
J. Cryptology (1996) 9:149-166 Joumol of

CRYPTOLOGY
 9 1996 International Association for
Cryptologic Research

Certifying Permutations: Noninteractive
Zero-Knowledge Based on Any Trapdoor Permutation*

Mihir Bellare
Department of Computer Science & Engineering, Mail Code 0114,

University of California at San Diego, 9500 Gilman Drive,
La Jolla, CA 92093, U.S.A.

mihir@cs.ucsd.edu

Moti Yung
Research Division, IBM T.J. Watson Research Center,

PO Box 704, Yorktown Heights, NY 10598, U.S.A.
moti @ watson, ibm .co m

Communicated by Claude Cr6peau

Received 30 January 1993 and revised 28 July 1995

Abstract. In cryptographic protocols it is often necessary to verify/certify the "tools"
in use. This work demonstrates certain subtleties in treating a family of trapdoor per-
mutations in this context, noting the necessity to "check" certain properties of these
functions. The particular case we illustrate is that of noninteractive zero-knowledge.
We point out that the elegant recent protocol of Feige, Lapidot, and Shamir for proving
NP statements in noninteractive zero-knowledge requires an additional certification of
the underlying trapdoor permutation, and suggest a method for certifying permutations
which fills this gap.

Key words. Zero-knowledge, Certification, Trapdoor permutations.

1. Introduction

Primitives such as the RSA function, the discrete log function, or, more generally, any
trapdoor or one-way function, have applications over and above the "direct" ones to
public-key cryptography. Namely, they are also (widely) used as "tools" in the construc-
tion of (often complex) cryptographic protocols. This paper points to the fact that in this
second kind of application, some care must be exercised in the manner in which the "tool"
is used. Checks might be necessary that are not necessary in public-key applications.

* A preliminary version of this paper appeared in Advances in Cryptology--Co,pto 92 Proceedings, Lecture
Notes in Computer Science, Vol. 740, E. Brickell, ed., Springer-Verlag, Berlin, 1992. This work was done
while Mihir Bellare was at the IBM T.J. Watson Research Center, Yorktown Heights, NY.

149

150 M. Bellare and M. "tung

The need for such checks arises from the need to consider adverserial behavior of
parties in a cryptographic protocol. Typically, the problem is that one cannot trust a party
to "correctly" create the tool in question. For example, suppose a party A is supposed
to give another party B a modulus N product of two primes, and an RSA exponent e,
to specify an RSA function. On receipt of a number N and an exponent e, it might be
important that the receiver know that e is indeed an RSA exponent (i.e., relatively prime
to the Euler Phi function of N). This is because the use of RSA in the protocol might be
such that making e not an RSA exponent could give A an advantage (such applications
do exist). On the other hand, the secrecy of .the prime factorization of N is probably
important to A, and she is not prepared to yield the prime factors of N which would
enable B to check the correctness of e by himself. 1

Protocols address this issue in several ways. Often, they incorporate additional sub-
protocols which "certify" that the "tool" used is indeed "correct." These subprotocols
will usually need to be zero-knowledge ones. Since the "correctness" of the tool can
usually be formulated as an NP assertion, such subprotocols can in some cases be real-
ized, by using, say, the general interactive protocols of [GMW] and [BC] which enable
any NP statement to be proven in zero-knowledge. However, not always. One reason is
that these protocols yield only computational zero-knowledge, and we may be interested
in stronger forms such as statistical. (One such example occurs in [BMO] where the
use of the certified discrete log assumption is crucial.) Alternatively, as for the prob-
lem we are interested in here, we may want a noninteractive solution, so that again the
above-mentioned general techniques are precluded.

The particular instance of this issue that we focus on in this paper is the use of trapdoor
permutations in noninteractive zero-knowledge (NIZK) proofs. We point out that the
elegant recent NIZK protocol of Feige et al. [FLS] makes the (implicit) assumption that
the trapdoor permutation is "certified." We note that this assumption is not valid for
standard (conjectured) trapdoor permutations like RSA or those of [BBS], and so their
protocol cannot be instantiated with any known (conjectured) trapdoor permutation. We
suggest a certification method to fill this gap, so that any trapdoor permutation truly
suffices, and RSA or the construction of [BBS] may be used. Our certification method
involves an NIZK proof that a function is "almost" a permutation, and might be of
independent interest.

Below we begin by recalling the notions of trapdoor permutations and NIZK proofs.
We then discuss the FLS protocol and indicate the source of the problem. We then,
briefly, discuss our solution. Later sections specify the definitions and our solution in
more detail.

1. l. Trapdoor Permutations

We begin by recalling, in some detail, the definition of a trapdoor permutation generator
(we follow [BM]), and seeing what it means for such a generator to be certified.

I Such a problem is not present in public-key applications. If I wish to publish N and e to specify an RSA
digitial signature scheme, there is no question of my incorrectly choosing e because it is not to my advantage
to do so.

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 151

A trapdoor permutation generator is a triplet of polynomial-time algorithms (G, E, I)
called the generating, evaluating, and inverting algorithms, respectively. The generat-
ing algorithm is probabilistic, and on input 1 n outputs a pair of n-bit strings (f*, f*) ,
describing, respectively, a trapdoor permutation and its inverse. If x, y are n-bit strings,
then so are E(f*, x) and I (f*, y). Moreover, the maps f , f : {0, 1 }" ~ {0, 1 }" specified
by f (x) = E(f*, x) and f (y) = l (f* , y) are permutations of {0, 1}", and f = f - i .
Finally, f is "hard to invert" without knowledge of f . (We refer the reader to Section 2.2
for more precise definitions.)

Fix a trapdoor permutation generator (G, E, I). We call an n-bit string f* a trapdoor
permutation if there exists some n-bit string f* such that the pair (f*, f*) has a nonzero
probability of being obtained when we run G on input I n. It is important to note that
not every n-bit string f* is a trapdoor permutation. In fact, the set of n-bit strings which
are trapdoor permutations may be a very sparse subset of {0, 1 }n, and perhaps not even
recognizable in polynomial time. If it is recognizable in polynomial time, we say the
generator is certified.

