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Abstract. We show that, after a constant-round preprocessing stage, it is possible for 
a prover to prove knowledge of a witness for any polynomial-time relation without 
any further interaction. The number of proofs that can be given is not bounded by any 
fixed polynomial in the size of the preprocessing. Our construction is based on the sole 
assumption that one-way functions and noninteractive zero-knowledge proof systems 
of membership exist. 
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1. Introduction 

A Zero-Knowledge Proof of Knowledge (in short, ZKPK) is a protocol between two 
parties called the prover and the verifier. The prover wants to convince the verifier that 
he knows a witness w and that an input string x belongs to a language L (for example, 
x is a graph, L is the language of the Hamiltonian graphs, and to is a Hamiltonian path 
in x) without revealing any additional information. The concept of ZKPK is closely 
related to the concept of a zero-knowledge proof of membership where the prover wants 
to convince a polynomial-time verifier that an input string x belongs to the language L. 
It can be easily seen that in the interactive case ZKPK exist under the assumption of the 
existence of one-way functions since the zero-knowledge proof of membership for all 
NP of [24], as most proofs of membership proposed so far in literature, turn out to be 
also proof of knowledge. 

* The research by Alfredo De Santis was partially supported by the Italian Ministry of the University and 
Scientific Research and by CNR. Part of Giuseppe Persiano's work was done while at Harvard University, 
partially supported by NSF Grant No. NSF-CCR-90-07677. 
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However, in the noninteractive setting, introduced in [7] and further developed and 
analyzed in [6], where prover and verifier share a random string, things are different. For 
example, it is not known whether the zero-knowledge proof of membership for 3SAT 
of [6] is also a proof of knowledge and actually it was suspected that no ZKPK existed 
in this setting. The authors, in [15], have presented a general procedure to construct 
noninteractive Zero-Knowledge Proofs of Knowledge (NIZKPK) from noninteractive 
zero-knowledge proofs of membership, thus proving the feasibility of the notion of proof 
of knowledge in the shared-string model. They also show that proving the existence of 
NIZKPK based only on one-way permutations is as hard as separating P from NP. This is 
unfortunate, as, besides having its own interest, ZKPK constitute an important building 
block of secure cryptographic protocols. The ability to give ZKPK in a noninteractive way 
would greatly reduce the communication complexity of many cryptographic applications 
and thus one would like to be able to base their existence on the most minimal assumption 
possible. 

In this paper we consider the problem of obtaining NIZKPK based on the most minimal 
possible assumption and propose the concept of a Noninteractive Zero-Knowledge Proof 
System of Knowledge with Preprocessing (in short, NIZKPK with preprocessing). 

In an NIZKPK with preprocessing, the prover and verifier perform a small interactive 
preprocessing stage during which the prover interactively proves that he has some specific 
knowledge (in our implementation the string he has committed to). Later, he can give 
to the verifier (or to anyone else who trusts the correctness of the interactive stage) any 
polynomial (in the length of the preprocessing stage) number of ZKPK. We prove the 
existence of NIZKPK with preprocessing under the weak assumption of the existence 
of one-way functions and of noninteractive zero-knowledge proofs of membership. 

Our model perfectly fits many cryptographic scenarios in which two parties have the 
opportunity to interact for a while and establish some common knowledge and then they 
depart. For example, this is the case for a public-key cryptosystem where an interactive 
identification phase is needed when a user enters their public key into the public file. Also, 
this is the case for electronic cash protocols in which a bank and the user establish some 
common knowledge to open a bank account after which no further interaction is needed 
for the user to spend his money. We refer the reader to [ 14] for a communication-efficient 
protocol for electronic cash based on ZKPK with preprocessing. 

Related Work 

Noninteractive Zero Knowledge. The problem of reducing the communication needed 
for such a basic cryptographic primitive as zero-knowledge proof has recently emerged 
as a major line of research in Theoretical Cryptography. In [61 and [7] it is proved that 
interaction can be disposed of in zero-knowledge proofs of membership provided that a 
short random string is shared beforehand by the prover and verifier (see also [ 12]). More 
precisely, in [6] it is proved that under the quadratic residuosity assumption, a prover 
that shares a random string with a verifier can prove in writing (and thus noninterac- 
tively) and in zero-knowledge any polynomial number of NP theorems. Feige et al. [ 18] 
constructed a noninteractive zero-knowledge proof system for all NP based on certified 
trapdoor permutations. In this construction, as well as in that of [6], it is sufficient for the 
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prover to be a polynomial-time machine with a witness. Bellare and Yung showed [5] 
how to obtain the same result assuming only trapdoor permutations. If the prover has the 
power to invert one-way permutations, then the construction of [ 18] can be based on the 
existence of one-way permutations. In [ 11 ] it was shown how to obtain noninteractive 
zero-knowledge in a public-key scenario. 

Noninteractive Zero Knowledge with Auxiliary Language. A model related to ours 
has been proposed in [ 13]. In this paper the notion of noninteractive zero-knowledge with 
auxiliary language is proposed, where all the interaction needed for a zero-knowledge 
proof is squeezed to an interactive preprocessing phase. The length of this interactive 
phase bounds the overall size of theorems that can be later proved in a noninteractive 
manner. Seen from a different angle, the prover needs to know the length of the theorems 
(but not the theorems themselves!) he wants to prove in advance. The implementation 
proposed in [13] is based on any one-way function and after a preprocessing of size n 
only theorems of total size at most n 1/3 can be noninteractively proved. It is interesting to 
note that, even though our model is a stronger one, we still manage to base our protocol 
on the very weak assumptions of the existence of one-way functions and noninteractive 
zero-knowledge proofs of language membership. 

Constant-Round Zero Knowledge. A different approach to the study of communi- 
cation in zero-knowledge proofs has consisted in studying the round complexity of 
zero-knowledge proofs. On the negative side, Goldreich and Krawczyk [23] have proved 
that only BPP languages have three-round zero-knowledge proofs in the original model 
of [25] where the verifier is a polynomial-time machine and no limitation is imposed 
on the computational power of the prover. Brassard et al. [10] have considered the dual 
case when the prover is a polynomial-time machine and the verifier may have infinite 
computing power. They presented constant-round zero-knowledge proofs for all NP in 
this model under the assumption of the existence of one-way certified group actions 
(e.g., discrete logarithm). Feige and Shamir [ 19] have instead obtained constant-round 
zero-knowledge proofs of knowledge for all NP in the case when both the prover and 
the verifier are polynomial-time machines and were able to base their construction on 
the weaker assumption of the existence of one-way functions. The problem of obtaining 
constant-round zero-knowledge proofs for all NP in the model of [25] remains open. 
Bellare et al. [4] have given constant-round perfect zero-knowledge proof systems for 
random self-reducible languages (e.g., graph isomorphism, quadratic residuosity). 

