
J. Cryptology (1996) 9:129-148 Journal of

CRYPTOLOGY
0 1996 International Association for
Cryptologlc Research

The Power of Preprocessing in Zero-Knowledge
Proofs of Knowledge*

Alfredo De Santis and Giuseppe Persiano
Dipartimento di Informatica ed App., Universit/t di Salerno,

84081 Baronissi (Salerno), Italy
ads @ udsab.dia.unisa.it

giuper @ udsab.dia.unisa.it

Communicated by Claude Cr6peau

Received 16 October 1992 and revised 27 March 1995

Abstract. We show that, after a constant-round preprocessing stage, it is possible for
a prover to prove knowledge of a witness for any polynomial-time relation without
any further interaction. The number of proofs that can be given is not bounded by any
fixed polynomial in the size of the preprocessing. Our construction is based on the sole
assumption that one-way functions and noninteractive zero-knowledge proof systems
of membership exist.

Key words. Zero knowledge, Noninteractive proof systems, Proofs of knowledge.

1. Introduction

A Zero-Knowledge Proof of Knowledge (in short, ZKPK) is a protocol between two
parties called the prover and the verifier. The prover wants to convince the verifier that
he knows a witness w and that an input string x belongs to a language L (for example,
x is a graph, L is the language of the Hamiltonian graphs, and to is a Hamiltonian path
in x) without revealing any additional information. The concept of ZKPK is closely
related to the concept of a zero-knowledge proof of membership where the prover wants
to convince a polynomial-time verifier that an input string x belongs to the language L.
It can be easily seen that in the interactive case ZKPK exist under the assumption of the
existence of one-way functions since the zero-knowledge proof of membership for all
NP of [24], as most proofs of membership proposed so far in literature, turn out to be
also proof of knowledge.

* The research by Alfredo De Santis was partially supported by the Italian Ministry of the University and
Scientific Research and by CNR. Part of Giuseppe Persiano's work was done while at Harvard University,
partially supported by NSF Grant No. NSF-CCR-90-07677.

129

130 A. De Santis and G. Persiano

However, in the noninteractive setting, introduced in [7] and further developed and
analyzed in [6], where prover and verifier share a random string, things are different. For
example, it is not known whether the zero-knowledge proof of membership for 3SAT
of [6] is also a proof of knowledge and actually it was suspected that no ZKPK existed
in this setting. The authors, in [15], have presented a general procedure to construct
noninteractive Zero-Knowledge Proofs of Knowledge (NIZKPK) from noninteractive
zero-knowledge proofs of membership, thus proving the feasibility of the notion of proof
of knowledge in the shared-string model. They also show that proving the existence of
NIZKPK based only on one-way permutations is as hard as separating P from NP. This is
unfortunate, as, besides having its own interest, ZKPK constitute an important building
block of secure cryptographic protocols. The ability to give ZKPK in a noninteractive way
would greatly reduce the communication complexity of many cryptographic applications
and thus one would like to be able to base their existence on the most minimal assumption
possible.

In this paper we consider the problem of obtaining NIZKPK based on the most minimal
possible assumption and propose the concept of a Noninteractive Zero-Knowledge Proof
System of Knowledge with Preprocessing (in short, NIZKPK with preprocessing).

In an NIZKPK with preprocessing, the prover and verifier perform a small interactive
preprocessing stage during which the prover interactively proves that he has some specific
knowledge (in our implementation the string he has committed to). Later, he can give
to the verifier (or to anyone else who trusts the correctness of the interactive stage) any
polynomial (in the length of the preprocessing stage) number of ZKPK. We prove the
existence of NIZKPK with preprocessing under the weak assumption of the existence
of one-way functions and of noninteractive zero-knowledge proofs of membership.

Our model perfectly fits many cryptographic scenarios in which two parties have the
opportunity to interact for a while and establish some common knowledge and then they
depart. For example, this is the case for a public-key cryptosystem where an interactive
identification phase is needed when a user enters their public key into the public file. Also,
this is the case for electronic cash protocols in which a bank and the user establish some
common knowledge to open a bank account after which no further interaction is needed
for the user to spend his money. We refer the reader to [14] for a communication-efficient
protocol for electronic cash based on ZKPK with preprocessing.