We note that efficent recognizability is a lot to ask for. Consider our two main (conjec-
tured) examples of trapdoor permutation generators: RSA [RSA], and the factoring-based
generator of Blum et al. [BBS]. Neither is likely to be certifiable. This is because, in
both cases, certification would need the ability to recognize in polynomial time the class
of integers which are a product of (exactly) two (distinct) primes.

The importance of certification arises, as will be seen, from the use of trapdoor per-
mutations as "tools" in protocols. Typically, one party (for example, the prover) gives
the other party (for example, the verifier) a string f* which is supposed to be a trapdoor
permutation. For security reasons he may not wish to reveal (as proof that it is indeed
one) the string f*, but may nonetheless need to convince the verifier that f* is indeed
a trapdoor permutation. This is clearly easy if the underlying generator is certified.
Otherwise, the protocol itself must address the task of giving suitable conviction that
f* is really a trapdoor permutation.

One-way versus trapdoor. Does the same certification issue arise also for one-way
permutations? It depends on what we call one-way permutations. Two kinds of definitions
are used. In the first, a one-way permutation is a single object, namely a map f : {0, 1 }*
{0, 1}*; since it is a single map, no certification is needed. However, candidate one-way
permutations typically occur, like trapdoor permutations, as families; the best example is
the discrete log, where a member of the family is specified by a prime p and a generator g.
Now, the certification issue arises just as before. (For discrete log it is usually addressed
by usage of the certified discrete log assumption. Here one also provides the prime
factorization of p - 1, which enables one to check that g is indeed a generator.)

1.2. NIZK Proofs

The setting we focus on in this paper is that of NIZK proof systems. NIZK is an important
notion for cryptographic systems and protocols which was introduced by Blum et al.
[BFM], [BDMP]. There are numerous applications. In particular, Naor and Yung show
how to use NIZK proofs to implement public-key cryptosystems secure against chosen-

152 M. Bellare and M. Yung

ciphertext attack [NY], and Bellare and Goldwasser present a novel paradigm for digital
signatures based on NIZK proofs [BG].

The model is as follows. The prover and verifier have a common input w and also
share a random string (of length polynomial in the length of w). We call this string the
reference string, and usually denote it by tr. The prover must convince the verifier of
the membership of w in some fixed underlying NP language L. To this end, the prover
is allowed to send the verifier a single message, computed as a function of w and cr
(in the case where w ~ L, we also give the prover, as an auxiliary input, a witness to
the membership of w in L). We usually denote this message by p. The verifier (who is
polynomial time) decides whether or not to accept as a function of w, a and p. We ask
that there exist a prover who can convince the verifier to accept w ~ L, for all random
strings tr (this is the completeness condition). We ask that for any prover, the probability
(over the choice of~r) that the verifier may be convinced to accept when w ~ L is small
(this is the soundness condition). Finally, we ask the proof provided by the prover of
the completeness condition (in the case w 6 L) be zero-knowledge, by requiring the
existence of an appropriate "simulator." For a more complete specification of what it
means to be an NIZK proof system, we refer the reader to Section 2.3.

We focus here on protocols with efficient provers. That is, we want the prover of the
completeness condition (we call it the "honest" prover) to run in polynomial (in n = I wl)
time.

We note that we are considering what are called "single-theorem" or "bounded" NIZK
proof systems. The primitive of importance in applications is the "many-theorem" proof
system (see [BFM] and [BDMP]). However, the former is known to imply the latter, given
the existence of one-way functions [DY], [FLS]. So we may, without loss of generality,
stick to the former.

1.3. The Need for Certification in the FLS Protocol

Feige et al. [FLS] recently presented an elegant NIZK proof system based on the existence
of trapdoor permutations. The assumption, implicit in their analysis, is that the underlying
trapdoor permutation generator is certified. Here we indicate whence arises the need for
this certification. Once we have identified the source of the problem, we will discuss
how we propose to solve it.

Let L be a language in NP, and let (G, E, I) be a trapdoor permutation generator. Fix
a common input w ~ {0, 1 }n, and let cr denote the reference string. We describe how the
prover and verifier are instructed to operate under the FLS protocol. First, however, we
need some background and some notation.

First, note that even if f* is not a trapdoor permutation, we may assume, without loss
of generality, that E(f* , x) is n-bits long. Thus, f* does specify (via E) a map from
{0, 1} n to {0, l}n; specifically, the map given by x ~ E(f* , x). We call this map the
function specified by f* under E, and denote it by f . Of course, if f* is a trapdoor
permutation, then f is a permutation.

I fx and r are n-bit strings then H(x, r) denotes the dot product, over GF(2), o fx and
n r (more precisely, H(x, r) = ~)i=1 x i r i) " The theorem of Goldreich and Levin [GL]

says that H is a "hard-core" predicate for (G, E, I). Very informally, this means the
following. Suppose we run G (on input I n) to get (f*, f*) , select x and r at random

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 153

from {0, 1} n, and let y = f (x) . Then, given y and r, the task of predicting H(x , r), and
the task of finding x, are equally hard.

We are now ready to describe the protocol.
The protocol first asks that the prover P run G on input 1 n to obtain a pair (f*, f*) .

P is then instructed to send f* to V (while keeping f* to himself).
The problem is right here, in this first step. The analysis of [FLS] assumes that the

prover performs this step correctly. This may be justified under the assumption that the
trapdoor permutation generator is certified. If the generator is not certified, a cheating
prover could, when w ~ L, select, and send to the verifier, an n-bit string which is not
a trapdoor permutation. As we will see, this could compromise the soundness of the
protocol. We proceed.

Once the prover has supplied f* , the reference string is regarded as a sequence cr =
ylrl . . . ytrl of I blocks of size 2n, where l = l(n) is a (suitable) polynomial (block i
consists of the pair of n bit strings yiri). We say that the prover "opens block i with
value bi" if he provides the verifier with an n-bit string xi such that f (x i) = Yi and
H (x i , ri) = b i. The prover now opens certain blocks of the random string (and the
protocol specifies how an honest prover should choose which blocks to open). Based on
the values of the opened blocks, their relative locations in the reference string, and the
common input, the verifier decides whether or not to accept. Exactly how he does this
is not relevant to our discussion. Exactly how the honest prover is supposed to decide
which blocks to open (which he does as a function of the block, the common input,
and his witness to the membership of the common input in L) is also not relevant to
our discussion. What is important to note is that the soundness condition relies on the
assumption that, with f* fixed, there exists a unique way to open any given block. If it
is possible for the prover to open a block with value either 0 or 1, then the soundness of
the FLS protocol is compromised.