Proofs of Knowledge. The relevance of ZKPK to the design of secure protocols was 
first recognized in [21 ]. Later, the concept of an interactive proof of knowledge was put 
forward in the proceedings version of [25], although no formal definition was given. 
Proofs of knowledge turned out to be a very subtle object difficult to formalize and, 
since then, various definitions have been proposed for the interactive case, the first being 
the one of [ 17]. The concept of proof of knowledge has also been explored in [30], that 
showed that all random self-reducible languages have such proofs. See also [3] for a 
discussion of definitional issues regarding proofs of knowledge. It is easy to see that the 
proofs of membership of [24] for all NP are also proofs of knowledge according to the 
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definition of [ 17]. Furthermore, the zero-knowledge proofs of  [ 19] for the case when 
prover and verifier are both polynomial time are also proofs of  knowledge. 

The concept of  a computationally convincing proof of  knowledge where the prover 
is restricted to being polynomial time was studied in [9] where a definition capable of  
taking into account very nasty behaviors from the prover was proposed. In the same 
paper it was also proved that the constant-round arguments of  [10] are also proofs of  
knowledge according to the proposed definition. A much easier to prove constant-round 
computationally convincing ZKPK is presented in [8]. 

The study of the noninteractive case is instead much more recent. In [ 15] the authors 
gave a definition of proof of  knowledge in the shared-string model of  [6] and showed 
the existence of ZKPK for all relations under complexity assumption. In the same paper 
they also showed that proving that one-way permutations are sufficient for their existence 
(remember that in the interactive case, one-way functions are sufficient for ZKPK) is as 
hard as separating P from NP. 

Communication Complexity in Distributed Multiparty Computation. The com- 
munication complexity of  a protocol is an important measure for distributed multiparty 
protocols. Bar-Ilan and Beaver [ I ] were the first to investigate the round complexity for 
secure function evaluation and exhibited a noncryptographic method that saves a loga- 
rithmic number of  rounds. Beaver et al. [2] showed how any function can be securely 
computed using only a constant number of  rounds of interactions, under the assumption 
that one-way functions exist. Feldman and Micali [20] gave a constant-round protocol 
for the well-studied Byzantine agreement problem. 

2. Notation and Cryptographic Background 

We denote by N the set of  natural numbers. If  S is a probability space, then "x * -  S" 
denotes the algorithm which assigns to x an element randomly selected according to S. 
If F is a finite set, then the notation "x ~ F "  denotes the algorithm which assigns to 
x an element selected with uniform probability from the set F. For example, writing 
"or +-- {0, 1 }n,, means that the string ~r is picked with uniform distribution among all 
strings of  length n. 

If p ( - , . ,  . . . )  is a predicate, the notation Pr (x  ~ S; y , ' -  T; . . .  : p(x ,  y . . . .  )) de- 
notes the probability that p(x ,  y . . . .  ) will be true after the ordered execution of the 
algorithms x +-- S, y * -  T . . . . .  

The notation {x +-- S; y ~ T; . . .  : (x, y . . . .  )} denotes the probability space over 
{(x, y, . . .)} generated by the ordered execution of the algorithms x +- S, y +-- T . . . . .  

We say that a function f :  N ~ N is negligible if for all constants d there exists a 
constant nd such that for all n > n d  it holds that f ( n )  < n -d. 

An efficient algorithm is a probabilistic algorithm running in expected polynomial 
time. An efficient nonuniform algorithm D = { Dx } is a family of  efficient algorithms 
where Dx has a program of size polynomial in Ix I. That is, Dx has "wired-in" a polynomial 
amount of  information about x. 

The symbol a ~ b denotes the bitwise xor of  the binary strings a and b. If  a is shorter 
than b, then we pad a with zeros so that the two strings have the same length. 
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Le t s  be an m-pie (xl, x2 . . . . .  xm) of strings. Writing Ixl denotes the number of  strings 
in .~ and when we write .~ c L we mean that all the elements of ~ belong to L. 

We now recall the notion of indistinguishability that is crucial to zero-knowledge. We 
address the reader to the original paper of  [25] for motivation of this definition. 

Definition 1 (Indistinguishability). Let L c {0, 1}* and let/ , /  = {U(x)lx ~ L} and 
V = { V (x) Ix 6 L } be two families of  random variables over {0, 1 }*. We say that/.4 and V 
are indistinguishable (in symbols L / ~  l;) if, for all efficient nonuniform distinguishing 
algorithms D = { Dx }, for all positive constants c, and for all sufficiently long x 6 L, 

I P r ( a  ~-  U(x):  Dx(a) = 1) - P r ( a  ~- V(x): Dx(a) = l)l < Ixl -c. 

The following fact holds. 

Fac t  1. I fH ~ V and V ~. Z,  then Lt -.~ Z.  

2.1. Pseudorandom Collections of Functions 

In this section we briefly review the concept of  a pseudorandom collection of functions 
that will play an important role in our construction of NIZKPK with preprocessing. 

The concept of  pseudorandom function has been introduced by Goldreich et al. [22]. 
Intuitively, we say that a collection of functions is pseudorandom if the value output of  
a function chosen at random from the collection on arguments chosen by a polynomial- 
time algorithm cannot be distinguished from the output of a truly random function. More 
formally, we have the following definition. 

Definition 2. Let c be a positive integer constant. A c-distinguishing algorithm is an 
efficient nonuniform algorithm D = { D)o } where each D 1,, has an oracle that computes an 
unknown (to Din) function f :  {0, 1 }n __~ {0, 1 } no. We denote by D f the probability space 
induced by the output of  Din when given access to an oracle computing the function f .  