Related Work

Noninteractive Zero Knowledge. The problem of reducing the communication needed
for such a basic cryptographic primitive as zero-knowledge proof has recently emerged
as a major line of research in Theoretical Cryptography. In [61 and [7] it is proved that
interaction can be disposed of in zero-knowledge proofs of membership provided that a
short random string is shared beforehand by the prover and verifier (see also [12]). More
precisely, in [6] it is proved that under the quadratic residuosity assumption, a prover
that shares a random string with a verifier can prove in writing (and thus noninterac-
tively) and in zero-knowledge any polynomial number of NP theorems. Feige et al. [18]
constructed a noninteractive zero-knowledge proof system for all NP based on certified
trapdoor permutations. In this construction, as well as in that of [6], it is sufficient for the

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 131

prover to be a polynomial-time machine with a witness. Bellare and Yung showed [5]
how to obtain the same result assuming only trapdoor permutations. If the prover has the
power to invert one-way permutations, then the construction of [18] can be based on the
existence of one-way permutations. In [11] it was shown how to obtain noninteractive
zero-knowledge in a public-key scenario.

Noninteractive Zero Knowledge with Auxiliary Language. A model related to ours
has been proposed in [13]. In this paper the notion of noninteractive zero-knowledge with
auxiliary language is proposed, where all the interaction needed for a zero-knowledge
proof is squeezed to an interactive preprocessing phase. The length of this interactive
phase bounds the overall size of theorems that can be later proved in a noninteractive
manner. Seen from a different angle, the prover needs to know the length of the theorems
(but not the theorems themselves!) he wants to prove in advance. The implementation
proposed in [13] is based on any one-way function and after a preprocessing of size n
only theorems of total size at most n 1/3 can be noninteractively proved. It is interesting to
note that, even though our model is a stronger one, we still manage to base our protocol
on the very weak assumptions of the existence of one-way functions and noninteractive
zero-knowledge proofs of language membership.

Constant-Round Zero Knowledge. A different approach to the study of communi-
cation in zero-knowledge proofs has consisted in studying the round complexity of
zero-knowledge proofs. On the negative side, Goldreich and Krawczyk [23] have proved
that only BPP languages have three-round zero-knowledge proofs in the original model
of [25] where the verifier is a polynomial-time machine and no limitation is imposed
on the computational power of the prover. Brassard et al. [10] have considered the dual
case when the prover is a polynomial-time machine and the verifier may have infinite
computing power. They presented constant-round zero-knowledge proofs for all NP in
this model under the assumption of the existence of one-way certified group actions
(e.g., discrete logarithm). Feige and Shamir [19] have instead obtained constant-round
zero-knowledge proofs of knowledge for all NP in the case when both the prover and
the verifier are polynomial-time machines and were able to base their construction on
the weaker assumption of the existence of one-way functions. The problem of obtaining
constant-round zero-knowledge proofs for all NP in the model of [25] remains open.
Bellare et al. [4] have given constant-round perfect zero-knowledge proof systems for
random self-reducible languages (e.g., graph isomorphism, quadratic residuosity).

Proofs of Knowledge. The relevance of ZKPK to the design of secure protocols was
first recognized in [21]. Later, the concept of an interactive proof of knowledge was put
forward in the proceedings version of [25], although no formal definition was given.
Proofs of knowledge turned out to be a very subtle object difficult to formalize and,
since then, various definitions have been proposed for the interactive case, the first being
the one of [17]. The concept of proof of knowledge has also been explored in [30], that
showed that all random self-reducible languages have such proofs. See also [3] for a
discussion of definitional issues regarding proofs of knowledge. It is easy to see that the
proofs of membership of [24] for all NP are also proofs of knowledge according to the

132 A. De Santis and G. Persiano

definition of [17]. Furthermore, the zero-knowledge proofs of [19] for the case when
prover and verifier are both polynomial time are also proofs of knowledge.

The concept of a computationally convincing proof of knowledge where the prover
is restricted to being polynomial time was studied in [9] where a definition capable of
taking into account very nasty behaviors from the prover was proposed. In the same
paper it was also proved that the constant-round arguments of [10] are also proofs of
knowledge according to the proposed definition. A much easier to prove constant-round
computationally convincing ZKPK is presented in [8].

The study of the noninteractive case is instead much more recent. In [15] the authors
gave a definition of proof of knowledge in the shared-string model of [6] and showed
the existence of ZKPK for all relations under complexity assumption. In the same paper
they also showed that proving that one-way permutations are sufficient for their existence
(remember that in the interactive case, one-way functions are sufficient for ZKPK) is as
hard as separating P from NP.