The assumption that there is (one and) only one way to open a block is justified if f*
is a trapdoor permutation, because, in this case, f is a permutation. However, if f* is
not a trapdoor permutation, then f may not be a permutation, and in such a case, the
possibility exists that blocks may be opened with values of the prover's choice.

We note that the gap is not an academic one. Considering concrete cases, such as
the use of RSA or the trapdoor permutations based on quadratic residuosity that are
suggested by [BBS], we see that the prover may indeed cheat.

The solution that first suggests itself is that the prover prove (in NIZK) that he really
got f by running the generator G (this is an NP statement). The problem is, however,
that to prove this new statement itself requires the use of a trapdoor permutation, and we
are only chasing our tail.

Note that in the above NIZK proof, a (cheating) prover may choose f* as a function
of the random string. However, as pointed out in [FLS], this causes no difficulties. We
may assume, in the analysis, that the reference string is chosen after f* is fixed; later we
apply a simple transformation which results in the proof system being secure even if f*
was chosen as a function of tr. We will deal with this issue explicitly when it arises.

Feige et al. [FLS] also consider the case of a computationally unbounded prover, where
they use a one-way, rather than trapdoor, permutation. As we saw above, the certification
problem still arises just as before.

154 M. Bellare and M. Yung

1.4. Our Solution

Let f* denote the n-bit string provided by the prover in the first step of the FLS protocol,
as described above. As that discussion indicates, soundness does not really require that
f be a trapdoor permutation. All that it requires is that f be a permutation. So it would
suffice to certify this fact.

To certify that a map from {0, 1 }" to {0, 1 }" is a permutation seems like a hard task (it
is a coNP statement). What we will do is certify it is "almost" a permutation, and then
show that this suffices.

More precisely, we call f an e-permutation if at most an e fraction of the points in
{0, 1 }" have more than one preimage under f . We show that on common input f* , and
access to a common (random) reference string of length e - 1 . n , the prover can provide
the verifier with a noninteractive, zero-knowledge proof that that f is an e-permutation.
For a more precise statement of the theorem and its proof we refer the reader to Section 3.

We then show that adding this step to augment a multitude of independent FLS protocol
instances yields an NIZK proof system (for any NP language) given the existence of any
(not necessarily certified) trapdoor permutation generator. A complete proof of this fact
is in Section 4. We note that this proof is in fact quite independent of the details of the FLS
protocol and can be understood without a deep knowledge of the techniques of that paper.

Our solution also applies for the usage of one-way (rather than trapdoor) permutations
in the [FLS] protocol with an unbounded prover.

2. Preliminaries

We begin by summarizing some basic notation and conventions which are used through-
out the paper. We then discuss trapdoor permutations and say what it means for them
to be "certified" Finally, we recall the definition, and some basic properties, of NIZK
proof systems.

2.1. Notation and Conventions

We use the notation and conventions for probabilistic algorithms that originated in
[GMR].

We emphasize the number of inputs received by an algorithm as follows. If algorithm
A receives only one input we write "A(.)"; if it receives two we write "A(., .)", and so
on. If A is a probabilistic algorithm, then, for any input i, the notation A(i) refers to
the probability space which assigns to the string cr the probability that A, on input i,
outputs ~r.

If S is a probability space we denote its support (the set of elements of positive
probability) by [S].

If f (.) and g(., . .-) are probabilistic algorithms, then f (g(. , . . .)) is the probabilistic
algorithm obtained by composing f and g (i.e., running f on g's output). For any inputs
x, y the associated probability space is denoted f (g (x , y)).

If S is a probability space, then x ~- S denotes the algorithm which assigns to x
an element randomly selected according to S. In the case that [S] consists of only one
element e we might also write x ~-- e.

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 155

For probability spaces S, T the notation

R
Pr[p(x, y): x ~- S; y +-- T; . . .]

denotes the probability that the predicate p(x, y) is true after the (ordered) execution
of the algorithms x ~- S, y ~-- T, etc.

Let f be a function. The notation

{ f (x , y): x ~L. S; y ~L. T ; . . . }

denotes the probability space which assigns to the string ~r the probability

Pr[ty = f (x , y): x ~- S; y ~- T ; . . .] .

When we say that a function is computable in polynomial time, we mean computable
in time polynomial in the length of its first argument.

We are interested in families of efficiently computable functions of polynomial de-
scription. The following definition is a convenient way of capturing them.

Definition 2.1. Let E(., .) be a polynomial-time computable function. We say that E
specifies an efficiently computable family of functions if for each n > 0 and each f* , x
{0, 1} n it is the case that IE(f* ,x) l = n. Let n > 0 and f * 6 {0, 1} ". The function
specified by f* under E is the map from {0, 1 }" to {0, 1 }n given by x w-~ E (f * , x).

2.2. Trapdoor Permutations and Certified Ones

We present a precise definition of trapdoor permutations and see what it means for them
to be "certified" The definition that follows is from Bellare and Micali [BM].

Definition 2.2 (Trapdoor Permutation Generator). Let G be a probabilistic, polyno-
mial-time algorithm, and let E, I be polynomial-time algorithms. We say that (G, E, I)
is a trapdoor permutation generator if the following conditions hold:

 9 Generation: For every n > 0, the output of G on input 1" is a pair o f n bit strings.
 9 Permutation: For every n > 0 and (f* , f *) ~ [G(ln)], the maps E (f * , .) and

l (f * , .) are permutations of {0, 1}" which are inverses of each other (that is,
t(f*, E(f*, x)) = x and E(f* , I (/ * , y)) = y for all x, y ~ {0, 1}~).

 9 Security: For all probabilistic polynomial-time (adversary) algorithms A(. , . , -), for
all constants c and sufficiently large n,

P r [E (f* , x) = y: (f* , f *) ~- G(ln) ; y ~-- {0, 1}n; x ~-- A(1 ~, f* , y)] < n -c.

We call G, E, I the generating, evaluating, and inverting algorithms, respectively.

The standard (conjectured) "trapdoor permutations," such as RSA [RSA] and the
factoring-based ones of Blum et al. [BBS], do fit this definition, after some minor trans-
formations (the need for these transformations arises from the fact that these number-
theoretic functions have domain Z~, rather than {0, 1 }n; we refer the reader to IBM] for
details).