Definition 3. Let c be a positive integer constant, let Rn be the set of  all functions 
r: {0, l} n ---> {0, l} no, and le tF  = {fs} be a collection of functions where fs: {0, l} )sl -~ 
{0, l } )sIc. We say that the collection F is a c-pseudorandom collection of functions if, for 
all c-distinguishing algorithms D = { Dl~ } and for all constants d > 0, 

IP r ( r  * - - R . :  DI r : 1 ) -  Pr(s  ~-- {0, 1}": D~  = 1)1 < n -d. 

The following theorem shows that the existence of one-way functions is sufficient 
for the existence of c-pseudorandom collections of  functions for all positive integer 
constants c. 

Fact  2 [22], [27], [26]. lfone-wayfunctions exist then,forallpositive integer constants 
c, there exist c-pseudorandom collections of functions. 
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2.2. Secure  C o m m i t m e n t  S c h e m e s  

A secure commitment scheme is a protocol for two polynomial-time parties. It allows one 
party, the committer, to commit to a bit b in such a way that he can later show to the other 
party, the decommitter, the bit he has committed to. However, until b is decommitted, 
the decommitter cannot predict the bit with probability significantly better than 1/2 and, 
once the bit has been committed to, the committer cannot change it. Our formal definition 
has been inspired by the scheme proposed by Naor [29]. 

Definition 4. A secure  c o m m i t m e n t  s c h e m e  is a pair (C, D), where C is an efficient 
algorithm and D is a deterministic polynomial-time algorithm, such that: 

I. Meaningfullness. For all b  9 {0, 1 }, for all constants d > 0, and for all sufficiently 
large n, 

P r ( a  ~ {0, 1}n; (com, dec )  * -  C(tr, b): D(com, dec ,  or) ---- b) > 1 - n -d .  

2. Uniqueness of  r ecommi tment .  For all efficient algorithms Adv, for all constants 
d > 0, and for all sufficiently large n, 

Pr(tr , -  {0, 1}n; (corn, dec0,  deCl) +-- Adv(o'): D(com, d e c  0` or) ---- 0 

AND D(com, dec1,  tr) = l) < n -d.  

3. Indis t inguishahi l i tyofeommitment .Thefamil iesofrandomvariables  {V0(tr)la  9 
{0, 1}*} and {Vl(tr)ltr  9 {0, 1}*}, where 

Vb(o) = {(com, d e c )  +-- C(tr, b) :com}, 

are indistinguishable. 

We now briefly comment on our definition. The mechanics of a commitment is the 
following. A random string a of  length n is given to both parties (as we shall see later, 
this string can be chosen by the decommitter). Then, to commit to a bit b, the committer 
runs algorithm C and obtains a pair of  strings (com, d e c  ). The string corn is given to 
decommitter, while d e c  is kept secret. To decommit to the bit, the string d e c  is revealed 
and the decommitter can compute, by running algorithm D, the b that has been originally 
committed to. Property 1 says that if both parties follow the protocol, then the protocol 
succeeds with very high probability. Property 2 guarantees that it is very unlikely that a 
committer manages to compute for the same string com two different strings dec0 and 
deC l that convince the decommitter that the bit committed is a 0 and l, respectively. 
The third property says that, for all sufficiently long strings cr, no polynomially bounded 
algorithm can distinguish between a commitment of  a 0 and a commitment of  a i. As 
this property holds for all sufficiently long strings a ,  we can let the decommitter pick or. 
In fact, he has nothing to gain by choosing ~r in some special way; but a careless choice 
of  tr might allow the committer to cheat. 

The notion of a secure commitment scheme can be easily extended to any string x. If  
x = bl -  9  9 b,, is an m-bit string, then C(cr, x) is intended to consist of the m different 
commitments C(tr ,  bi), i = 1 . . . . .  m .  In this case, it can be seen that property 3 can be 
extended to any two strings. That is: 
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3. Indistinguishability of string-commitment. Let 11 and 12 be two subsets of  {0, 1 }* 
such that, for all n, Ill n {0, 1 }n I = t12 n {0, 1 }n I = 1. Then the families of  random 
variables {Vl(~r)l~r ~ {0, 1}*} and {Vz(~r)l~r c {0, 1}*}, where 

V~.(cr) = {s +- li n {0, 1}l~rl; (com, d e c )  *-  C(cr, s): com}, 

are indistinguishable. 

In what follows we use the following equivalent property. 

Lemma 1. Let I be a subset of{0,  1}* such that, for all n, II N {0, 1}hi = 1 and let 
(C, D) be a secure commitment scheme. Then the families of  random variables, 

and 

V(cr) = {s +-- 1 n {0, 1}1~1; (com, d e c )  +-- C(a, s): com} 

R(a )  = {r +- {0, 1}1~1; (com, d e c )  +-- C(~, r): com}, 

are indistinguishable. 

The following result is due to M. Naor [29]. 

Fact 3. The existence of one-way functions implies the existence of secure commitment 
schemes. 

2.3. Noninteractive Zero-Knowledge Proofs 

The concept of  a noninteractive zero-knowledge (NIZK) proof has been put forward 
in [7] and further elaborated in [6]. They showed that, under the quadratic residuosity 
assumption, if a random reference string readable by both the prover and the verifier is 
available, it is possible for the prover to give any polynomial number of  NIZK proofs. 

The property of  zero-knowledge is defined by means of a simulator which generates 
pairs of  reference strings and proofs which cannot be told apart by any efficient nonuni- 
form algorithm. In the definition of [6], the simulator was defined as a machine which 
first gets theorems to be proved and then starts the computation. For our construction we 
need a different kind of simulation called on-line simulation that has been introduced 
by [16]. An on-line simulator is a pair of  efficient algorithms S = (Sl, $2). Sn on input 
1 n outputs a string cr of  length n along with some information a u x  about or. $2 then 
receives theorems and, using a u x  and a ,  computes proofs which are indistinguishable 
from real ones. 

The proof  system of [6] and [18] have an on-line simulator. In [ 16] it is proved that, if 
one-way functions exist, any NIZK proof system with efficient prover can be transformed 
into NIZK proof system with on-line simulator. 

