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Abstract. In cryptographic protocols it is often necessary to verify/certify the "tools" 
in use. This work demonstrates certain subtleties in treating a family of trapdoor per- 
mutations in this context, noting the necessity to "check" certain properties of these 
functions. The particular case we illustrate is that of noninteractive zero-knowledge. 
We point out that the elegant recent protocol of Feige, Lapidot, and Shamir for proving 
NP statements in noninteractive zero-knowledge requires an additional certification of 
the underlying trapdoor permutation, and suggest a method for certifying permutations 
which fills this gap. 
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1. Introduction 

Primitives such as the RSA function, the discrete log function, or, more generally, any 
trapdoor or one-way function, have applications over and above the "direct" ones to 
public-key cryptography. Namely, they are also (widely) used as "tools" in the construc- 
tion of (often complex) cryptographic protocols. This paper points to the fact that in this 
second kind of application, some care must be exercised in the manner in which the "tool" 
is used. Checks might be necessary that are not necessary in public-key applications. 

* A preliminary version of this paper appeared in Advances in Cryptology--Co,pto 92 Proceedings, Lecture 
Notes in Computer Science, Vol. 740, E. Brickell, ed., Springer-Verlag, Berlin, 1992. This work was done 
while Mihir Bellare was at the IBM T.J. Watson Research Center, Yorktown Heights, NY. 
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The need for such checks arises from the need to consider adverserial behavior of 
parties in a cryptographic protocol. Typically, the problem is that one cannot trust a party 
to "correctly" create the tool in question. For example, suppose a party A is supposed 
to give another party B a modulus N product of two primes, and an RSA exponent e, 
to specify an RSA function. On receipt of a number N and an exponent e, it might be 
important that the receiver know that e is indeed an RSA exponent (i.e., relatively prime 
to the Euler Phi function of N). This is because the use of RSA in the protocol might be 
such that making e not an RSA exponent could give A an advantage (such applications 
do exist). On the other hand, the secrecy of .the prime factorization of N is probably 
important to A, and she is not prepared to yield the prime factors of N which would 
enable B to check the correctness of e by himself. 1 

Protocols address this issue in several ways. Often, they incorporate additional sub- 
protocols which "certify" that the "tool" used is indeed "correct." These subprotocols 
will usually need to be zero-knowledge ones. Since the "correctness" of the tool can 
usually be formulated as an NP assertion, such subprotocols can in some cases be real- 
ized, by using, say, the general interactive protocols of [GMW] and [BC] which enable 
any NP statement to be proven in zero-knowledge. However, not always. One reason is 
that these protocols yield only computational zero-knowledge, and we may be interested 
in stronger forms such as statistical. (One such example occurs in [BMO] where the 
use of the certified discrete log assumption is crucial.) Alternatively, as for the prob- 
lem we are interested in here, we may want a noninteractive solution, so that again the 
above-mentioned general techniques are precluded. 

The particular instance of this issue that we focus on in this paper is the use of trapdoor 
permutations in noninteractive zero-knowledge (NIZK) proofs. We point out that the 
elegant recent NIZK protocol of Feige et al. [FLS] makes the (implicit) assumption that 
the trapdoor permutation is "certified." We note that this assumption is not valid for 
standard (conjectured) trapdoor permutations like RSA or those of [BBS], and so their 
protocol cannot be instantiated with any known (conjectured) trapdoor permutation. We 
suggest a certification method to fill this gap, so that any trapdoor permutation truly 
suffices, and RSA or the construction of [BBS] may be used. Our certification method 
involves an NIZK proof that a function is "almost" a permutation, and might be of 
independent interest. 

Below we begin by recalling the notions of trapdoor permutations and NIZK proofs. 
We then discuss the FLS protocol and indicate the source of the problem. We then, 
briefly, discuss our solution. Later sections specify the definitions and our solution in 
more detail. 

1. l. Trapdoor Permutations 

We begin by recalling, in some detail, the definition of a trapdoor permutation generator 
(we follow [BM]), and seeing what it means for such a generator to be certified. 

I Such a problem is not present in public-key applications. If  I wish to publish N and e to specify an RSA 
digitial signature scheme, there is no question of my incorrectly choosing e because it is not to my advantage 
to do so. 
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A trapdoor permutation generator is a triplet of polynomial-time algorithms (G, E, I) 
called the generating, evaluating, and inverting algorithms, respectively. The generat- 
ing algorithm is probabilistic, and on input 1 n outputs a pair of n-bit strings (f*,  f*) ,  
describing, respectively, a trapdoor permutation and its inverse. If x, y are n-bit strings, 
then so are E(f*, x) and I (f*, y). Moreover, the maps f ,  f :  {0, 1 }" ~ {0, 1 }" specified 
by f (x )  = E(f*, x) and f (y )  = l ( f* ,  y) are permutations of {0, 1}", and f = f - i .  
Finally, f is "hard to invert" without knowledge of f .  (We refer the reader to Section 2.2 
for more precise definitions.) 

Fix a trapdoor permutation generator (G, E, I). We call an n-bit string f*  a trapdoor 
permutation if there exists some n-bit string f* such that the pair (f*,  f*)  has a nonzero 
probability of being obtained when we run G on input I n. It is important to note that 
not every n-bit string f*  is a trapdoor permutation. In fact, the set of n-bit strings which 
are trapdoor permutations may be a very sparse subset of {0, 1 }n, and perhaps not even 
recognizable in polynomial time. If it is recognizable in polynomial time, we say the 
generator is certified. 

We note that efficent recognizability is a lot to ask for. Consider our two main (conjec- 
tured) examples of trapdoor permutation generators: RSA [RSA], and the factoring-based 
generator of Blum et al. [BBS]. Neither is likely to be certifiable. This is because, in 
both cases, certification would need the ability to recognize in polynomial time the class 
of integers which are a product of (exactly) two (distinct) primes. 

The importance of certification arises, as will be seen, from the use of trapdoor per- 
mutations as "tools" in protocols. Typically, one party (for example, the prover) gives 
the other party (for example, the verifier) a string f*  which is supposed to be a trapdoor 
permutation. For security reasons he may not wish to reveal (as proof that it is indeed 
one) the string f*,  but may nonetheless need to convince the verifier that f*  is indeed 
a trapdoor permutation. This is clearly easy if the underlying generator is certified. 
Otherwise, the protocol itself must address the task of giving suitable conviction that 
f*  is really a trapdoor permutation. 