156 M. Bellare and M. Yung

If a trapdoor permutation generator (G, E, I) is fixed and (f *, f*) ~ [G (1 n)] for some
n > 0, then, in informal discussion, we call f* a trapdoor permutation. It is important
to note that not every n bit string f* is a trapdoor permutation: it is only one if there
exists some f-* such that (f*, f*) e [G(In)]. In fact, the set of (n bit strings which are)
trapdoor permutations may be a fairly sparse subset of {0, 1 }n, and, in general, may not
be recognizable in polynomial (in n) time. If a trapdoor permutation generator does have
the special property that it is possible to recognize a trapdoor permutation in polynomial
time then we say that this generator is certified. The more formal definition follows.

Definition 2.3. Let (G, E, I) be a trapdoor permutation generator. We say that
(G, E, I) is certified if the language

La,E,I = U { f * E {0, l}n: 337* E {0, 1} n such that (f*, f*) E [G(ln)]}
n_>l

is in BPP.

We note that standard (conjectured) trapdoor permutation generators are (probably)
not certified. In particular, RSA is (probably) not certified, and nor is the trapdoor
permutation generator of Blum et al. [BBS]. This is because, in both these cases, the
(description of) the trapdoor permutation f* includes a number which is a product of
two primes, and there is (probably) no polynomial-time procedure to test whether or not
a number is a product of two primes.

The importance of certification stems, as we have seen, from applications in which one
party (for example, the prover) gives the other party (for example, the verifier) a string
f* which is supposed to be a trapdoor permutation. For security reasons he may not
wish to reveal (as proof that it is indeed one) the string f*, but may nonetheless need to
convince the verifier that f* is indeed a trapdoor permutation. In particular, the (implicit)
assumption in [FLS] is that the trapdoor permutation generator being used is certified.
As the above indicates, this means that their scheme cannot be instantiated with RSA or
the trapdoor permutations of [BBS]. In later sections we will show how to extend their
scheme so that any (not necessarily certified) trapdoor permutation generator suffices
(so that RSA or the generator of [BBS] may in fact be used).

We note that if (G, E, I) is a trapdoor permutation generator, f* e {0, 1} n, and
x 6 {0, 1} n, then we may assume, without loss of generality, that E(f*, x) is an n-bit
string. Hence E(f* , .) does specify some map from {0, 1} n to {0, 1} n, even if f* is not
a trapdoor permutation. That is, in the terminology of Definition 2.1, we may assume,
without loss of generality, that the algorithm E specifies an efficiently computable family
of functions. Of course, the map E(f* , .) need not be a permutation 9 n {0, 1 }n.

2.3. NIZK Proof Systems

We consider NIZK proof systems for NP. It is helpful to begin with the following
terminology.

Definition 2.4. Let p(., .) be a binary relation. We say that/9 is an NP-reIation if it
is polynomial-time computable and, moreover, there exists a polynomial p such that

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 157

p(w, tb) = 1 implies I~l 5 p(Iwl). For any w ~ {0, 1}* we let p(w) = {gv
{0, 1}*: p(w, Yo) = 1}denotethewitnesssetofw.WeletLp = {w 6 {0, 1}*: p(w) r 91}
denote the language defined by p. A witness selector for p is a map W: Lp ~ {0, 1}*
with the property that W(w) E p(w) for each w ~ Lp.

Note that a language L is in NP iff there exists an NP-relation p such that L = Lp.
We recall the definition of computational indistinguishability of ensembles. First,

recall that a function 8: {0, 1 }* ---> R is negligible if for every constant d there exists an
integer nd such that 8(w) < Iwl -d for all w of length at least rid.

Definition 2.5. An ensemble indexed by L _ {0, 1}* is a collection {E(w)}~ec of
probability spaces (of finite support), one for each w 6 L. Let ga = {El(w)}~,eL
and g2 = {E2(w)}weL be ensembles over a common index set L. We say that they
are (computationallv) indistinguishable if for every family {Du,}wsL of nonuniform,
polynomial-time algorithms, the function

~(w) ~ lPr[D~,(v) = 1: v ~- E t (w)] - Pr[D~,(v) = 1: v ~- E2(w)][

is negligible.

The definition that follows is based on that of Blum etal. [BDMP]. However, we state the
zero-knowledge condition differently; specifically, we use the notion of a witness selector
to state the zero-knowledge condition in terms of the standard notion of computational
indistinguishability, whereas in [BDMP] the zero-knowledge condition makes explicit
reference to "distinguishing" algorithms. The two formulations are, of course, equivalent
(but we feel this one is a little simpler because of its "modularity").

Definition 2.6. Let p be an NP-relation and let L = Lp. Let P be a machine, let V be
a polynomial-time machine, and let S be a probabilistic, polynomial-time machine. We
say that (P, V, S) defines an NIZK proof system for p if there exists a polynomial l(.)
such that the following three conditions hold:

 9 Completeness: For every w 6 L and tb 6 p(w),

Pr[V(w, cr, p) = 1" cr ~ {0, l}t(m; p +- P(w, tb, tr)] = 1,

where n = I wl.
 9 Soundness: For every machine/5 and every w r L,

R Pr[V(w, or, p) = 1" r * - {0, lira'); p +--- /5(w, ~r)] ~ 89

where n = I wl.
 9 Zero-knowledge: Let W be any witness selector for p. Then the following two

ensembles are (computationally) indistinguishable:
(0 {s (w)}~L.
(2) {(or, p): cr ~L. {0, lll(lu'l); p ~ P(w, W(w),cr)},,eL.

158 M. Bellare and M. Yung

We call P the prover, V the verifier, and S the simulator. The polynomial I is the length
of the reference string. We say that P is efficient if it is polynomial-time computable.

We call ~ the "common random string" or the "reference string."
The choice of 1/2 as the error-probability in the soundness condition is not essential.

Given any polynomial k(.), the error-probability can be reduced to 2 -k~n) by running
k(n) independent copies of the original proof system in parallel and accepting iff all
subproofs are accepting.