3. NIZKPK with Preprocessing 

In this section we give the formal definition of the concept of  NIZKPK with preprocess- 
ing. We start by defining the concept of  a polynomial-time relation. 
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Definition 5. A relation is a subset of {0, 1 }* • {0, 1 }*. A polynomial-time relation 79 
is a relation such that: 

1. There exists a constant a, called the expansion constant of 79, such that if (x, w)  9 
79, then [wl _< Ixl a. 

2. It is possible to check in time polynomial in ]xl whether (x, w)  9 7 9. 

We say that (x, u,)  9 79, if (x, u,)  9 79 and Ixl ~ n. For each polynomial-time relation 
79 the language 

LT~ = {x: 3w for which 79(x, w) holds} 

belongs to NP. Conversely, every NP language naturally defines a polynomial-time re- 
lation. 

Following [25], we model our prover and verifier as interactive Turing machines. 

Definition 6. An Interactive Turing Machine (ITM) is a probabilistic Turing machine 
running in polynomial time with five tapes: a read-only input tape, a read/write work 
tape, a write-only communication tape, a read-only communication tape, and a write-only 
output tape. 

We say that two ITMs A and B constitute a pair oflTMs if they share the input tape 
and the two communications tapes; that is one's write-only (read-only) communication 
tape is the other's read-only (write-only) communication. 

The computation of a pair of ITMs (A, B) proceeds as follows. A and B take turns 
in becoming active with A becoming active first. When a machine is active it reads 
from its read-only communication tape, computes and writes a message on its write- 
only communication tape. That is, the ith message exchanged is a function of  the public 
input, the private input, the coin tosses, and the previous messages. 

Let (A, B) be a pair of  ITMs. By the writing UA,B(X), we denote the probability space 
that assigns to each triplet (R, Trans, u) the probability that R is B's random coin tosses 
and that Trans and ot are, respectively, the transcript of the conversation between A and 
B and the output of  A, when x is the public input and B uses R as random coin tosses. 
Instead, writing (A ~ B)(x) denotes the probability space that assigns to each pair 
(~, fl) the probability that string c~ is written on A's output tape and string/~ on B's 
output tape, after an interaction where A and B receive as input x. 

To define the notion of  proof of  knowledge, we need the concept of  an extractor. We 
say that an extractor is a probabilistic Turing machine that can access an ITM A as an 
oracle; i.e., it can feed the ITM with an input, run an interactive protocol with it, and 
rewind the machine to a specific state, but cannot read A's private and work tapes. If  A 
is an ITM and E x t  is an extractor, by writing (A ~ Ext ) (x)  we denote the probability 
space that assigns to each pair (c~, fl) the probability that string t~ is written on A's output 
tape and that string/3 is on E x t ' s  output tape, after Ex t  has computed with A as an 
oracle on input x. 

We are now ready to introduce the concept of  NIZKPK with preprocessing. 
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Definition 7. A pair (P, V), where P = (Pi, P2) and v = (Vl, V2), is a preprocessing 
pa i r  if Pl and Vl constitutes a pair of  ITMs and P2 is a probabilistic Turing machine run- 
ning in polynomial time and v2 is a deterministic Turing machine running in polynomial 
time. 

Definition 8. Let (P, V) be a preprocessing pair. We say that (P, v)  constitutes an 
N I Z K P K  with preprocessing for the polynomial-time relation 79 if the following three 
conditions are satisfied: 

1. Completeness .  For all constant d > 0, for all (x, w)  9 7 9, and for all sufficiently 
large n, 

Pr((ot, 13) 4-  (P, +~ Vl)( l~ (x, 11) 4- P2(Ot, X, tO): V2(fl, X, I'I) = 1) _ 1-n -d. 

. Validity. There exists an extractor algorithm E x t  = ( E x t  1, Ex t2 )  such that, for all 
pairs Adv = (Advl, Adv2) of  efficient algorithms, for all a,  and for all sufficiently 
large n,- 

Pr((~, /3)  ~_i (gdvl  ~-~ EXtl ) ( ln) ;  (X, Il)  <-- Adv2(ot); 
tO 4-- Ext2(f l ,  X, l-I): (x, to)  9 79) > Pn  9 (1 - n-a ) ,  

where pn denotes the probability 

. 

p ,  = Pr((ot,/3) 4-  (Advl ~ v 0 ( l " ) ;  (x, Il) +- Adv2(ot): V2(fl, X, I'I) = 1). 

Zero  knowledge.  For each pair '~ = (X~l, xJ2) of ITMs, there exists an efficient algo- 
rithm M such that, for all xl,  x2 . . . .   9 Lg ,  for all efficient nonuniform algorithms 
D, for all constants d, and sufficiently large n, 

where 

IP r (y  4-  M ( l n , x l , x 2  . . . .  ): DI . (y)  = 1) 
- P r ( y  4 -  V i e w f l ( n , x l , x 2  . . . .  ): D I , ( y ) =  1)1 < n -d,  

Viewfr(n, Xl, x2 . . . .  ) = {(R, Trans, ct) 4-  up,,~, (1"); 
(Xl, HI) +'- P2(O/, Xl, Wl); 
(X2, 1"I2) 4 -  P2(Ot, X2, 1/92); 

: (R, Trans, I l l ,  1-I2 . . . .  )}. 

We say that an interactive pair (P, v)  is a noninteractive proof system of  knowledge 
with preprocessing if completeness and validity are satisfied. 

In the definition of validity we let Advl and Adv2 communicate through the string ot 
computed as output by AdVl. In our proof, without loss of  generality, we let ot be Advl ' s  
view of the interaction with "el (including Advl ' s  coin tosses). 

Our definition handles any number of  formulae of arbitrary size in completeness, va- 
lidity, and zero-knowledge. That is, every true theorem can be proven, no matter how 
long. Of  course longer theorems will have longer proofs and thus the verifier will have 
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more time to verify the proof. Similarly, we guarantee the extractor to succeed in extract- 
ing a witness, with a probability which is close (up to a factor negligible with respect to 
the length of the preprocessing stage) to the probability with which the verifier is con- 
vinced. The zero-knowledge property holds with respect to nonuniform distinguishing 
algorithms whose running time and program size are bounded by a polynomial in the 
length of the preprocessing. This means that if a theorem (and thus its proof) is expo- 
nentially long in the length of the preprocessing stage, the distinguishing algorithm can 
only compare view and output of the simulator for a polynomially long prefix. 

