1.5 is to provide a good estimate of q (G, r). The
estimate is computed by repeating the experiment of Step S 1 until a fixed (polynomial
in IGI) number of correct 9 V*-reveals are encountered (i.e., the estimate will be the
ratio of the number of successes divided by the number of trials). We stress that, in case
Step S1.5 is performed, the number of trials (in it) is not necessarily a polynomial but
is rather poly(IGI)/q(G, r), on the average. By fixing a sufficiently large polynomial,
we can guarantee that with overwhelmingly high probability (i.e., 1 - 2 -p~ the
estimate is within a constant factor of q(G, r). Step $2 of the simulator is modified by
adding a bound on the number of times it is performed, and if none of these executions
yields a correct V*-reveal, then the simulator outputs a special symbol indicating time-
out. Specifically, Step $2 will be performed at most poly(I G I)/Ft times, where ~ is the
estimate to q(G, r) computed in Step S1.5. In addition, we modify the simulator so that
if the verifier ever reveals a correct opening of the commitment that is different from the
one recorded in Step S 1, then the simulator halts outputting a special symbol indicating
ambiguity. It can easily be verified that the modified simulator has an expected running
time bounded by q(G, r). poly(lGI)/q(G, r) = poly(IGI). Hence:

Claim 1. The modified simulator runs in expected polynomial time.

9 We do not require here that the revealed string matches the one recorded in Step S 1. The distinction,
however, is immaterial in view of the last modification described below.

184 O. Goldreich and A. Kahan

It is left to analyze the output distribution of the modified simulator. We start by
reducing this analysis to the analysis of the output distribution of the original simulator.
The modified simulator, hereafter denoted M**, differs from the original one (i.e., M*)
in two types of executions in which M** outputs special symbols, specifically "time-out"
and "ambiguity," whereas the original simulator proceeds to the next iteration of Step $2.
Hence, we need to bound the probability that these executions occur.

Claim 2. The probability that the modified simulator outputs the time-out symbol is a
negligible function of IGI.

Proof. Let A(G, r) denote the probability that, on input a graph G and coin tosses r,
the modified simulator outputs a special time-out symbol. Then

i>_l

< q (G , r) . (P r o b (q (G ' r) ~ _ ~) (l)) . (1 - p (G , r)) p~

+ Prob (q (- ~ r) 5k |

< q(G, r) 9 (l - p(G, r)) p~ -}- 2 -IGI.

In what follows, we ignore the additive 2 -I~1 term. We now show that A(G, r) is a
negligible function of I GI. Assume, to the contrary, that there are a polynomial P (.), an
infinite sequence of graphs {Gn} (with I Gn I -- n), and an infinite sequence of random
tapes {rn}, such that A(Gn, rn) > l /P(n) . It follows that for each such n we have
q(Gn. r,) > l / P(n). We consider two cases.

Case l : For infinitely many of these n 's, it holds that p(G,,, r,) >_ q (G,, rn)/2. In such
a case we get, for these n's,

A(G,,, r .) < (1 - p(G,,, rn)) p~

< (1 q(G2'rn))p~)

< 2-P~ rIG.[)/2,

which contradicts our hypothesis that A (Gn, r .) > 1/poly(n).

Case 2: For infinitely many of these n 's, it holds that p(Gn, r.) < q(Gn, rn)/2. It
follows that for these n's we have Iq(G., r.) - p(G., rn)] > P(n)/2, which leads
to contradiction of the computational secrecy of the commitment scheme (used by the
prover).

Hence, contradiction follows in both cases. []

Claim 3. The probabili~ that the modified simulator outputs the ambiguity symbol is
a negligible function of lGI.

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 185

Proof, Intuitively, the claim follows by using the (computational) nonambiguity prop-
erty of the verifier's commitment scheme. However, when trying to carry out the standard
argument the following difficulty is encountered. The standard argument proceeds by
contradiction and uses the machine V*, invoked by the simulator, to do things assumed
impossible (i.e., produce ambiguous commitments). The problem is that V* might have
revealed different values when invoked more than polynomially many times. Recall
that the number of times Step $2 is performed is not bounded by a polynomial; only
the expected number of times that Step $2 is performed (by the modified simulator) is
bounded by a polynomial. Nevertheless, the problem is easily resolved by disregard-
ing the executions of the modified simulator in which Step $2 is performed too many
times. Specifically, assume by contraction that the "ambiguity" symbol is output with
probability at least 1 / P (IG I), for a polynomial P (.) and an infinite sequence of graphs.
Then we can truncate the executions of M** in which Step $2 is performed more than
2T(IGI) . P(IGI) times, where T(.) denotes the expected running time of M**. By
an averaging argument it also follows that in these truncated executions M** outputs
an "ambiguity" symbol with nonnegligible probability (i.e., with probability at least
1/2P (IG I))- Contradiction now follows using the standard techniques. []

To conclude, it suffices to show that the output of the original simulator (i.e., M*) is
computationally indistinguishable from the output of verifier V* (when interacting with
the prover).