A stronger definition (see [BDMP]) asks that in the soundness condition the adversary
3 be allowed to select a w ~' L as a function of the reference string. This definition is,
however, implied by the one above. More precisely, given (P, V, S) satisfying the above
definition, (P' , V', S') satisfying the more stringent definition can be constructed by a
standard trick. Hence, we stick to the simple definition.

We note we are considering what have been called "single-theorem" or "bounded"
NIZK proof systems. That is, the given reference string can be used to prove only a
single theorem. The primitive of importance in applications (see [BG] and [NY]) is
the "many-theorem" proof system. However, De Santis and Yung [DY], and Feige et
al. [FLS] have shown that the existence (for some NP-complete relation) of a bounded
NIZK proof system with an efficient prover implies the existence (for any NP-relation)
of a many-theorem NIZK proof system (with an efficient prover), as long as one-way
functions exist. Hence, given that the (bounded) NIZK proof systems we construct do
have efficient provers, we may, without loss of generality, stick to the bounded case.

3. An NIZK Proof that a Map Is Almost a Permutation

Suppose E specifies an efficiently computable family of functions (see Definition 2.1),
and suppose f* ~ {0, 1 }n for some n > 0. We address in this section the problem
of providing an NIZK proof that the function specified by f* under E is "almost" a
permutation.

We note that although this problem is motivated by the need to fill the gap in the FLS
protocol (see Section 1.3), the results of this section might be of interest in their own
right. Thus, we prefer to view them independently, and make the link to [FLS] in the
next section.

In addressing the task of providing an NIZK proof that the function specified by f*
under E is "almost" a permutation, we must begin by clarifying two things. First, we need
to say what it means for a function f : {0, 1}" --+ {0, 1} n to be "almost" a permutation.
Our definition, of an e-permutation, follows. Second, we must also say what we mean, in
this context, by an NIZK proof (because the problem is not one of language membership).
This is clarified below and in the statement of Theorem 3.2.

We begin with the definition. It says that f is an e-permutation if at most an e fraction
of the points in {0, 1 }n have more than one preimage (under f) . More formally, we have
the following.

Definition 3.1. Let n > 0 and f : {0, 1 }n ~ {0, l }n. The collision set of f , denoted
C(f) , is {y 6 {0, 1}n: I f - l (y) l > 1}. Let e 6 [0, 1]. We call f an e-permutation if
IC(f)l _< e2 ~.

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 159

We now turn to the NIZK proof. The formal statement and proof of the theorem follow.
We begin, however, by saying, informally, what we achieve, and giving the idea.

We fix E specifying an efficiently computable family of functions, and we fix a map
e: {0, 1}* ~ (0, 1]. We consider a prover and verifier who share a (random) reference
string and have as common input a string f * E {0, I }n. If f (the function specified by f *
under E) is a permutation, then the prover can convince the verifier to accept (this is the
completeness condition). If f is not an e(n)-permutation, then the verifier will usually
reject (this is the soundness condition).

We note the gap between these two conditions: we are guaranteed nothing if f is an
e(n)-permutation (but not a permutation). This is one way in which this "proof system"
differs from proofs of language membership, where there are only two possibilities:
either the input is in the language (and completeness applies) or it is not (and soundness
applies).

In addition, when f is a permutation, the interaction yields no (extra) knowledge to
the verifier. This is formalized, as usual, by requiring the existence of an appropriate
"simulator."

The idea is very simply stated. Let a be the reference string, which we think of as
divided into blocks of size n. If f is not an e(n)-permutation, then each block has
probability at most l - e(n) of being in the range of f . So if we ask the prover to provide
the inverse of f on e - l (n) different blocks, then he can succeed with probability at
most (! - e(n)) ~ ~) < 1/2. Moreover, a collection of preimages of f on random
points provide no information about (the easily computed) f , so the proof is zero-
knowledge.

Theorem 3.2. Let E specify an efficiently computable family offunctions. Let e: N --~
(0, 1], and assume e- l is polynomially bounded and polynomial-time computable. Then
there is a polynomial-time oracle machine A, a polynomial-time machine B, and a
probabilistic, polynomial-time machine M such that the following three conditions hold:

 9 Completeness: Let n > 0 and f* ~ {0, 1 }n. Let f denote the function specified by
f* under E. Suppose f is a permutation. Then

R }e ~(n).n; Pr[B(f* , tr, p) = l: a -~- {0, 1 p +- A f ' (f*, a)] 1.

Here A f ' denotes A with oracle f - i .
 9 Soundness: Let n > 0 and f * E {0, I}". Let f denote the function specified by f*

under E. Suppose f is not an e(n)-permutation. Then,for any function fi,

1 Pr[B(f*,a, p) = 1: a ~- {0, 1}e-'tn)'"; p ~-- / 3 (f * , a)] < ~.

 9 Zero-knowledge: Let n > 0 and f* 6 {0, 1 }". Let f denote the function specified
by f* under E, and suppose f is a permutation. Then the distributions M (f*) and
{(tr, p): a ~- {0, i}e-'(m"; p ,,-- A f - t (f*, a)} are equal.

Proof. We specify the algorithm for the verifier. Let f * ~ {0, 1} n and let cr =
a l - - . cre-,t,, where each tri has length n. Let f denote the function specified by f *
under E. On input f* , or, and a string p, the verifier B rejects if the length of p is not

160 M. Bellare and M. 'tung

e-L (n) - n. Otherwise, it partitions p into consecutive blocks of size n. We denote the ith
block by Pi, so that p = Pl "" "P~ q,). Then B accepts iff for each i = 1 E - I (n) it
is the case that f (P ;) = cri.

Next we specify the prover A. Let f * c {0, 1 }" and let cr = al 9 9 "cr~-',o where each
<ri has length n. Let f denote the function specified by f * under E, and suppose f is a
permutation. On input f * and a , and given f - i as oracle, A sets Pi = f - t (~ri) for each
i = 1 e - t (n). It then sets p = Pl " "" P~-q,,) and outputs p. It is easy to see that the
completeness condition is true.

We now check the soundness condition 9 Let f * ~ {0, 1 }n and let f denote the function
specified by f* under E. We recall that C (f) = {y ~ {0, l}n: I f - I (y) l > 1} is the
collision set o f f . Let D (f) = {y E {0, 1}': [f - I (y) l = 0} be the set o f n bit strings

not in the range o f f . Note that ID(f) [_> IC(f) l . We let $(n) ~e ID(f)] / 2" denote the
density of D (f) . Now assume f is not an s(n)-permutation. Then]C(f) [> s(n)2",
and thus g(n) > e(n). For any fixed string a = cq .. 9 ~r~-,r the following are clearly
equivalent:

 9 There exists a string p such that B (f * , ~, p) = 1.
 9 For each i = 1 e - l (n) it is the case that o" i is in the range of f .