4. NIZKPK with Preprocessing for all Polynomial-Time Relations 

In this section we present an NIZKPK with preprocessing (p, v) for a polynomial-time 
relation 79; we denote by a the expansion constant of 7 9. In our proof system, after a 
preprocessing of size n, any polynomial number of ZKPK can be given for instances x 
of length at most n. However, as we shall see later, this restriction can be extended using 
a standard technique. 

The Preprocessing Stage. The preprocessing stage is executed only once and does not 
depend on the choice of the theorems that will be proved. 

A formal description of the protocol for the preprocessing stage is found in Fig. 1. In 
the description of the protocol for the preprocessing stage we denote by (C, D) a secure 
commitment scheme and we let COMMIT be the polynomial-time relation defined by 

((O', com), (s, dec))   9 COMMIT iff D(com, dec,  cr) = s. 

The following fact holds. 

Fact 4 [19]. If one-way functions exist, then all polynomial-time relations have a 
constant-round zero-knowledge proof system of knowledge. 

In what follows, we let (Pro, Ver) be the constant-round zero-knowledge proof system 
of knowledge for the polynomial-time relation COMMIT. 

In several points of our protocol, one of the two parties needs to check the validity of 
the message received from the other either explicitly (e.g., at step 5) or implicitly (e.g., 
at step 6 when executing the proof system (Pro, Ver)). We assume that, if the check is 
not passed, the party performing the check stops. 

We remark that the preprocessing stage only takes a constant number of rounds. 

The Proof Stage. Let F = {f~} be a a-pseudorandom collection of functions and let 
the pair (A, B) be an NIZK proof system of membership for the following NP language: 

CHECKp = {(~r e, corn, x, y): exist dec  and 
s s.t. D(com, dec,  o-e) = s and (x, y (9 f~(x))  9 79}. 

In what follows we drop the subscript 7 9 and write simply CHECK. A formal description 
of Pz'S and v2's programs are found in Fig. 2. 
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Protocol for the preproeessing stage 
Input: 1" (security parameter). 
Phase I 

1. Pl: Randomly choose and send o-~,  9 {0, 1}" to vl .  
2. v l :  Randomly choose p  9 {0, 1}". 

Compute (0, 3) *-- C(o- v, p). 
Send r/to P l. 

3. Pl: Randomly choose and send r  9 {0, 1 }" to Vl. 
4. v l :  Compute o- = p (9 r. 

Send o- and p to p~. 
5. pl: Verify that o- = p (3 r. 
6. V~ +-> 91: (V~, p~) execute proof system (Pro, Ver), to prove in zero- 

knowledge that vl  knows 3 such that ((o-v, r/)(p, 3))  9 COMMIT. 
Phase I I  

7. vl :  Randomly choose o-e  9 {0, 1 }" and send it to pi. 
8. Pl: Randomly choose s  9 {0, 1}" and compute (com, d e c )  *-- C(o- e, s). 

Send corn to Vl. 
9. Pl ++ vl :  (Pl ,Vl)  execute proof system (Pro, Ver), to prove in zero- 

knowledge that Pl knows d e c  and s such that D(com, dec ,  o-e) = s. 
Ou tpu t  for PI : o', o'e, (com, d e c ) ,  s. 
Output for Vl: o-, cr e , corn. 

Fig. 1. The protocol for the preprocessing stage. 

p2's p rog ra m  
Input from preprocessing: (o-, o-e, (corn, dec ) ,  s) such that D(com, d e c ,  ap) = s. 
Input to P2: (Xl, W l ) ,  ( X 2 ,  tO2)  9  9  9 6 ~O[trl. 
F o r / =  1,2 . . . .  

1. Compute f s  (xi)  and Yi = wi ~) f.~ (xi) .  
2. Run A on input o-e, com, d e c ,  s, xi ,  Yi using a as the reference string. Let 

Pfi  be the output. ( P f i  is a "proof" that (o-e, com, Xi, Yi)  9 CHECK.) 
3. Send ((o-e, corn, xi ,  yi), Pfi) .  

V2'S p r o g r a m  
Input  f rom preprocessing:  o-, o-e, com. 
Input f rom P2: ((o-~, corn', xi ,  7'/), Pfi) ,  for i = 1, 2 . . . .  
F o r / =  1,2 . . . .  

 9 Verify that o-e = tr~ and cora=com'.  
 9 Execute B's  program on input ((o-e, com, xi, yi), P f i )  and the reference 

string o-. 
If  all checks are successfully passed accept, otherwise reject. 

Fig. 2. The programs for the proof stage. 
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The Choice of the NIZK Proof of Membership.  Our protocol is quite flexible in the 
choice of the NIZK proof system which is used in the proof stage. If other NIZK proof 
systems are available, the above protocol could be modified to accommodate them. For 
example, if in the preprocessing step prover and verifier establish n oblivious channels, 
then they can use the protocol by [28] for NIZK proofs. There are few differences if 
we use either of the two NIZK proof systems. First, the minimal assumption on which 
such systems have been shown to exist: one-way trapdoor permutation in one case and 
oblivious transfer in the other. Second, transferability. Using the reference string the 
proofs are transferable to others who trust the correctness of the construction of the 
string com. This is a fundamental property for protocols for electronic cash (see [ 14]). 
Another possibility is the use of the NIZK proof systems with preprocessing of [13]. 
This has the advantage of being based on the sole existence of one-way functions, but 
has a drawback that only a small theorem (its size depends on the preprocessing stage) 
can be noninteractively proved. 

The proof that the above protocol is indeed an NIZKPK is divided into two parts. 
First, we prove that it meets the completeness and soundness requirements and then, in 
the next section, we prove the more subtle property of zero-knowledge. 

Theorem 1. The pair (P, V) is a noninteractive proof system of knowledge with pre- 
processing. 

Proof. The completeness of (P, V) follows from the completeness of the interactive 
proof system of knowledge (Pro, Ver) and the completeness of (A, B). 

To prove the validity property, we have to exhibit an extractor (Ext l ,  Ext2) that, 
interacting with an adversary Adv = (Advl, Adv2), is able to compute a witness for the 
theorem that is being proved. 