One-way versus trapdoor. Does the same certification issue arise also for one-way 
permutations? It depends on what we call one-way permutations. Two kinds of definitions 
are used. In the first, a one-way permutation is a single object, namely a map f :  {0, 1 }* 
{0, 1}*; since it is a single map, no certification is needed. However, candidate one-way 
permutations typically occur, like trapdoor permutations, as families; the best example is 
the discrete log, where a member of the family is specified by a prime p and a generator g. 
Now, the certification issue arises just as before. (For discrete log it is usually addressed 
by usage of the certified discrete log assumption. Here one also provides the prime 
factorization of p - 1, which enables one to check that g is indeed a generator.) 

1.2. NIZK Proofs 

The setting we focus on in this paper is that of NIZK proof systems. NIZK is an important 
notion for cryptographic systems and protocols which was introduced by Blum et al. 
[BFM], [BDMP]. There are numerous applications. In particular, Naor and Yung show 
how to use NIZK proofs to implement public-key cryptosystems secure against chosen- 
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ciphertext attack [NY], and Bellare and Goldwasser present a novel paradigm for digital 
signatures based on NIZK proofs [BG]. 

The model is as follows. The prover and verifier have a common input w and also 
share a random string (of length polynomial in the length of w). We call this string the 
reference string, and usually denote it by tr. The prover must convince the verifier of 
the membership of w in some fixed underlying NP language L. To this end, the prover 
is allowed to send the verifier a single message, computed as a function of w and cr 
(in the case where w ~ L, we also give the prover, as an auxiliary input, a witness to 
the membership of w in L). We usually denote this message by p. The verifier (who is 
polynomial time) decides whether or not to accept as a function of w, a and p. We ask 
that there exist a prover who can convince the verifier to accept w ~ L, for all random 
strings tr (this is the completeness condition). We ask that for any prover, the probability 
(over the choice of~r) that the verifier may be convinced to accept when w ~ L is small 
(this is the soundness condition). Finally, we ask the proof provided by the prover of 
the completeness condition (in the case w 6 L) be zero-knowledge, by requiring the 
existence of an appropriate "simulator." For a more complete specification of what it 
means to be an NIZK proof system, we refer the reader to Section 2.3. 

We focus here on protocols with efficient provers. That is, we want the prover of the 
completeness condition (we call it the "honest" prover) to run in polynomial (in n = I wl) 
time. 

We note that we are considering what are called "single-theorem" or "bounded" NIZK 
proof systems. The primitive of importance in applications is the "many-theorem" proof 
system (see [BFM] and [BDMP]). However, the former is known to imply the latter, given 
the existence of one-way functions [DY], [FLS]. So we may, without loss of generality, 
stick to the former. 

1.3. The Need for Certification in the FLS Protocol 

Feige et al. [FLS] recently presented an elegant NIZK proof system based on the existence 
of trapdoor permutations. The assumption, implicit in their analysis, is that the underlying 
trapdoor permutation generator is certified. Here we indicate whence arises the need for 
this certification. Once we have identified the source of the problem, we will discuss 
how we propose to solve it. 

Let L be a language in NP, and let (G, E, I) be a trapdoor permutation generator. Fix 
a common input w ~ {0, 1 }n, and let cr denote the reference string. We describe how the 
prover and verifier are instructed to operate under the FLS protocol. First, however, we 
need some background and some notation. 

First, note that even if f*  is not a trapdoor permutation, we may assume, without loss 
of generality, that E( f* ,  x) is n-bits long. Thus, f*  does specify (via E) a map from 
{0, 1} n to {0, l}n; specifically, the map given by x ~ E( f* ,  x). We call this map the 
function specified by f*  under E, and denote it by f .  Of course, if f*  is a trapdoor 
permutation, then f is a permutation. 

I fx  and r are n-bit strings then H(x, r) denotes the dot product, over GF(2), o fx  and 
n r (more precisely, H(x, r) = ~)i=1 x i r i )  " The theorem of Goldreich and Levin [GL] 

says that H is a "hard-core" predicate for (G, E, I). Very informally, this means the 
following. Suppose we run G (on input I n) to get (f*,  f*) ,  select x and r at random 
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from {0, 1} n, and let y = f ( x ) .  Then, given y and r, the task of predicting H(x ,  r), and 
the task of finding x, are equally hard. 

We are now ready to describe the protocol. 
The protocol first asks that the prover P run G on input 1 n to obtain a pair ( f*,  f*) .  

P is then instructed to send f*  to V (while keeping f*  to himself). 
The problem is right here, in this first step. The analysis of [FLS] assumes that the 

prover performs this step correctly. This may be justified under the assumption that the 
trapdoor permutation generator is certified. If the generator is not certified, a cheating 
prover could, when w ~ L, select, and send to the verifier, an n-bit string which is not 
a trapdoor permutation. As we will see, this could compromise the soundness of the 
protocol. We proceed. 

Once the prover has supplied f* ,  the reference string is regarded as a sequence cr = 
ylrl . . .  ytrl of I blocks of size 2n, where l = l(n) is a (suitable) polynomial (block i 
consists of the pair of n bit strings yiri). We say that the prover "opens block i with 
value bi" if he provides the verifier with an n-bit string xi such that f ( x i )  = Yi and 
H ( x i ,  ri) = b i. The prover now opens certain blocks of the random string (and the 
protocol specifies how an honest prover should choose which blocks to open). Based on 
the values of the opened blocks, their relative locations in the reference string, and the 
common input, the verifier decides whether or not to accept. Exactly how he does this 
is not relevant to our discussion. Exactly how the honest prover is supposed to decide 
which blocks to open (which he does as a function of the block, the common input, 
and his witness to the membership of the common input in L) is also not relevant to 
our discussion. What is important to note is that the soundness condition relies on the 
assumption that, with f*  fixed, there exists a unique way to open any given block. If it 
is possible for the prover to open a block with value either 0 or 1, then the soundness of 
the FLS protocol is compromised. 