However, ifcr is chosen at random, then, for each i = 1 s -1 (n), the probability that
<ri is in the range of f is at most 1 - 6(n), independently for each i. So, for any P,

R - (n) . n P r [B (f * , a , p) = 1: ~ ~--{0, 1} ~ 9 p ~-- P (f * . c O ! _< [l - S (n)] ~ '(n)

_< [1 - e (n)] : ' l ')
< 1
- - 2 "

We now specify M. Let f * E {0, 1} n and let f denote the function specified by f*
under E. Suppose f is a permutation. On input f* , the machine M picks rl r~-~ ~nl
{0, 1} n at random and sets cri = f (r i) , for each i = 1 e - l (n) . It sets p =
rl - 9 9 r~ ,in) and outputs (~r, p). The zero-knowledge is easy to check. []

We note that, in the above, we are thinking of f * as being the common input, and the
reference string is chosen at random independently of f* . Of course, in our application,
the prover may choose f * as a function of the reference string 9 This, however, is easily
dealt with by a standard trick, and so, for the moment, we focus on the case presented
here. When we put everything together (see Theorem 4.4) we will return to this issue
and show explicitly how to deal with it, given what we establish here.

We note also that no cryptographic assumptions were needed for the above proof, and
the zero-knowledge is "perfect"

4. U s i n g the Cert i f i ca t ion P r o c e d u r e

In this section we show how the certification procedure of Theorem 3.2 can be combined
with the results of [FLS] to yield an NIZK proof system for any NP-relation. We stress that
the argument we present here depends little on the specifics of the protocol of [FLS],

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 161

and our proof does not presume familiarity with that paper. We begin by extending
Definition 3.1 with the following terminology.

Definition 4.1. Let n > 0 and f : {0, 1 }n ~ {0, 1 }". Let a = al . . . at for some I E N,
where each ai has length n. We say that a is f - b a d if there is an i E { 1 l} such that
ai E C (f) . We denote by C t (f) the set of a l l /n-bi t strings which are f -bad .

We now state, without proof, a lemma which can be derived from [FLS]. The formal
statement follows, but, since it is rather long, we first try to give an informal explanation
of what it says.

Briefly, we show how to "measure" the "additional" error incurred by the [FLS]
protocol in the case where the function being used is not a permutation. More precisely,
we fix a trapdoor permutation generator (G, E, I) and an NP-relation p. In order to make
explicit the role played by the function used in the proof, we consider an interaction in
which the common input is a pair (w, f *) of n-bit strings. The prover wishes to convince
the verifier that w E L 0e=f Lp, using f* as a "tool." We do not, a priori, know whether
or not f * is a trapdoor permutation.

The completeness condition (below) says that if w E L, then, assuming f * really
is a trapdoor permutation, the prover can convince the verifier that w E L. Moreover,
the zero-knowledge condition says this proof is zero-knowledge. The part we are really
concerned with, however, is the soundness condition.

The soundness condition says that if w r L, then the probability that a prover can
convince the verifier to accept is bounded by a small error (1/4) plus a quantity that
depends on f* . Specifically, this quantity is the probability that the reference string is
f - b a d (see Definition 4.1), where f is the function specified by f * under E.

A priori, this quantity may be large. Once we have stated the lemma, we show how to
use the results of the previous section to decrease it.

L e m m a 4.2. Let (G, E, I) be a trapdoor permutation generator Let p be an NP-
relation, and let L = L p. Then there exists a polynomial-time machine/ t , a polynomial-
time machine [~, a probabilistic, polynomial-time machine 1(/1, and a polynomial l(.)
such that the following three conditions hold:

 9 Completeness: Forever , w E L, ever), Co c p(w) , andeve O' (f* , f *) E [G(ln)] ,

P r [B (w , a , f * , p) = 1: a ~- {0, I}t(m'"; p +-- A(w, ~ , a, f * , f*)] = 1,

where n = I wl.
 9 Soundness: For every machine P, ever), w ~ L, and ever), f * E {0, 1 }n,

Pr[/}(w, a, f * , p) = 1: a ~- {0, llt~mn; p +-- P (w , a, f*)]
1 < ~ + Pr[a E Ct(n)(f): a ~- {0, l}t(n)"],

where n = [w[and f denotes the function specified by f * under E.

162 M. Bellare and M. Yung

 9 Zero-knowledge: Let W be any witness selector for p. Then the following two
ensembles are (computationally) indistinguishable:
(1) {(~r, f* , p): (f* , f *) ~- G(llU'l): (~r, p) f-- M (w , f* , .f*)}w~L.
(2) {(or, f* , p): (r ~-- {0, l}tllwlll~'l; (f* , f*) ~- G(llU'l):

p ~ A(w, W(w), a, f* , f*)}~,e/..

Although we do not want to prove this lemma, some intuition is easily provided. Namely,
[FLS] show that error probability less than any e (in particular e = 1/4) can be achieved,
assuming only that the reference string is not f -bad (i.e., they do not use anywhere that
f is permutation). Hence the prover can cheat with probability at most 1/4 plus the
probability that the reference string is f -bad. For the full proof, we refer the reader to
[FLS].

We now show how to remove this extra f* dependent term in the soundness condition
by having the prover certify (using the proof system of Theorem 3.2) that f is almost a
permutation. The lemma that follows provides the formal statement and proof, but we
first say, informally, what is happening.

On common input (w, f*) , we have the prover give the proof of Lemma 4.2, and
also, using a separate part of the reference string, run the procedure of Theorem 3.2. The
verifier accepts iff both of these proofs are accepted (by their respective verifiers). The
completeness and zero-knowledge conditions stay the same as in Lemma 4.2 (except
that the reference string is longer, indicated by using a different symbol for its length);
clearly, this is because the additional proof cannot hurt them. The soundness condition,
however, now becomes more like a "real" soundness condition in that the "extra" term
of Lemma 4.2 has disappeared.