Algorithm Ext l  behaves exactly like verifier vl except for step 9 when Advl is 
supposed to give an interactive proof of knowledge. Here, Ext~ uses the extractor for 
the interactive proof system of knowledge (Pro, Ver) to obtain dec  and s from Advl. The 
probability that Ex t  i succeeds in computing dec  and s is equal (up to a negligible factor) 
to the probability that Ver accepts. This information is then passed onto Exe2 together 
with a ,  trp, and dec  (they correspond to string fl of Definition 8). Then Ext2 receives 
from Adv2 a quadruple (trp, com, x, },) along with a proof Pf. Ext2 runs algorithm B 
on input (trp, com, x, y), the proof Pf,  and reference string tr. If  B accepts, it outputs 
w computed as to = fs (x) ~ y. 

We distinguish two cases depending on whether the quadruple (try, com, x, y) does or 
does not belong to CHECK. If (cry, com, x, y) belongs to CHECK, then clearly string to 
computed by the extractor is a witness for x. On the other hand, if (trp, com, x, y) does 
not belongs to CHECK, then (x, to) ~' 79 and we say that the extractor has failed. The 
probability that the extractor fails to obtain a witness w for x is equal up to a negligible 
factor to the probability that Adv~ succesfully completes the preprocessing stage and that 
Adv2 makes v2 accept a quadruple not belonging to CHECK. Indeed the only difference 
between the view received by Adv2 when Advl interacts with the extractor and the view 
received by Adv2 when Advl interacts with the verifier v~ is in the portion of transcript 
regarding step 9. However, by the properties of the extractor of (Pro, Ver), these two 
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views are indistinguishable, whence we can conclude that the two probabilities are equal 
up to a negligible factor. 

We now show that the probability that (ap, cora, x, y) ~g CHECK and V2 accepts the 
proof provided by Adv2 is negligible thus proving that the extractor fails with negligible 
probability and concluding the proof of the validity property. To this aim, we consider 
the following mental experiment. 

A Mental Experiment.  We have Adv interact with an efficient machine G defined 
as follows. During Phase I, G follows v l ' s  program but instead of sending string p he 
has committed to, he sends a random string p'. Then, at step 6 he uses the simulator 
of proof system (Pro, Ver) to produce a transcript of a proof that convinces Advl that 
p '  is the string he has committed to. In Phase II, G behaves exactly as Ext~ (i.e., it 
computes s and dec using the extractor of (Pro, Ver)). Then Adv2 receives from Advl 
the transcript of the preprocessing stage (along with Advl 's own random coin tosses), 
chooses strings x, F and sends (ap, corn, x, F) along with a proof string Pf.  G checks if 
(crp, corn, x, y) r CHECK (remember that G knows s and dec)  and v2 accepts. If this 
is the case G outputs 1 otherwise it outputs 0. 

We now compare the view received by Adv2 from Advl when interacting with the 
extractor and the view received by Adv2 in the experiment. The differences between the 
two views are the following: 

 9 In the view of Advl interacting with the extractor, string p is the string committed to 
at step 2, while in the experiment p '  is chosen independently from the commitment 
of step 2. 

 9 In the view ofgdv~ interacting with the extractor, the proof at step 6 is obtained by 
running Ver's program while in the experiment it is produced by the simulator. 

Therefore, by the indistinguishability of the string commitments and by the zero-knowl- 
edgeness of the proof system (Pro, Ver), the two views are indistinguishable and this 
implies that the probability that the extractor fails and the probability that G outputs 1 
are equal up to a negligible factor. 

Next, we argue that the probability that G outputs 1 is equal (up to a negligible factor) 
to the probability that Adv2 makes v2 accept a quadruple not in CHECK when the 
reference string is chosen at random. Indeed we have the following two observations: 

 9 As p'  is chosen at random, reference string cr with respect to which Adv2 has to 
produce a noninteractive proof is random. 

 9 The view that Adv2 receives in the second experiment is indistinguishable from the 
view that Adv2 receives from Adv~ interacting with Vl. This can be shown in a way 
similar to what was done before. 

Whence we conclude that the probability that the extractor fails to obtain a witness and 
the verifier accepts is equal up to a negligible factor to the probability that Adv2 makes 
v2 accept a quadruple not in CHECK when the reference string is chosen at random. 
The latter probability is, by the soundness of (A, B), negligible thus proving the validity 
property. [] 
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4.1. (p, V) Is Zero-Knowledge 

In this section we prove the following theorem. 

Theorem 2. The pair  (p, V) is an NIZKPK with preprocessing. 

Intuitively (p, v) is zero-knowledge because all the verifier sees is just commitments 
and zero-knowledge proofs on those commitments which would not give additional 
information. 

Let c be a constant. Without loss of generality, we consider for each pair of  ITM V' = 
(v'  l, v[) , the  familyofrandom variablesviewv, : {viewv,(n, .~)[x  9 L p  and I~1 = nC}  9 
Views(n ,  i )  represents the view of  what a verifier (v'  1, v[)  sees when 1 n is given as 
input in the preprocessing stage and ~ are the inputs of the noninteractive phase. Viewv~ 
consists of  the following components: 

 9 R, the random tape of  v '  l . 
 9 the n-bit strings tr, cr v , a , ,  O, r, p. 
 9 Log~, the transcript of  the interactive ZKPK that p is the string committed to. 
 9 coax, the commitment of  a random n-bit string s (unknown to v '  t) computed using 

O'/,. 
 9 Log2, the transcript of  the interactive ZKPK that p knows the string committed to 

by coax. 
 9 F = (Yl . . . . .  y,c), where Yi = f s (x i )   9 wi and wi is a witness for xi. 
 9 PF  = ( P f l  . . . . .  P f , c ) ,  where P f i  is an NIZK proof of"correctness" of yi. 

For the sake of  compact notation, in what follows we drop the subscript V' t . We present a 
simulator M such that the family of random variables .M = {M (1 n, Y): ~  9 L~} cannot 
be distinguished from View by any efficient nonuniform algorithm. 