The assumption that there is (one and) only one way to open a block is justified if f*  
is a trapdoor permutation, because, in this case, f is a permutation. However, if f*  is 
not a trapdoor permutation, then f may not be a permutation, and in such a case, the 
possibility exists that blocks may be opened with values of the prover's choice. 

We note that the gap is not an academic one. Considering concrete cases, such as 
the use of RSA or the trapdoor permutations based on quadratic residuosity that are 
suggested by [BBS], we see that the prover may indeed cheat. 

The solution that first suggests itself is that the prover prove (in NIZK) that he really 
got f by running the generator G (this is an NP statement). The problem is, however, 
that to prove this new statement itself requires the use of a trapdoor permutation, and we 
are only chasing our tail. 

Note that in the above NIZK proof, a (cheating) prover may choose f*  as a function 
of the random string. However, as pointed out in [FLS], this causes no difficulties. We 
may assume, in the analysis, that the reference string is chosen after f*  is fixed; later we 
apply a simple transformation which results in the proof system being secure even if f*  
was chosen as a function of tr. We will deal with this issue explicitly when it arises. 

Feige et al. [FLS] also consider the case of a computationally unbounded prover, where 
they use a one-way, rather than trapdoor, permutation. As we saw above, the certification 
problem still arises just as before. 
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1.4. Our Solution 

Let f*  denote the n-bit string provided by the prover in the first step of the FLS protocol, 
as described above. As that discussion indicates, soundness does not really require that 
f be a trapdoor permutation. All that it requires is that f be a permutation. So it would 
suffice to certify this fact. 

To certify that a map from {0, 1 }" to {0, 1 }" is a permutation seems like a hard task (it 
is a coNP statement). What we will do is certify it is "almost" a permutation, and then 
show that this suffices. 

More precisely, we call f an e-permutation if at most an e fraction of the points in 
{0, 1 }" have more than one preimage under f .  We show that on common input f* ,  and 
access to a common (random) reference string of length e -  1 . n ,  the prover can provide 
the verifier with a noninteractive, zero-knowledge proof that that f is an e-permutation. 
For a more precise statement of the theorem and its proof we refer the reader to Section 3. 

We then show that adding this step to augment a multitude of independent FLS protocol 
instances yields an NIZK proof system (for any NP language) given the existence of any 
(not necessarily certified) trapdoor permutation generator. A complete proof of this fact 
is in Section 4. We note that this proof is in fact quite independent of the details of the FLS 
protocol and can be understood without a deep knowledge of the techniques of that paper. 

Our solution also applies for the usage of one-way (rather than trapdoor) permutations 
in the [FLS] protocol with an unbounded prover. 

2. Preliminaries 

We begin by summarizing some basic notation and conventions which are used through- 
out the paper. We then discuss trapdoor permutations and say what it means for them 
to be "certified" Finally, we recall the definition, and some basic properties, of NIZK 
proof systems. 

2.1. Notation and Conventions 

We use the notation and conventions for probabilistic algorithms that originated in 
[GMR]. 

We emphasize the number of inputs received by an algorithm as follows. If algorithm 
A receives only one input we write "A(.)"; if it receives two we write "A(., .)", and so 
on. If A is a probabilistic algorithm, then, for any input i, the notation A(i)  refers to 
the probability space which assigns to the string cr the probability that A, on input i, 
outputs ~r. 

If S is a probability space we denote its support (the set of elements of positive 
probability) by [S]. 

If f ( . )  and g(., . .-) are probabilistic algorithms, then f (g( . ,  . . . ) )  is the probabilistic 
algorithm obtained by composing f and g (i.e., running f on g's  output). For any inputs 
x, y . . . .  the associated probability space is denoted f ( g ( x ,  y . . . .  )). 

If S is a probability space, then x ~- S denotes the algorithm which assigns to x 
an element randomly selected according to S. In the case that [S] consists of only one 
element e we might also write x ~-- e. 
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For probability spaces S, T . . . . .  the notation 

R 
Pr[p(x,  y . . . .  ): x ~- S; y +-- T; . . . ]  

denotes the probability that the predicate p(x, y . . . .  ) is true after the (ordered) execution 
of the algorithms x ~- S, y ~-- T, etc. 

Let f be a function. The notation 

{ f (x ,  y . . . .  ): x ~L. S; y ~L. T ; . . . }  

denotes the probability space which assigns to the string ~r the probability 

Pr[ty = f ( x ,  y . . . .  ): x ~- S; y ~- T ; . . . ] .  

When we say that a function is computable in polynomial time, we mean computable 
in time polynomial in the length of its first argument. 

We are interested in families of  efficiently computable functions of  polynomial de- 
scription. The following definition is a convenient way of capturing them. 

Definition 2.1. Let E(.,  .) be a polynomial-time computable function. We say that E 
specifies an efficiently computable family of functions if for each n > 0 and each f* ,  x 
{0, 1} n it is the case that IE( f* ,x) l  = n. Let n > 0 and f *  6 {0, 1} ". The function 
specified by f* under E is the map from {0, 1 }" to {0, 1 }n given by x w-~ E ( f * ,  x). 

2.2. Trapdoor Permutations and Certified Ones 

We present a precise definition of trapdoor permutations and see what it means for them 
to be "certified" The definition that follows is from Bellare and Micali [BM]. 

Definition 2.2 (Trapdoor Permutation Generator). Let G be a probabilistic, polyno- 
mial-time algorithm, and let E, I be polynomial-time algorithms. We say that (G, E, I )  
is a trapdoor permutation generator if the following conditions hold: 

 9 Generation: For every n > 0, the output of  G on input 1" is a pair o f n  bit strings. 
 9 Permutation: For every n > 0 and ( f* ,  f * )  ~ [G(ln)],  the maps E ( f * ,  .) and 

l ( f * ,  .) are permutations of  {0, 1}" which are inverses of  each other (that is, 
t(f*, E(f*,  x)) = x and E(f* ,  I ( / * ,  y)) = y for all x, y ~ {0, 1}~). 