Communication Complexity in Distributed Multiparty Computation. The com-
munication complexity of a protocol is an important measure for distributed multiparty
protocols. Bar-Ilan and Beaver [I] were the first to investigate the round complexity for
secure function evaluation and exhibited a noncryptographic method that saves a loga-
rithmic number of rounds. Beaver et al. [2] showed how any function can be securely
computed using only a constant number of rounds of interactions, under the assumption
that one-way functions exist. Feldman and Micali [20] gave a constant-round protocol
for the well-studied Byzantine agreement problem.

2. Notation and Cryptographic Background

We denote by N the set of natural numbers. If S is a probability space, then "x * - S"
denotes the algorithm which assigns to x an element randomly selected according to S.
If F is a finite set, then the notation "x ~ F " denotes the algorithm which assigns to
x an element selected with uniform probability from the set F. For example, writing
"or +-- {0, 1 }n,, means that the string ~r is picked with uniform distribution among all
strings of length n.

If p (- , . , . . .) is a predicate, the notation Pr (x ~ S; y , ' - T; . . . : p(x , y)) de-
notes the probability that p(x , y) will be true after the ordered execution of the
algorithms x +-- S, y * - T

The notation {x +-- S; y ~ T; . . . : (x, y)} denotes the probability space over
{(x, y, . . .)} generated by the ordered execution of the algorithms x +- S, y +-- T

We say that a function f : N ~ N is negligible if for all constants d there exists a
constant nd such that for all n > n d it holds that f (n) < n -d.

An efficient algorithm is a probabilistic algorithm running in expected polynomial
time. An efficient nonuniform algorithm D = { Dx } is a family of efficient algorithms
where Dx has a program of size polynomial in Ix I. That is, Dx has "wired-in" a polynomial
amount of information about x.

The symbol a ~ b denotes the bitwise xor of the binary strings a and b. If a is shorter
than b, then we pad a with zeros so that the two strings have the same length.

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 133

Le t s be an m-pie (xl, x2 xm) of strings. Writing Ixl denotes the number of strings
in .~ and when we write .~ c L we mean that all the elements of ~ belong to L.

We now recall the notion of indistinguishability that is crucial to zero-knowledge. We
address the reader to the original paper of [25] for motivation of this definition.

Definition 1 (Indistinguishability). Let L c {0, 1}* and let/ , / = {U(x)lx ~ L} and
V = { V (x) Ix 6 L } be two families of random variables over {0, 1 }*. We say that/.4 and V
are indistinguishable (in symbols L / ~ l;) if, for all efficient nonuniform distinguishing
algorithms D = { Dx }, for all positive constants c, and for all sufficiently long x 6 L,

I P r (a ~- U(x): Dx(a) = 1) - P r (a ~- V(x): Dx(a) = l)l < Ixl -c.

The following fact holds.

Fac t 1. I fH ~ V and V ~. Z, then Lt -.~ Z.

2.1. Pseudorandom Collections of Functions

In this section we briefly review the concept of a pseudorandom collection of functions
that will play an important role in our construction of NIZKPK with preprocessing.

The concept of pseudorandom function has been introduced by Goldreich et al. [22].
Intuitively, we say that a collection of functions is pseudorandom if the value output of
a function chosen at random from the collection on arguments chosen by a polynomial-
time algorithm cannot be distinguished from the output of a truly random function. More
formally, we have the following definition.

Definition 2. Let c be a positive integer constant. A c-distinguishing algorithm is an
efficient nonuniform algorithm D = { D)o } where each D 1,, has an oracle that computes an
unknown (to Din) function f : {0, 1 }n __~ {0, 1 } no. We denote by D f the probability space
induced by the output of Din when given access to an oracle computing the function f .

Definition 3. Let c be a positive integer constant, let Rn be the set of all functions
r: {0, l} n ---> {0, l} no, and le tF = {fs} be a collection of functions where fs: {0, l})sl -~
{0, l })sIc. We say that the collection F is a c-pseudorandom collection of functions if, for
all c-distinguishing algorithms D = { Dl~ } and for all constants d > 0,

IP r (r * - - R . : DI r : 1) - Pr(s ~-- {0, 1}": D~ = 1)1 < n -d.

The following theorem shows that the existence of one-way functions is sufficient
for the existence of c-pseudorandom collections of functions for all positive integer
constants c.

Fact 2 [22], [27], [26]. lfone-wayfunctions exist then,forallpositive integer constants
c, there exist c-pseudorandom collections of functions.

134 A. De Santis and G. Persiano

2.2. Secure C o m m i t m e n t S c h e m e s

A secure commitment scheme is a protocol for two polynomial-time parties. It allows one
party, the committer, to commit to a bit b in such a way that he can later show to the other
party, the decommitter, the bit he has committed to. However, until b is decommitted,
the decommitter cannot predict the bit with probability significantly better than 1/2 and,
once the bit has been committed to, the committer cannot change it. Our formal definition
has been inspired by the scheme proposed by Naor [29].