In the proof of the new soundness condition, we have to consider two cases. First,
we assume that f is "almost" a permutation, and show that in this case the "extra" term
from the soundness condition of Lemma 4.2 is small. Second, we assume that f is not
"almost" a permutation, and use the fact that we are guaranteed rejection (with high
probability) by the soundness condition of Theorem 3.2.

Lemma 4.3. Let (G, E, I) be a trapdoor permutation generator. Let p be an NP-
relation and let L = Lp. Then there exists a polynomial-time machine A', a polynomial-
time machine B', a probabilistic, polynomial-time machine M', and a polynomial m(.)
such that the following three conditions hold:

 9 Completeness: F o r e v e t y w E L, eve o, Cv E p(w), andeve~ ' (f* , f *) E [G(I")] ,

= . R 1 i m ~ , , i . , , f , , Pr[B'(w, or, f* , p) 1 cr +-- {0, ; p ~-- A(w, tb, or, f*)] = 1,

where n = I w[.
 9 Soundness: For eve~. machine P, even' w ~_ L, and eve O' f * E {0, 1 }n,

I Pr[B ' (w,o , f* , p) = 1: a <L. {0, l}'nln)'"; p ~-" /3(w, ~r, f*)] < ~,

where n = I w[.

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 163

 9 Zero-knowledge: Let W be any witness selector for p. Then the following two
ensembles are (computationally) indistinguishable:
(1) {(a, f*, p): (f* , f *) ~- G(II"I); (m p) ~- M'(w, f* , f*)}u, eL-
(2) {(m f* , p): cr ~- {0, llm{Iwl)l~~ (f* , f *) ~-- G(II"'I);

p +-- A'(w, W(w), or, f*, f*)}weL.

Proof, Let A, B, M be the machines, and let I be the polynomial, specified by Lemma
4.2. Let e(.) = I/(41(.)). We apply Theorem 3.2 (with the algorithm E being the evalu-
ating algorithm of our trapdoor family) to get a triplet of machines A, B, M satisfying
the conditions of that theorem. We let m (-) = e - l (.) + l(-) = 5l(-).

Notation. If ~r is a string of length m(n) 9 n, then cr[l] denotes the first ~ ' - l (n) - n =
41(n) 9 n bits and ~r[2] denotes the last l(n) 9 n bits.

We now specify the algorithm for the verifier B'. Let f * 6 {0, 1 }" and let a be a string of
length m(n). n. On input f* , o , and a string p, the verifier B rejects if IPl < e - l (n) "n.
Otherwise, it accepts if and only if

B (f * , a [l] , p[1]) = 1 and B(w,a [2] , f* , p[2]) = 1,

where p[l] denotes the first e - t (n) 9 n bits of p and p[21 denotes the rest.
Next we specify A'. Let w E L and tb 6 p(w). Let n = Iwl. Let (f* , f *) 6 [G(I ') I .

Let a be a string of length m (n). n. On input w, tb, cr, f* , f* , the machine A' sets p[1] =
A [-' (f*, a [l]) (note that A' can obtain this output in polynomial time because, using
f* , i tcan compute f - I in polynomial time). It then sets p[2] = ,4(w, if,, cr[2], f* , f*) .
Finally it sets p = p [1]p [2] and outputs p. The fact that the completeness condition holds
follows from the respective completeness conditions of Lemma 4.2 and Theorem 3.2.

Now for the interesting part, namely the soundness condition. Suppose w ~ L. Let
n - - Iwl and let f * ~ {0, 1}'. Let f denote the function specified by f* under E. We
split the proof into two cases.

Case 1: f is a e(n)-permutation. By assumption, IC(f) l ~< e(n)2". So

1 Pr[cr[2] ~ CW,)(f): cr[2] ~- {0, 1} tl")"] < e(n)l(n) = ~.

By the soundness condition of Lemma 4.2 it follows that, for every machine/3,

* I 1 ! Pr[10(w, a, f , p[2]) = I: 0"[2] ~- {0, 1}tr p[2] <-- [' (w,a, f*)] < ~ + ~ = 5"

The soundness condition follows from the definition of B'. We proceed to the next case.

Case 2: f is not a e(n)-permutation. The soundness condition of Theorem 3.2 implies
that, for any function P,

1 Pr[B(f* ,c r [l] , p [l]) = I: cr[l] ~- {0, I}e-'tn)'n; p +-- /3(f*, or[l])] < 5'

The soundness condition then follows directly from the definition of B'. This completes
the proof of the soundness condition.

164 M. Bellare and M. Yung

The zero-knowledge, again, follows immediately from Lemma 4.2 and Theorem 3.2.
Let w 6 L and let n = Iwl. Let (f* , f *) ~ [G(In)]. On input w, f* , f* , machine M'
runs M on input f* to get an output (~r[1], p[l]) . It then runs ~ / o n input w, f* , f*
to get an output (a[2], p[2]). It sets a = a[1]cr[2] and p = p [l lp [2] and outputs
(~r, p). []

One more step is needed to derive from Lemma 4.3 the existence of NIZK proof
systems for any NP-relation (given the existence of a trapdoor permutation generator).
Namely, the interaction must be on input w (alone); the prover must be allowed to select
f* (which in Lemma 4.3 is part of the common input) not only as a function of w but
also as a function of the reference string. Clearly, in the completeness condition, we
may simply ask the prover to select f * by running the generation algorithm G. Any
problems that arise will be in the soundness condition, where a cheating prover will take
full advantage of the freedom to choose f* as a function of the reference string.

For w r L, we may use the following "trick" (a standard probabilistic one, used,
for the same purpose, in [BDMP] and [FLS]). For each fixed f* ~ {0, 1}', we reduce
the probability that the verifier accepts the interaction on inputs (w, f*) to 2 -In+l~, by
parallel repetition. It follows that the probability that there exists a string f~ 6 {0, 1 }"
such that the verifier accepts on input (w, f*) is at most 2" - 2 -~'+l) = 1/2. Details are
below.

Theorem 4.4. Let p be an NP-relation. Suppose there exists a trapdoor permutation
generator. Then p possesses an NIZK proof system with an efficient prover.

ProoL Let (G, E, I) be a trapdoor permutation generator. Let A', B', M' be the ma-
chines, and let m be the polynomial, specified by Lemma 4.3. Let l(n) = m (n). n (n + 1).
We construct P, V, S satisfying the conditions of Definition 2.6.