 9 Security: For all probabilistic polynomial-time (adversary) algorithms A(. , . ,  -), for 
all constants c and sufficiently large n, 

P r [E ( f* ,  x) = y: ( f* ,  f * )  ~- G(ln) ;  y ~-- {0, 1}n; x ~-- A(1 ~, f* ,  y)] < n -c. 

We call G, E, I the generating, evaluating, and inverting algorithms, respectively. 

The standard (conjectured) "trapdoor permutations," such as RSA [RSA] and the 
factoring-based ones of  Blum et al. [BBS], do fit this definition, after some minor trans- 
formations (the need for these transformations arises from the fact that these number- 
theoretic functions have domain Z~, rather than {0, 1 }n; we refer the reader to IBM] for 
details). 
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If a trapdoor permutation generator (G, E, I) is fixed and ( f  *, f*)  ~ [G ( 1 n ) ] for some 
n > 0, then, in informal discussion, we call f*  a trapdoor permutation. It is important 
to note that not every n bit string f*  is a trapdoor permutation: it is only one if there 
exists some f-* such that (f*,  f*)  e [G( In)]. In fact, the set of (n bit strings which are) 
trapdoor permutations may be a fairly sparse subset of {0, 1 }n, and, in general, may not 
be recognizable in polynomial (in n) time. If a trapdoor permutation generator does have 
the special property that it is possible to recognize a trapdoor permutation in polynomial 
time then we say that this generator is certified. The more formal definition follows. 

Definition 2.3. Let (G, E, I) be a trapdoor permutation generator. We say that 
(G, E, I) is certified if the language 

La,E,I = U { f  * E {0, l}n: 337* E {0, 1} n such that (f*,  f*)  E [G(ln)]} 
n_>l 

is in BPP. 

We note that standard (conjectured) trapdoor permutation generators are (probably) 
not certified. In particular, RSA is (probably) not certified, and nor is the trapdoor 
permutation generator of Blum et al. [BBS]. This is because, in both these cases, the 
(description of) the trapdoor permutation f*  includes a number which is a product of 
two primes, and there is (probably) no polynomial-time procedure to test whether or not 
a number is a product of two primes. 

The importance of certification stems, as we have seen, from applications in which one 
party (for example, the prover) gives the other party (for example, the verifier) a string 
f* which is supposed to be a trapdoor permutation. For security reasons he may not 
wish to reveal (as proof that it is indeed one) the string f*,  but may nonetheless need to 
convince the verifier that f*  is indeed a trapdoor permutation. In particular, the (implicit) 
assumption in [FLS] is that the trapdoor permutation generator being used is certified. 
As the above indicates, this means that their scheme cannot be instantiated with RSA or 
the trapdoor permutations of [BBS]. In later sections we will show how to extend their 
scheme so that any (not necessarily certified) trapdoor permutation generator suffices 
(so that RSA or the generator of [BBS] may in fact be used). 

We note that if (G, E, I) is a trapdoor permutation generator, f*  e {0, 1} n, and 
x 6 {0, 1} n, then we may assume, without loss of generality, that E(f*, x) is an n-bit 
string. Hence E( f* ,  .) does specify some map from {0, 1} n to {0, 1} n, even if f*  is not 
a trapdoor permutation. That is, in the terminology of Definition 2.1, we may assume, 
without loss of generality, that the algorithm E specifies an efficiently computable family 
of functions. Of course, the map E( f* ,  .) need not be a permutation 9 n {0, 1 }n. 

2.3. NIZK Proof Systems 

We consider NIZK proof systems for NP. It is helpful to begin with the following 
terminology. 

Definition 2.4. Let p(., .) be a binary relation. We say that/9 is an NP-reIation if it 
is polynomial-time computable and, moreover, there exists a polynomial p such that 
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p(w, tb) = 1 implies I~l 5 p(Iwl).  For any w ~ {0, 1}* we let p(w) = {gv 
{0, 1}*: p(w, Yo) = 1}denotethewitnesssetofw.WeletLp = {w 6 {0, 1}*: p(w) r 91} 
denote the language defined by p. A witness selector for p is a map W: Lp ~ {0, 1}* 
with the property that W(w) E p(w) for each w ~ Lp. 

Note that a language L is in NP iff there exists an NP-relation p such that L = Lp. 
We recall the definition of computational indistinguishability of  ensembles. First, 

recall that a function 8: {0, 1 }* ---> R is negligible if for every constant d there exists an 
integer nd such that 8(w) < Iwl -d for all w of length at least rid. 

Definition 2.5. An ensemble indexed by L _ {0, 1}* is a collection {E(w)}~ec of 
probability spaces (of finite support), one for each w 6 L. Let ga = {El(w)}~,eL 
and g2 = {E2(w)}weL be ensembles over a common index set L. We say that they 
are (computationallv) indistinguishable if for every family {Du,}wsL of nonuniform, 
polynomial-time algorithms, the function 

~(w) ~ lPr[D~,(v) = 1: v ~- E t ( w ) ] -  Pr[D~,(v) = 1: v ~- E2(w)][ 

is negligible. 

The definition that follows is based on that of  Blum etal. [BDMP]. However, we state the 
zero-knowledge condition differently; specifically, we use the notion of a witness selector 
to state the zero-knowledge condition in terms of the standard notion of computational 
indistinguishability, whereas in [BDMP] the zero-knowledge condition makes explicit 
reference to "distinguishing" algorithms. The two formulations are, of  course, equivalent 
(but we feel this one is a little simpler because of its "modularity"). 

Definition 2.6. Let p be an NP-relation and let L = Lp. Let P be a machine, let V be 
a polynomial-time machine, and let S be a probabilistic, polynomial-time machine. We 
say that (P,  V, S) defines an NIZK proof system for p if there exists a polynomial l(.) 
such that the following three conditions hold: 

 9 Completeness: For every w 6 L and tb 6 p(w), 

Pr[V(w, cr, p) = 1" cr ~ {0, l}t(m; p +- P(w,  tb, tr)] = 1, 

where n = I wl. 
 9 Soundness: For every machine/5 and every w r L, 

R Pr[V(w, or, p) = 1" r * -  {0, lira'); p +--- /5(w, ~r)] ~  89 

where n = I wl. 
 9 Zero-knowledge: Let W be any witness selector for p. Then the following two 

ensembles are (computationally) indistinguishable: 
( 0  {s (w)}~L.  
(2) {(or, p): cr ~L. {0, lll(lu'l); p ~ P(w, W(w),cr)},,eL. 
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We call P the prover, V the verifier, and S the simulator. The polynomial I is the length 
of the reference string. We say that P is efficient if it is polynomial-time computable. 