Claim 4. The ensemble {M*(G)}6~cac is computationally indistinguishable from the
ensemble {(P, V*)(G)}G~G3C, where (P, V*)(G) denotes the output of V* after an
interaction with the prover on common input G.

Proof. When trying to carry out the standard argument (i.e., as in [10]), we again
encounter the difficulty mentioned in the proof of the previous claim. Namely, the
standard argument proceeds by contradiction and uses the machine M* to do things
assumed impossible (i.e., distinguish computationally secure commitments to differ-
ent values). However, here M* is not strictly polynomial time, and furthermore M*
is not even guaranteed to be expected polynomial time. Yet, again, the problem is re-
solved by truncating the rare executions of M* which are too long. Specifically, as-
sume that the above ensembles are distinguished (by an efficient algorithm A) with gap
e(G) (i.e., e(G) = IProb(A(M*(G)) = 1) - Prob(A((P, V*)(G)) = 1)1), and that
e(G) > 1/P(IGI) for apolynomial P(.) and an infinite sequence of graphs {G~: n ~ S}
(with IG~ I = n). Defining a predicate R so that R(y) = 1 if y is an interaction-transcipt
in which the verifier correctly reveals the commitment made in Step V0 and R(y) = 0
otherwise, we consider two cases:

Case 1: For infinitely many n E S, it holds that Prob(R ((P , V*)(Gn)) = 1) > e (G n) / 3.
On these Gn's, it is guaranteed that the expected number of times that Step $2 is performed
(by M*) is at most 3/e (Gn) < 3 P (IGn I). Hence, runs of M* in which Step $2 is repeated
more than T(IG~I) de___f 6P(iGnl) 2 times occur with probability at most 1/2P(IG~I).
Thus, truncating the execution of M* after T (IG~ I) repetitions of Step $2 yields output
that is at most 1/2P(IG, l) away (in statistical distance) from the output of the original

186 O. Goldreich and A. Kahan

M*. It follows that algorithm A still distinguishes, with gap at least e(G~) - I/2P(IGn I),
the output of the truncated M* from the real interaction with the prover. At this
point, we may apply the standard techniques (see [10], but actually the proof here is
simpler).

Case 2: For infinitely many n ~ S, it holds that Prob(R((P, V*)(Gn)) = 1) < e(Gn) /3.
It follows that, on these Gn's, with probability at least 1 - e(Gn)/3, the interaction of
V* with the real prover is suspended at Step V1. There are two subcases to consider:

 9 In the first subcase we assume that the simulator halts in Step S 1 with probability at
most 1 - e(G~)/2. Thus, there is a gap, of at least e(G~)/6 between the probability
that V* correctly reveals its commitments when interacting with the prover and
the probability that V* correctly reveals its commitments when "interacting" with
the simulator. In this case V* is used to distinguish the commitments to dummy
values (as produced by the simulator) from commitments to legal coloring (as pro-
duced by the prover), in contradiction to the computational secrecy of the prover's
commitment scheme.

 9 In the second subcase we assume that the simulator halts in Step S 1 with probability
at least 1 - e(Gn)/2. This means that both the real and the simulated interactions
are suspended with probability at least 1 - e(G,)/2. Hence, algorithm A must dis-
tinguish such suspended interactions with gap at least e (Gn)/2. It follows that algo-
rithm A distinguishes commitments to dummy values (as appearing in suspended
interactions produced by the simulator) from commitments to legal coloring (as
appearing in suspended interactions with the prover).

Since in all cases we reached contradiction to the computational secrecy of the prover's
 9 commitment, the claim follows. []

Combining the above four claims, we get:

Proposition 4. Construction 3 is zero-knowledge.