Here is a sketch of  the simulator M. A formal description can be found in Fig. 3. M 
receives as inputs 1" and an nC-tuple ~ and we let S = (Si, $2) be the on-line simulator 
for the NIZK proof system (A, B). M starts by running St and obtains a string cr along 
with some information a u x  that allows $2 to simulate convincing noninteractive "proofs" 
of  any statement. Then M starts an interactive protocol with ~l at the end of which both 
v '  l and M would have agreed on a as the string to use for the noninteractive proofs. 
This is accomplished by running the protocol twice in the following way. The first run 
is intended for M to learn the random string p to which v '  1 has committed and, once p is 
known, M rewinds v '  l and chooses his string so to obtain the string tr. Then M executes 
step 9 of  the preprocessing stage just as P would do. 

In the simulation of  the proof stage, M does not compute Yi as f s (x i )  ~ wi (he 
does not know wi !) but instead assigns to ~'i a truly random string. Then M runs the 
simulator $2 for the NIZK on input or, aux,  and the quadruple (try, coax, xi, Yi) to 
ob t a in  p f i .  

First, clearly M runs in expected polynomial time. Indeed all computations can be 
performed efficiently and the probability that at step 2.4 M has to restart is negligible 
(this follows from the properties of  the secure committment scheme). 

We now compare the output of  M on input (1 n, .~) with an element chosen from 
v iew(n ,  .~). We see that some of the components have the same distribution; for example, 
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The program of M 
Input: 1" and a tuple ,~ E L;o. 

0. Set (~r, aux)  +-- $1(1~). 
Randomly choose random bits R for v '  1 . 

I. F i r s t  
l . l  
1.2 
1.3 
1.4 
1.5 

1.6 

. 

Trial .  
Randomly choose tr,, ~ {0, 1 }n and send it to v '  1 . 
Receive commitment rl from V' 1. 
Randomly choose r e {0, 1 }" and send it to v '  1 . 
Receive t~ and p from v '  1 . 
Check that 0 has been properly computed. If not, O u tpu t :  
(R, o~, r/, r ,  ~', p).  
Execute interactively with v '  1 Ver's program to verify that V' l knows 8 
such that ((cr,,, r/), (p,  ~)) ~ COMMIT and let Log I be the transcript 
of  the interaction. 
If Ver does not accept, then Ou tpu t :  ( R ,  r v , ~, r, 6 ,  p ,  1,o9"1). 

Obtaining or. 
2.1 Rewind v '  1 to state after step 1.2. 
2.2 Send string ~ = o ~ p to v',. 
2.3 Receive tr '  and p '  from v '  I. 

Check that a '  has been properly 
(R,  tr,,,O, f , a ' , p ' ) .  

computed. If not Ou tpu t :  

2.4 Execute interactively with v '  l Ver's program to verify that v '  1 knows 8' 
such that ((~r,,, r;'), (p ' ,  5')) ~ COMMIT and let Log  I be the transcript 
of  the interaction. 
If Ver does not accept, then Ou tpu t :  (R, ~r v , rl, {', cr', p ' ,  Log I ). 
If  Vet accepts but tr ~ tr ' ,  then goto 0. 

3. Receive tre from v '  1. 
Randomly choose s e {0, l} n, compute (corn, d e c )  +-  C(trp, s), and send 
com tO V' 1 . 

4. Prove in zero-knowledge to v '  I knowledge of  s and d e c  such that 
D(com, d e c ,  c r e ) =  s. 
Let Log 2 be a transcript of  the protocol. 

5. F o r /  = 1 . . . . .  n C 
5.1 Randomly choose Fi E {0,1}" and compute Pf i  4-- 

$2 (O" e , C ore, Xi, Yi, O', aux ) .  
6. Set F = (Yl . . . . .  Y,c) and PF = (P f l  . . . . .  Pf,c) .  

Ou tpu t :  (R, or,,, r/, ?, tr, p ' ,  LO9"I, o'e, com, Log 2, F, PF). 

Fig. 3. The program of the simulator M. 

cr,, and tre are random strings just  as in the view of  v ' ,  corn is the commitment  of  a 
random n-bit  string, and Log  I is the transcript of  a "conversation" between Pl and v '  1. 
Nonetheless, the two distributions are very different. First, the yi 's  are not computed 
correctly (that is, by xoring a witness of x i ' s  with f s  (xi)); moreover, string tr is not truly 
random, as it should be. Though we shall prove that the two distributions cannot be told 
apart by a polynomial ly  bounded machine. 
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We assume for the sake of  contradiction that there exists a nonuniform efficient algo- 
rithm H = {Hv, } that violates the zero-knowledge property. 

Consider the following family of random variables Z = {Z(n, :7)1~  9 L~  and 1:71 = 
nC}. For each :7 e Lv ,  the random variable Z(n, :7) consists of  the output of  algorithm 
Z~ on input n. Z~ has "wired-in" Wl . . . . .  w ,  such that, for i = 1 . . . . .  n ~, (xi, wi)  9 79 
and executes the same instructions of  M on input (1" , :7) with one exception; at step 5.1, 
Fi is computed as Fi = f,(x~) @ ws. We have the following lemma. 

L e m m a  2. The families of random variables Z and V i e w  are indistinguishable. 

Proof.  Suppose that Z and View are distinguished by an efficient nonuniform algo- 
rithm D = {DI,, ~}. That is, there exists a constant a such that, for an infinite set 2- of  
tuples :7, 

where 

and 

IPrview(n, :7) - P r z ( n ,  .r)l > n-a, 

Prv iew( :7  ) = P r ( a  +-- v i e w ( n ,  :7): D~(c0 = !) 

Prz( :7)  = Pr(ot <--- Z(n, :7): D~(ot) = 1). 

We now describe a nonuniform algorithm C = {Cl~ .:~1.~  9 CHECK} which distinguishes 
the output of  S from the view of B in the proof system (A, B). This would contradict 
the zero-knowledgeness of  (A, B) and prove the lemma. 