We call ~ the "common random string" or the "reference string." 
The choice of 1/2 as the error-probability in the soundness condition is not essential. 

Given any polynomial k(.), the error-probability can be reduced to 2 -k~n) by running 
k(n) independent copies of the original proof system in parallel and accepting iff all 
subproofs are accepting. 

A stronger definition (see [BDMP]) asks that in the soundness condition the adversary 
3 be allowed to select a w ~' L as a function of the reference string. This definition is, 
however, implied by the one above. More precisely, given (P, V, S) satisfying the above 
definition, (P' ,  V', S') satisfying the more stringent definition can be constructed by a 
standard trick. Hence, we stick to the simple definition. 

We note we are considering what have been called "single-theorem" or "bounded" 
NIZK proof systems. That is, the given reference string can be used to prove only a 
single theorem. The primitive of importance in applications (see [BG] and [NY]) is 
the "many-theorem" proof system. However, De Santis and Yung [DY], and Feige et 
al. [FLS] have shown that the existence (for some NP-complete relation) of a bounded 
NIZK proof system with an efficient prover implies the existence (for any NP-relation) 
of a many-theorem NIZK proof system (with an efficient prover), as long as one-way 
functions exist. Hence, given that the (bounded) NIZK proof systems we construct do 
have efficient provers, we may, without loss of generality, stick to the bounded case. 

3. An NIZK Proof that a Map Is Almost a Permutation 

Suppose E specifies an efficiently computable family of functions (see Definition 2.1), 
and suppose f* ~ {0, 1 }n for some n > 0. We address in this section the problem 
of providing an NIZK proof that the function specified by f* under E is "almost" a 
permutation. 

We note that although this problem is motivated by the need to fill the gap in the FLS 
protocol (see Section 1.3), the results of this section might be of interest in their own 
right. Thus, we prefer to view them independently, and make the link to [FLS] in the 
next section. 

In addressing the task of providing an NIZK proof that the function specified by f* 
under E is "almost" a permutation, we must begin by clarifying two things. First, we need 
to say what it means for a function f :  {0, 1}" --+ {0, 1} n to be "almost" a permutation. 
Our definition, of an e-permutation, follows. Second, we must also say what we mean, in 
this context, by an NIZK proof (because the problem is not one of language membership). 
This is clarified below and in the statement of Theorem 3.2. 

We begin with the definition. It says that f is an e-permutation if at most an e fraction 
of the points in {0, 1 }n have more than one preimage (under f ) .  More formally, we have 
the following. 

Definition 3.1. Let n > 0 and f :  {0, 1 }n ~ {0, l }n. The collision set of f ,  denoted 
C( f ) ,  is {y 6 {0, 1}n: I f - l (y ) l  > 1}. Let e 6 [0, 1]. We call f an e-permutation if 
IC(f)l  _< e2 ~. 
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We now turn to the NIZK proof. The formal statement and proof of  the theorem follow. 
We begin, however, by saying, informally, what we achieve, and giving the idea. 

We fix E specifying an efficiently computable family of  functions, and we fix a map 
e: {0, 1}* ~ (0, 1]. We consider a prover and verifier who share a (random) reference 
string and have as common input a string f *  E {0, I }n. If f (the function specified by f *  
under E) is a permutation, then the prover can convince the verifier to accept (this is the 
completeness condition). If f is not an e(n)-permutation, then the verifier will usually 
reject (this is the soundness condition). 

We note the gap between these two conditions: we are guaranteed nothing if f is an 
e(n)-permutation (but not a permutation). This is one way in which this "proof system" 
differs from proofs of  language membership, where there are only two possibilities: 
either the input is in the language (and completeness applies) or it is not (and soundness 
applies). 

In addition, when f is a permutation, the interaction yields no (extra) knowledge to 
the verifier. This is formalized, as usual, by requiring the existence of an appropriate 
"simulator." 

The idea is very simply stated. Let a be the reference string, which we think of as 
divided into blocks of  size n. If  f is not an e(n)-permutation, then each block has 
probability at most l - e(n) of being in the range of f .  So if we ask the prover to provide 
the inverse of  f on e - l ( n )  different blocks, then he can succeed with probability at 
most (! - e(n)) ~ ~ )  < 1/2. Moreover, a collection of preimages of  f on random 
points provide no information about (the easily computed) f ,  so the proof is zero- 
knowledge. 

Theorem 3.2. Let E specify an efficiently computable family offunctions. Let e: N --~ 
(0, 1 ], and assume e-  l is polynomially bounded and polynomial-time computable. Then 
there is a polynomial-time oracle machine A, a polynomial-time machine B, and a 
probabilistic, polynomial-time machine M such that the following three conditions hold: 

 9 Completeness: Let n > 0 and f*  ~ {0, 1 }n. Let f denote the function specified by 
f*  under E. Suppose f is a permutation. Then 

R }e ~(n).n; Pr[B(f* ,  tr, p) = l: a -~- {0, 1 p +- A f ' ( f*,  a) ]  1. 

Here A f ' denotes A with oracle f - i .  
 9 Soundness: Let n > 0 and f *  E {0, I}". Let f denote the function specified by f*  

under E. Suppose f is not an e(n)-permutation. Then,for any function fi, 

1 Pr[B(f*,a,  p) = 1: a ~- {0, 1}e-'tn)'"; p ~-- / 3 ( f * , a ) ]  < ~. 

 9 Zero-knowledge: Let n > 0 and f*  6 {0, 1 }". Let f denote the function specified 
by f*  under E, and suppose f is a permutation. Then the distributions M (f*) and 
{(tr, p): a ~- {0, i}e-'(m"; p ,,-- A f - t  (f*,  a)} are equal. 