Notation. If ~r is a string of length/(n), then we think of it as partitioned into n + 1
blocks, each of length m(n) 9 n, and denote the ith block by tr[i] (i = 1 n + 1).

We may assume, without loss of generality, that there is a polynomial t such that
B ' (w , . , . , p) = 1 only if IPl = t(Iwl). Let L = Lp. We specify V. Let w E L and
cr E {0, 1} l('l. On input w, or, p, machine V rejects if lpl r n + (n + l)t (n). Otherwise,
it sets f* to the first n bits of p and p ' to the rest. It further sets p'[i] to the ith t(n)-bit
block of p ' (i = 1 n + 1). Now V accepts iff for each i = 1 n + I it is the
case that B'(w, ~r[i], f* , p '[i]) = 1.

We now specify P. Let w 6 L and tb 6 p(w) . Letn = Iwl, and letcr E {0, 1} tIm. P
runs G to obtain a (random) pair (f* , f*) 6 [G(ln)]. It sets

p'[i] = A ' (w, if,, cr[i], f* , f*)

for i = 1 n + 1, and sets p ' = p [l] . . . p [n + 1]. Finally it sets p = f * . p '
("." denotes concatenation) and outputs p. The completeness condition (as required by
Definition 2.6) follows from the completeness condition of Lemma 4.3.

Next we check the soundness condition. Suppose w r L. Let n = Iwl and let f *
{0, 1}'. Let a ~ {0, 1} m'). We say that cr is f*-bad if there exists an i 6 {1 n + 1}

Certifying Permutations: NIZK Based on Any Trapdoor Permutation 165

and a string q E {0, 1} t(n) such that B' (w , tr[i], f * , q) = 1. The soundness condition of
Lemma 4.3 implies that

Pr[cr is i f - b a d : a ~- {0, 1} t~")] _< 2 -~"+1).

Now we say that a string tr ~ {0, 1 }ttn) is bad if there exists an n-bit string f * such that
tr is i f - b a d . It follows that

Pr[a is bad: (r <L {0, 11 l(#)] < 2 n- 2 -<~+l) - !
- - - - 2 '

This implies the soundness condition (as required by Definition 2.6).
Finally, we specify the simulator. Let w ~ L and letn = Iwl. On input w, the simulator

Sruns G on input I n to obtain a (random) pair (f* , f *) ~ [G(ln)] . For i = 1 n + 1
it runs M' on input w, f* , f * to get an output (a [i] , p ' [i]) . It sets a = a [1] - - . tr [n + I]
and p ' = p ' [1] . . - p'[n + 1]. It then sets p = f * . p ' and outputs (a, p) . The zero-
knowledge (as required by Definition 2.6) can be argued based on the zero-knowledge
condition of Lemma 4.3. We omit the details. []

In particular, NIZK proof systems are constructible based on RSA.
Combining Theorem 4.4 with the result of [NY] yields the following.

Coro l l a ry 4.5. Suppose there exists a trapdoor permutation generator. Then there
exists an encryption scheme secure against chosen-ciphertext attack.

Similarly, combining Theorem 4.4 with the result of [BG] yields the following.

Coro l l a ry 4.6. Suppose there exists a trapdoor permutation generator. Then there
exists an implementation o f the signature scheme o f [BGI.

Acknowledgments

We thank an anonymous referee for comments that improved the presentation.

References

[BG/

[BM]

[BMO]

[BBS]

[BDMP]

[BFM]

M. Bellare and S. Goldwasser. New Paradigms for Digital Signatures and Message Authentication
Based on Non-Interactive Zero-Knowledge Proofs. Advances in Co'ptology--Crypto 89 Proceed-
ings, Lecture Notes in Computer Science, Vol. 435, G. Brassard, ed., Springer-Verlag, Berlin, 1989.
M. Bellare and S. Micali. How To Sign Given any Trapdoor Permutation. Journal of the Association
for Computing MachineD', Vol. 39, No. 1, January 1992, pp. 214-233.
M. Bellare, S. Micali, and R. Ostrovsky. The True Complexity of Statistical Zero-Knowledge. Pro-
ceedings of the 22nd ACM Annual Symposium on Theory of Computing, 1990.
L. Blum, M. Blum, and M. Shub. A Simple Unpredictable Pseudo-Random Number Generator.
SIAM Journal on Computing, Vol. 15, No. 2, May 1986, pp. 364-383.
M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof Systems,
SIAM Journal on Computing, Vol. 20, No. 6, December 1991, pp. 1084-1118.
M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge Proof Systems and Applica-
tions, Proceedings of the 20th A CM Annual Symposium on TheoD, of Computing, 1988.

166 M. Bellare and M. Yung

[BC]

[DYI

[FLSl

[GL]

[GMR]

[GMW]

[NY]

[RSA]

G. Brassard and C. Cr6peau. Non-Transitive Transfer of Confidence: a perfect Zero-Knowledge
Interactive Protocol for SAT and Beyond. Proceedings of the 27th IEEE Symposium on Foundations
of Computer Science, 1986.
A. De Santis and M. Yung. Cryptographic Applications of the Metaproof and Many-prover Systems.
Advances in Cryptology--Crypto 90 Proceedings, Lecture Notes in Computer Science, Vol. 537,
A. J. Menezes and S. Vanstone, eds., Springer-Verlag, Berlin, 1990.
U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Based on a Single
Random String. Proceedings of the 31st IEEE Symposium on Foundations of Computer Science,
1990.
O. Goldreich and L. Levin. A Hard-Core Predicate for All One-Way Functions. Proceedings of the
21 st ACM Annual Symposium on Theoo' of Computing, 1989.
S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. SIAM Journal on Computing, Vol. 17, No. 2, April 1988, pp. 281-308.
O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but Their Validity and a
Methodology of Cryptographic Design. Journal of the Association for Computing MachineD', Vol. 38,
No. 1, July 1991, pp. 691-729.
M. Naor and M. Yung. Public-Key Cryptosystems Secure Against Chosen-Ciphertext Attacks. Pro-
ceedings of the 22nd ACM Annual Symposium on Theory of Computing, 1990.
R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, Vol. 21, No. 2, February 1978, pp. 120-26.