6. Conclusion

Construction 3 can be modified so that weaker forms of perfect commitment schemes
can be used. We refer specifically to commitment schemes with perfect a posteriori
secrecy (see Section 3.2). In such schemes the secrecy is only established a posteriori
by the receiver which discloses the coin tosses it has used in the commit phase. In our
case the prover plays the role of the receiver, and the verifier plays the role of the sender.
Hence, the prover may establish the secrecy of the verifier's commitment (of Step V0) by
revealing, in Step P2, the coins it has used as receiver in Step P0. This suffices since, in
case secrecy is not established, the verifier may reject. In such a case no harm has been
caused since the secrecy of the perfect commitment scheme is used only to establish
the soundness of the interactive proof. Hence, combining the above discussion with
Propositions 2--4 we get:

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 187

Theorem 1. I f a claw-free collection exists, then every language in A l p has a constant-
round zero-knowledge interactive proof system.

Acknowledgments

We would like to thank the anonymous referees for their useful comments.

Appendix. Examples of Claw-Free Collections

The following examples of claw-free collections have been discovered independently
by many researchers. In particular, the DLP Claw-Free Collection has appeared in [3],
and the Factoring Claw-Free Collection is an obvious modification of the construction
appearing in [12].

A. 1. The DLP Claw-Free Collection

We start by presenting a claw-free collection under the assumption that the Discrete
Logarithm Problem (DLP) is intractable. Here we refer to the DLP for fields of prime
cardinality. Namely, the input to DLP consists of a prime P, a primitive element of
the multiplicative group mod P, and an element of the group. The problem is, given
such a triplet (P, G, Y), to find an x such that G x =- Y mod P. The DLP intractability
assumption asserts that any efficient algorithm succeeds only with negligible probability
(where the probability is taken over all possible inputs of specific length and the coin
tosses of the algorithm).

Following is the description of the algorithms defining a collection of claw-free per-
mutations (based on the above assumption). On input I n, the index selection algorithm
loLp selects uniformly a prime, P, such that 2 n-I < p < 2 n, a primitive element G
in the multiplicative group modulo P, and an arbitrary member Z of that group, and
outputs the index (P, G, Z). The domain of both functions with index (P, G, Z) is
identical and equals the set { 1 P - 1 }. The domain sampling algorithm, DoLp, uni-
formly selects an element of this set (i.e., DDLp(a, (P, G, Z)) is uniformly distributed
over {1 P - 1}, for both tr ~ {0, 1}). As for the functions themselves, we set
FoLP(tr, (P, G, Z), x) de=f Z~ . GX mod P, for both a ~ {0, 1}. The reader can easily
verify that both functions are permutations over { 1 P - 1 }. Also, the ability to form
a claw for the index (P, G, Z) yields the ability to find the discrete logarithm of Z mod
P to base G (since G x -- Z 9 G y mod P yields G x-y -- Z mod P). Hence, the ability
to form claws for a nonnegligible fraction of the index set translates to a contradiction
to the DLP intractability assumption.

The above collection does not have the additional property of having an efficiently
recognizable index set, since it is not known how to recognize primitive elements modulo
a prime efficiently. This can be amended by making a slightly stronger assumption
concerning the intractability of DLP. Specifically, we assume that DLP is intractable
even if one is given the factorization of the size of the multiplicative group (i.e., the
factorization of P - 1) as additional input. Such an assumption allows us to add the
factorization of P - 1 into the description of the index. This makes the index set efficiently

188 O. Goldreich and A. Kahan

recognizable (since P can first be tested for primality, as usual, and next test whether G
is a primitive element by raising it to powers of the form (P - l) /Q where Q is a prime
factor of P - 1). If DLP is hard also for primes of the form 2Q + l, where Q is also a
prime, life is even easier. To test whether G is a primitive element mod P just compute
GE(mod P) and G~e-l)/E(mod P), and check whether either of them equals 1.

We remark that the above description assumes the existence of probabilistic polyno-
mial-time algorithms for uniformly selecting primes and primitive elements. We only
know of expected polynomial-time algorithms for these tasks. Furthermore, primality
testers with no error are quite impractical, and therefore it is reasonable to use fast ran-
domized algorithms (with negligible error probability) instead. Doing so we get some-
thing that is very close to a claw-free collection but does not quite achieve one (as
with negligible probability the algorithms fail). We stress that this issue has no practical
significance, yet if we wish to state a precise result, then the definition of claw-free col-
lections needs to be slightly modified. Relaxing the definition of a claw-free collection
requires a similar relaxation of the definition of perfect commitment schemes, so that
Construction 2 remains valid. Details are omitted.