Let X = ( ( X l , O p ,  c o m ,  oll) . . . . .  (Xn,',cre,com, ctn,'))  9 CHECK with :7 = 
(Xl . . . . .  x, ,)   9 Z. Cj~ has "wired-in" witness wi for xi, i = 1 . . . . .  n C, and a string 
such that corn is a commitment of  g computed using string ~L. Cl~ receives as input 
a pair (5-, I-l), with 161 = n, which is either the view of B on input X when an n-bit  
random string is shared with A, or the output of S on input .~ and 1" C - executes M ' s  

 9 I n . X  

program with the following exceptions: at step 0, C,,~ sets cr = 6 ;  at step 3, the string 
s is set equal to g; at step 5.1, it sets Fi = oti; and at step 6, it sets PF = FI. Then C,.~ 
feeds D,,,~ with Test = (R, or,,, r/, r,  ~r, p,  Log I , c U, corn, Log 2, F, H). Now, if (6,  H) 
is distributed according to S(I", X), then Test is distributed according to Z(n, x); on 
the other hand, if (5", H) is distributed according to B 's  view, then Test has the same 
distribution of  View.  Since D dis t~guishes  between the two random variables, C is able 
to distinguish the output of  S( I" ,  X) from B's  view. Contradiction. [] 

We now prove that Z and .A.4 are indistinguishable. By Fact 1, this will prove that M 
and v i e w  are indistinguishable and conclude the proof of the zero-knowledgeness of 
(P, V). 

The main difference between the two random variables is in the nature of  F. In fact, 
in Z the ith component of  F consists of  the xor of fs(Xi) and a witness for xi, where s 
is the string committed to by com, while in the output of  M it is just  a random string. 
However. as (C, D) is a secure commitment scheme and F is a pseudorandom family of  
functions the two distributions are indistinguishable. 

We use the following lemma. 
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L e m m a 3 .  Let  c be a constant. The fami l ies  o f  random variables ld = 
{U,~ I I-~1 = n c a n d s  ~ L p }  and V = {V,..~ I I~1 = n ~ a n d ~  ~ L p }  defined 
as 

U,n~ = {a, s + -  {0, 1}"; (corn, d e c )  +-- C(cr, s ) ;  /71 = fs(Xl);  

~.~ = fs(x.~): (~r, corn, )71 . . . . .  r/.,)} 

and 

V,..; = {~,s +-- {0, l}n; (corn, d e c )  +- C(o', s); r/l +-  {0, 1}"; 

r/.r ~ {0, 1}n: (o', com,  r/l . . . . .  r/.,.)} 

are indistinguishable. 

Proof.  Consider the family of  probability distributions T = {T~o~ [ Is = n c and .~ 
L p } where 

T,..; = {cr, s , g  *-- {0, 1}"; (com, d e c )  ~-- C(o ' ,  s ) ;  

r/l = f , (x l ) ;  

r/.c = fs(x.c): (tr, corn, )71 . . . . .  r/.c)}. 

1. T is indistinguishable from V. 
Suppose they are not and let C be an efficient nonuniform algorithm that distin- 

guishes T and V. That is, there exist a constant d and an infinite set 2- of  (n, s 
for which the probability that C,..~ outputs 1 on input a string chosen according 
to T,n~ differs by more than I~1 -a  from the probability that it outputs 1 on input a 
string chosen according to Vt..~. 

Then we construct an algorithm D = {Dl. } that distinguishes a randomly chosen 
function from F from a completely random function 9 

Let n be such that there exists a .~ for which (n, s ~ 2. D,. has .~ "wired- 
in" and proceeds as follows 9 It randomly chooses a,  s ~ {0, 1 }n and computes 
a commitment  corn of s using a ;  then it asks for the value of the function at 
xl . . . . .  x c receiving answers )71 . . . . .  rLc. Finally, it gives as output the result of  the 
computation of C,n~ on input TEST = (a, corn, r/l . . . . .  r/no ). Now, if the function 
D,n has access to is randomly chosen from F, then TEST is distributed according 
to T,n.~. On the other hand, if the function Dl~ has access to is a truly random one, 
then TEST is distributed according to V,.~. Thus, D is a distinguishing algorithm 
for F which contradicts the pseudorandomness of  F. 

2. T is indistinguishable from/A. 
Again, suppose they are not and let C be an efficient nonuniform algorithm such 

that, for a constant d and an infinite set 2 of  (n, .~), the probability that C~..~ outputs 
1 on input a string chosen according to T,.~ differs by more than I~1 -a  from the 
probability that it outputs 1 on input a string chosen according to U,n.~. 

Consider now the following nonuniform algorithm Go~ that receives as input 
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a commitment corn, computed using tr, of a string of length n = Isl = I~1 and 
outputs a guess to whether c om is the commitment of g. The algorithm knows s  9 2" 
of size n c. Such a tuple exists for infinitely many values of n. G.~ computes rh = 
f~ (x l) . . . . .  %,,. = f~ (x~ Then it gives in output the result of the computation of 
C,o~ on input TEST = (a, c o m ,  /~l . . . . .  l~.c ). 

If com is a commitment of 6", then TEST is distributed according to U,,~. While 
if com is a commitment of a random string of length n, then TEST is distributed 
according to T,.~. Thus, algorithm B contradicts Lemma I. 

Using the transitivity of the indistinguishability relation, the lemma follows. [] 

We have thus proved Theorem 2. The following theorem also holds. 

Theorem 3. I f  one-way functions exist and all NP languages have an NIZK proof 
system of  membership with efficient prover, then all polynomial-time relations have an 
NIZKPK with constant-round preprocessing. 

Proof. The theorem is proved using Theorems 1 and 2 and the facts that one-way 
functions imply the existence of pseudorandom collections of functions (Fact 3), secure 
commitment schemes (Fact 3), and constant-round zero-knowledge proof system of 
knowledge for all polynomial-time relations (Fact 4). [] 

Remark. As we have observed, in the proof system (P, v) all instances have length 
bounded by the length n of the preprocessing stage (actually, by the length of the string s 
to which the prover committed in the preprocessing). The extension to instances of length 
polynomial in n can be achieved by breaking (see [6]) a long instance into a polynomial 
number of instances of length at most n and proving each of them individually. 

Applications. In our proof system it is not necessary that the verifier is the same in 
the preprocessing and in the proof stage. Instead, it is enough that the verifier of the 
proof stage trusts the correctness of the preprocessing stage. This suggests replacing 
the interactive preprocessing stage (that now has to be performed with each potential 
verifier) with a preprocessing stage that is performed with a trusted center. In a sense, 
this preprocessing is some sort of a registration of the prover and is conceptually similar 
to the interaction needed in establishing a new key in a public-key cryptosystem. This 
makes our results of potential applicability in the traditional public-key setting. 
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