Proof. We specify the algorithm for the verifier. Let f *  ~ {0, 1} n and let cr = 
a l - - .  cre-,t,, where each tri has length n. Let f denote the function specified by f *  
under E. On input f* ,  or, and a string p, the verifier B rejects if the length of  p is not 
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e-L (n) - n. Otherwise, it partitions p into consecutive blocks of size n. We denote the ith 
block by Pi, so that p = Pl "" "P~ q,). Then B accepts iff for each i = 1 . . . . .  E - I  (n) it 
is the case that f ( P ; )  = cri. 

Next we specify the prover A. Let f *  c {0, 1 }" and let cr = al   9  9 "cr~-',o where each 
<ri has length n. Let f denote the function specified by f *  under E, and suppose f is a 
permutation. On input f *  and a ,  and given f -  i as oracle, A sets Pi = f -  t (~ri) for each 
i = 1 . . . . .  e - t  (n). It then sets p = Pl " "" P~-q,,) and outputs p. It is easy to see that the 
completeness condition is true. 

We now check the soundness condition 9 Let f *  ~ {0, 1 }n and let f denote the function 
specified by f*  under E. We recall that C ( f )  = {y ~ {0, l}n: I f - I ( y ) l  > 1} is the 
collision set o f f .  Let D ( f )  = {y E {0, 1}': [ f - I ( y ) l  = 0} be the set o f n  bit strings 

not in the range o f f .  Note that ID( f ) [  _> IC( f ) l .  We let $(n) ~e ID( f ) ] / 2"  denote the 
density of  D ( f ) .  Now assume f is not an s(n)-permutation.  Then ]C(f ) [  > s(n)2",  
and thus g(n) > e(n).  For any fixed string a = cq ..   9 ~r~-,r the following are clearly 
equivalent: 

 9 There exists a string p such that B ( f * ,  ~, p) = 1. 
 9 For each i = 1 . . . . .  e - l ( n )  it is the case that o" i is in the range of f .  

However, ifcr is chosen at random, then, for each i = 1 . . . . .  s -1 (n), the probability that 
<ri is in the range of f is at most 1 - 6(n), independently for each i. So, for any P,  

R - ( n ) . n  P r [ B ( f * , a , p )  = 1: ~ ~--{0, 1} ~  9 p ~-- P ( f * . c O !  _< [ l - S ( n ) ]  ~ '(n) 

_< [1 - e (n) ]  : ' l ' )  
< 1 
- -  2 "  

We now specify M. Let f *  E {0, 1} n and let f denote the function specified by f*  
under E. Suppose f is a permutation. On input f* ,  the machine M picks rl . . . . .  r~-~ ~nl 
{0, 1} n at random and sets cri = f ( r i ) ,  for each i = 1 . . . . .  e - l ( n ) .  It sets p = 
rl -  9  9 r~ ,in) and outputs (~r, p).  The zero-knowledge is easy to check. [] 

We note that, in the above, we are thinking of  f *  as being the common input, and the 
reference string is chosen at random independently of  f* .  Of course, in our application, 
the prover may choose f *  as a function of  the reference string 9 This, however, is easily 
dealt with by a standard trick, and so, for the moment, we focus on the case presented 
here. When we put everything together (see Theorem 4.4) we will return to this issue 
and show explicitly how to deal with it, given what we establish here. 

We note also that no cryptographic assumptions were needed for the above proof, and 
the zero-knowledge is "perfect"  

4. U s i n g  the  Cert i f i ca t ion  P r o c e d u r e  

In this section we show how the certification procedure of Theorem 3.2 can be combined 
with the results of [FLS] to yield an NIZK proof system for any NP-relation. We stress that 
the argument we present here depends little on the specifics of the protocol of  [FLS], 
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and our proof does not presume familiarity with that paper. We begin by extending 
Definition 3.1 with the following terminology. 

Definition 4.1. Let n > 0 and f :  {0, 1 }n ~ {0, 1 }". Let a = al . . .  at for some I E N, 
where each ai has length n. We say that a is f - b a d  if there is an i E { 1 . . . . .  l} such that 
ai E C ( f ) .  We denote by C t ( f )  the set of  a l l /n-bi t  strings which are f -bad .  

We now state, without proof, a lemma which can be derived from [FLS]. The formal 
statement follows, but, since it is rather long, we first try to give an informal explanation 
of what it says. 

Briefly, we show how to "measure" the "additional" error incurred by the [FLS] 
protocol in the case where the function being used is not a permutation. More precisely, 
we fix a trapdoor permutation generator (G, E, I)  and an NP-relation p. In order to make 
explicit the role played by the function used in the proof, we consider an interaction in 
which the common input is a pair (w, f * )  of  n-bit strings. The prover wishes to convince 
the verifier that w E L 0e=f Lp, using f*  as a "tool." We do not, a priori, know whether 
or not f *  is a trapdoor permutation. 

The completeness condition (below) says that if w E L, then, assuming f *  really 
is a trapdoor permutation, the prover can convince the verifier that w E L. Moreover, 
the zero-knowledge condition says this proof is zero-knowledge. The part we are really 
concerned with, however, is the soundness condition. 

The soundness condition says that if w r L, then the probability that a prover can 
convince the verifier to accept is bounded by a small error (1/4) plus a quantity that 
depends on f* .  Specifically, this quantity is the probability that the reference string is 
f - b a d  (see Definition 4.1), where f is the function specified by f *  under E. 

A priori, this quantity may be large. Once we have stated the lemma, we show how to 
use the results of  the previous section to decrease it. 

L e m m a  4.2. Let ( G, E, I) be a trapdoor permutation generator Let p be an NP- 
relation, and let L = L p. Then there exists a polynomial-time machine/ t ,  a polynomial- 
time machine [~, a probabilistic, polynomial-time machine 1(/1, and a polynomial l(.) 
such that the following three conditions hold: 

 9 Completeness: Forever ,  w E L, ever), Co c p(w) ,  andeve  O' ( f* ,  f * )  E [G(ln)] ,  

P r [ B ( w , a , f * , p )  = 1: a ~- {0, I}t(m'"; p +-- A(w,  ~ ,  a, f * ,  f*)]  = 1, 

where n = I wl. 
 9 Soundness: For every machine P, ever), w ~ L, and ever), f *  E {0, 1 }n, 

Pr[/}(w, a,  f * ,  p)  = 1: a ~- {0, llt~mn; p +-- P (w ,  a, f* ) ]  
1 < ~ + Pr[a E Ct(n)(f): a ~- {0, l}t(n)"], 

where n = [w[ and f denotes the function specified by f *  under E. 
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 9 Zero-knowledge: Let W be any witness selector for  p. Then the following two 
ensembles are (computationally) indistinguishable: 
(1) {(~r, f* ,  p): ( f* ,  f * )  ~- G(llU'l): (~r, p) f-- M ( w ,  f* ,  .f*)}w~L. 
(2) {(or, f* ,  p): (r ~-- {0, l}tllwlll~'l; ( f* ,  f* )  ~- G(llU'l): 

p ~ A(w,  W(w), a, f* ,  f*)}~,e/.. 