A.2. The Factoring Claw-Free Collection

We now show that a claw-free collection (of functions) does exist under the assumption
that integer factorization is intractable for integers which are the product of two primes
each congruent to 3 mod 4. Such composite numbers, hereafter referred to as Blum
integers, have the property that the Jacobi symbol of - 1 (relative to them) is 1 and half
of the square roots of each quadratic residue, in the corresponding multiplicative group
(modulo this composite), have Jacobi symbol 1. Let j+ l (resp. j~ l) denote the set of N.
residues in the multiplicative group modulo N with Jacobi symbol +1 (resp. -1) .

The index-selecting algorithm, denoted IFCa', uniformly selects a Blum integer, by
uniformly selecting two (n-bit) primes each congruent to 3 mod 4, and outputs their
product, denoted N. The domains of the two functions with index N is j+ l and j~ l ,
respectively. The domain-sampling algorithm, DFCT, on input cr and N, uniformly selects
an element of J(~- Ir (by uniformly selecting residues rood N and computing their Jacobi
symbol). Finally, the functions themselves are defined by FFcr(tr, N, x) def f~c(X) def
X 2 mod N, for both tr ~ {0, 1}, where x e J~ -I)~ . Note that each of the two functions is
2-to- 1.

The reader can easily verify that both f~ N)) and f~(D(1, N)) are uniformly
distributed over the set of quadratic residues mod N. The difficulty of forming claws
follows from the fact that a claw yields two residues, x and y, of different Jacobi symbol,
(thus x ~ q-y) such thatx 2 - y2 (mod N), and such residues yield a factorization of N.

References

[1] M. Blum, Coin Flipping by Phone, SigactNews, Vol. 15, No. 1, 1983.
[2] M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge and Its Applications, Proc. 20th

STOC, pp. 103-112, 1988.
[3] J. Boyar, M. Krentel, and S. Kurtz, A Discrete Logarithm Implementation of Perfect Zero-Knowledge

Blobs, J. Cryptology, Vol. 2, pp. 63-76, 1990.

How To Construct Constant-Round Zero-Knowledge Proof Systems for NP 189

[4] G. Brassard, D. Chaum, and C. Cr6peau, Minimum Disclosure Proofs of Knowledge, J. Comput. System
Sci., Vol. 37, No. 2, pp. 156-189, 1988.

[5] G. Brassard, C. Cr6peau, and M. Yung, Constant-Round Perfect Zero-Knowledge Computationally Con-
vincing Protocols, Theoret. Comput. Sci., Vol. 84, pp. 23-52, 1991.

[6] U.FeigeandA.Shamir~Zer~-Kn~w~edgePr~fs~fKn~w~edgeinTw~R~unds~AdvancesinCrypt~l~gy-
Crypto 89 (Proceedings), pp. 526-544, 1990.

[7] O. Goldreich, A Uniform-Complexity Treatment of Encryption and Zero-Knowledge, J. CD,ptology,
Vol. 6, pp. 21-53, 1993.

[8] O. G••dreich and H. Krawcyzk• On the C•mp•siti•n •f Zer•-Kn•w•edge Pr••f Systems, S•AM J. C•mput.•
Vol. 25, No. 1, pp. 169-192, 1996.

[9] O. Goldreich and L. A. Levin, Hard-Core Predicates for Any One-Way Function, Proc. 21st STOC,
pp. 25-32, 1989.

[10] O. Goldreich, S. Micali, and A. Wigderson, Proofs That Yield Nothing but Their Validity or All Languages
in NP Have Zero-Knowledge Proof Systems, J. Assoc. Comput. Mach., Vol. 38, No. 1, pp. 691-729, 1991.

[11] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof Systems,
SIAMJ. Comput., Vol. 18, No. 1, pp. 186--208, 1989.

[12] S. Goldwasser, S. Micali, and R. L. Rivest, A Digital Signature Scheme Secure Against Adaptive Chosen-
Message Attacks, SIAM J. Comput., Vol. 17, No. 2, pp. 281-308, 1988.

[13] J. Hastad, Pseudorandom Generators Under Uniform Assumptions, Proc. 22nd STOC, pp. 395-404,
1990.

[14] R. Impagliazzo, L. A. Levin, and M. Luby, Pseudorandom Generation from One-Way Functions, Proc.
21stSTOC, pp. 12-24, 1989.

[15] J. Kilian, A Note on Efficient Zero-Knowledge Proofs and Arguments, Proc. 24th STOC, pp. 723-732,
1992.

[16] J. Kilian, On the Complexity of Bounded-Interaction and Noninteractive Zero-Knowledge Proofs, Proc.
35th FOCS, pp. 466-477, 1994.

[17] M. Naor, Bit Commitment Using Pseudorandomness, J. Co'ptology, Vol. 4, pp. 151-158, 1991.