Although we do not want to prove this lemma, some intuition is easily provided. Namely, 
[FLS] show that error probability less than any e (in particular e = 1/4) can be achieved, 
assuming only that the reference string is not f -bad  (i.e., they do not use anywhere that 
f is permutation). Hence the prover can cheat with probability at most 1/4 plus the 
probability that the reference string is f -bad.  For the full proof, we refer the reader to 
[FLS]. 

We now show how to remove this extra f*  dependent term in the soundness condition 
by having the prover certify (using the proof system of Theorem 3.2) that f is almost a 
permutation. The lemma that follows provides the formal statement and proof, but we 
first say, informally, what is happening. 

On common input (w, f*) ,  we have the prover give the proof of Lemma 4.2, and 
also, using a separate part of the reference string, run the procedure of Theorem 3.2. The 
verifier accepts iff both of these proofs are accepted (by their respective verifiers). The 
completeness and zero-knowledge conditions stay the same as in Lemma 4.2 (except 
that the reference string is longer, indicated by using a different symbol for its length); 
clearly, this is because the additional proof cannot hurt them. The soundness condition, 
however, now becomes more like a "real" soundness condition in that the "extra" term 
of Lemma 4.2 has disappeared. 

In the proof of the new soundness condition, we have to consider two cases. First, 
we assume that f is "almost" a permutation, and show that in this case the "extra" term 
from the soundness condition of Lemma 4.2 is small. Second, we assume that f is not 
"almost" a permutation, and use the fact that we are guaranteed rejection (with high 
probability) by the soundness condition of Theorem 3.2. 

Lemma  4.3. Let (G, E, I) be a trapdoor permutation generator. Let p be an NP- 
relation and let L = Lp. Then there exists a polynomial-time machine A', a polynomial- 
time machine B', a probabilistic, polynomial-time machine M', and a polynomial m(.) 
such that the following three conditions hold: 

 9 Completeness: F o r e v e t y w  E L, eve o, Cv E p(w),  andeve~ '  ( f* ,  f * )  E [G(I")] ,  

= . R 1 i m ~ , , i . , ,  f , ,  Pr[B'(w, or, f* ,  p) 1 cr +-- {0, ; p ~-- A(w,  tb, or, f* ) ]  = 1, 

where n = I w[. 
 9 Soundness: For eve~. machine P, even' w ~_ L, and eve O' f *  E {0, 1 }n, 

I Pr[B ' (w,o ,  f* ,  p) = 1: a <L. {0, l}'nln)'"; p ~-" /3(w, ~r, f*)]  < ~, 

where n = I w[. 
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 9 Zero-knowledge: Let W be any witness selector for p. Then the following two 
ensembles are (computationally) indistinguishable: 
(1) {(a, f*,  p): ( f* ,  f * )  ~- G(II"I); (m p) ~- M'(w, f* ,  f*)}u, eL- 
(2) {(m f* ,  p): cr ~- {0, llm{Iwl)l~~ ( f* ,  f * )  ~-- G(II"'I); 

p +-- A'(w, W(w), or, f*,  f*)}weL. 

Proof,  Let A, B, M be the machines, and let I be the polynomial, specified by Lemma 
4.2. Let e(.) = I/(41(.)). We apply Theorem 3.2 (with the algorithm E being the evalu- 
ating algorithm of our trapdoor family) to get a triplet of machines A, B, M satisfying 
the conditions of that theorem. We let m (-) = e - l  (.) + l(-) = 5l(-). 

Notation. If ~r is a string of length m(n)  9 n, then cr[l] denotes the first ~ ' - l ( n )  - n = 
41(n)  9 n bits and ~r[2] denotes the last l(n)  9 n bits. 

We now specify the algorithm for the verifier B'. Let f *  6 {0, 1 }" and let a be a string of 
length m(n).  n. On input f* ,  o ,  and a string p, the verifier B rejects if IPl < e - l (n )  "n. 
Otherwise, it accepts if and only if 

B ( f * , a [ l ] ,  p[1]) = 1 and B(w,a [2 ] ,  f* ,  p[2]) = 1, 

where p[ l ]  denotes the first e - t ( n )   9 n bits of p and p[21 denotes the rest. 
Next we specify A'. Let w E L and tb 6 p(w). Let n = Iwl. Let ( f* ,  f * )  6 [G( I ' ) I .  

Let a be a string of length m (n). n. On input w, tb, cr, f* ,  f* ,  the machine A' sets p[ 1 ] = 
A [-' ( f*,  a [ l ] )  (note that A' can obtain this output in polynomial time because, using 
f* ,  i tcan compute f - I  in polynomial time). It then sets p[2] = ,4(w, if,, cr[2], f* ,  f*) .  
Finally it sets p = p [ 1 ]p [2] and outputs p. The fact that the completeness condition holds 
follows from the respective completeness conditions of Lemma 4.2 and Theorem 3.2. 

Now for the interesting part, namely the soundness condition. Suppose w ~ L. Let 
n - -  Iwl  and let f *  ~ {0, 1}'. Let f denote the function specified by f*  under E. We 
split the proof into two cases. 

Case 1: f is a e(n)-permutation. By assumption, IC(f ) l  ~< e(n)2". So 

1 Pr[cr[2] ~ CW,)(f): cr[2] ~- {0, 1} tl")"] < e(n)l(n) = ~. 

By the soundness condition of Lemma 4.2 it follows that, for every machine/3, 

* I 1 ! Pr[10(w, a, f , p[2]) = I: 0"[2] ~- {0, 1}tr p[2] <-- [ ' (w,a,  f*) ]  < ~ + ~ = 5" 

The soundness condition follows from the definition of B'. We proceed to the next case. 

Case 2: f is not a e(n)-permutation. The soundness condition of Theorem 3.2 implies 
that, for any function P, 

1 Pr[B(f* ,c r [ l ] ,  p [ l ] )  = I: cr[l] ~- {0, I}e-'tn)'n; p +-- /3(f*,  or[l])] < 5' 

The soundness condition then follows directly from the definition of B'. This completes 
the proof of  the soundness condition. 
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The zero-knowledge, again, follows immediately from Lemma 4.2 and Theorem 3.2. 
Let w 6 L and let n = Iwl. Let ( f* ,  f * )  ~ [G(In)].  On input w, f* ,  f* ,  machine M' 
runs M on input f*  to get an output (~r[1], p[ l]) .  It then runs ~ / o n  input w, f* ,  f*  
to get an output (a[2], p[2]). It sets a = a[1]cr[2] and p = p [ l lp [2]  and outputs 
(~r, p). [] 

One more step is needed to derive from Lemma 4.3 the existence of NIZK proof 
systems for any NP-relation (given the existence of a trapdoor permutation generator). 
Namely, the interaction must be on input w (alone); the prover must be allowed to select 
f*  (which in Lemma 4.3 is part of  the common input) not only as a function of  w but 
also as a function of the reference string. Clearly, in the completeness condition, we 
may simply ask the prover to select f *  by running the generation algorithm G. Any 
problems that arise will be in the soundness condition, where a cheating prover will take 
full advantage of the freedom to choose f*  as a function of the reference string. 

For w r L, we may use the following "trick" (a standard probabilistic one, used, 
for the same purpose, in [BDMP] and [FLS]). For each fixed f*  ~ {0, 1}', we reduce 
the probability that the verifier accepts the interaction on inputs (w, f*)  to 2 -In+l~, by 
parallel repetition. It follows that the probability that there exists a string f~ 6 {0, 1 }" 
such that the verifier accepts on input (w, f*)  is at most 2" - 2 -~'+l) = 1/2. Details are 
below. 

Theorem 4.4. Let p be an NP-relation. Suppose there exists a trapdoor permutation 
generator. Then p possesses an NIZK proof system with an efficient prover. 

ProoL Let (G, E, I)  be a trapdoor permutation generator. Let A', B', M'  be the ma- 
chines, and let m be the polynomial, specified by Lemma 4.3. Let l(n) = m (n). n (n + 1 ). 
We construct P, V, S satisfying the conditions of  Definition 2.6. 

Notation. If ~r is a string of length/(n),  then we think of  it as partitioned into n + 1 
blocks, each of  length m(n)  9 n, and denote the ith block by tr[i] (i = 1 . . . . .  n + 1). 

We may assume, without loss of generality, that there is a polynomial t such that 
B ' ( w , . , . ,  p) = 1 only if IPl = t(Iwl). Let L = Lp. We specify V. Let w E L and 
cr E {0, 1} l('l. On input w, or, p, machine V rejects if lpl r n + (n + l)t (n). Otherwise, 
it sets f*  to the first n bits of p and p '  to the rest. It further sets p'[i] to the ith t(n)-bit 
block of p '  (i = 1 . . . . .  n + 1). Now V accepts iff for each i = 1 . . . . .  n + I it is the 
case that B'(w,  ~r[i], f* ,  p '[ i])  = 1. 

We now specify P. Let w 6 L and tb 6 p(w) .  Letn  = Iwl, and letcr E {0, 1} tIm. P 
runs G to obtain a (random) pair ( f* ,  f* )  6 [G(ln)].  It sets 

p'[i] = A ' (w,  if,, cr[i], f* ,  f* )  

for i = 1 . . . . .  n + 1, and sets p '  = p [ l ] . . . p [ n  + 1]. Finally it sets p = f * . p '  
("." denotes concatenation) and outputs p. The completeness condition (as required by 
Definition 2.6) follows from the completeness condition of  Lemma 4.3. 

Next we check the soundness condition. Suppose w r L. Let n = Iwl and let f *  
{0, 1}'. Let a ~ {0, 1} m'). We say that cr is f*-bad if there exists an i 6 {1 . . . . .  n + 1} 
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and a string q E {0, 1} t(n) such that B' (w ,  tr[i],  f * ,  q) = 1. The soundness condition of  
Lemma 4.3 implies that 

Pr[cr is i f - b a d :  a ~-  {0, 1} t~")] _< 2 -~"+1). 

Now we say that a string tr ~ {0, 1 }ttn) is bad if there exists an n-bit  string f *  such that 
tr is i f - b a d .  It follows that 

Pr[a  is bad: (r <L {0, 11 l(#)] < 2 n- 2 -<~+l) - ! 
- -  - -  2 '  

This implies the soundness condition (as required by Definition 2.6). 
Finally, we specify the simulator. Let w ~ L and letn = Iwl. On input w, the simulator 

Sruns  G on input I n to obtain a (random) pair ( f* ,  f * )  ~ [G(ln)] .  For i = 1 . . . . .  n + 1 
it runs M'  on input w, f* ,  f *  to get an output (a [ i ] ,  p ' [ i ] ) .  It sets a = a [  1 ] - - .  tr [n + I] 
and p '  = p ' [ 1 ] . . -  p'[n + 1]. It then sets p = f * . p '  and outputs (a, p) .  The zero- 
knowledge (as required by Definition 2.6) can be argued based on the zero-knowledge 
condition of  Lemma 4.3. We omit the details. [] 

In particular, NIZK proof  systems are constructible based on RSA. 
Combining Theorem 4.4 with the result of  [NY] yields the following. 

Coro l l a ry  4.5. Suppose there exists a trapdoor permutation generator. Then there 
exists an encryption scheme secure against chosen-ciphertext attack. 

Similarly, combining Theorem 4.4 with the result of  [BG] yields the following. 

Coro l l a ry  4.6. Suppose there exists a trapdoor permutation generator. Then there 
exists an implementation o f  the signature scheme o f  [BGI. 
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