Definition 4. A secure c o m m i t m e n t s c h e m e is a pair (C, D), where C is an efficient
algorithm and D is a deterministic polynomial-time algorithm, such that:

I. Meaningfullness. For all b 9 {0, 1 }, for all constants d > 0, and for all sufficiently
large n,

P r (a ~ {0, 1}n; (com, dec) * - C(tr, b): D(com, dec , or) ---- b) > 1 - n -d .

2. Uniqueness of r ecommi tment . For all efficient algorithms Adv, for all constants
d > 0, and for all sufficiently large n,

Pr(tr , - {0, 1}n; (corn, dec0, deCl) +-- Adv(o'): D(com, d e c 0` or) ---- 0

AND D(com, dec1, tr) = l) < n -d.

3. Indis t inguishahi l i tyofeommitment .Thefamil iesofrandomvariables {V0(tr)la 9
{0, 1}*} and {Vl(tr)ltr 9 {0, 1}*}, where

Vb(o) = {(com, d e c) +-- C(tr, b) :com},

are indistinguishable.

We now briefly comment on our definition. The mechanics of a commitment is the
following. A random string a of length n is given to both parties (as we shall see later,
this string can be chosen by the decommitter). Then, to commit to a bit b, the committer
runs algorithm C and obtains a pair of strings (com, d e c). The string corn is given to
decommitter, while d e c is kept secret. To decommit to the bit, the string d e c is revealed
and the decommitter can compute, by running algorithm D, the b that has been originally
committed to. Property 1 says that if both parties follow the protocol, then the protocol
succeeds with very high probability. Property 2 guarantees that it is very unlikely that a
committer manages to compute for the same string com two different strings dec0 and
deC l that convince the decommitter that the bit committed is a 0 and l, respectively.
The third property says that, for all sufficiently long strings cr, no polynomially bounded
algorithm can distinguish between a commitment of a 0 and a commitment of a i. As
this property holds for all sufficiently long strings a , we can let the decommitter pick or.
In fact, he has nothing to gain by choosing ~r in some special way; but a careless choice
of tr might allow the committer to cheat.

The notion of a secure commitment scheme can be easily extended to any string x. If
x = bl - 9 9 b,, is an m-bit string, then C(cr, x) is intended to consist of the m different
commitments C(tr , bi), i = 1 m . In this case, it can be seen that property 3 can be
extended to any two strings. That is:

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 135

3. Indistinguishability of string-commitment. Let 11 and 12 be two subsets of {0, 1 }*
such that, for all n, Ill n {0, 1 }n I = t12 n {0, 1 }n I = 1. Then the families of random
variables {Vl(~r)l~r ~ {0, 1}*} and {Vz(~r)l~r c {0, 1}*}, where

V~.(cr) = {s +- li n {0, 1}l~rl; (com, d e c) *- C(cr, s): com},

are indistinguishable.

In what follows we use the following equivalent property.

Lemma 1. Let I be a subset of{0, 1}* such that, for all n, II N {0, 1}hi = 1 and let
(C, D) be a secure commitment scheme. Then the families of random variables,

and

V(cr) = {s +-- 1 n {0, 1}1~1; (com, d e c) +-- C(a, s): com}

R(a) = {r +- {0, 1}1~1; (com, d e c) +-- C(~, r): com},

are indistinguishable.

The following result is due to M. Naor [29].

Fact 3. The existence of one-way functions implies the existence of secure commitment
schemes.

2.3. Noninteractive Zero-Knowledge Proofs

The concept of a noninteractive zero-knowledge (NIZK) proof has been put forward
in [7] and further elaborated in [6]. They showed that, under the quadratic residuosity
assumption, if a random reference string readable by both the prover and the verifier is
available, it is possible for the prover to give any polynomial number of NIZK proofs.

The property of zero-knowledge is defined by means of a simulator which generates
pairs of reference strings and proofs which cannot be told apart by any efficient nonuni-
form algorithm. In the definition of [6], the simulator was defined as a machine which
first gets theorems to be proved and then starts the computation. For our construction we
need a different kind of simulation called on-line simulation that has been introduced
by [16]. An on-line simulator is a pair of efficient algorithms S = (Sl, $2). Sn on input
1 n outputs a string cr of length n along with some information a u x about or. $2 then
receives theorems and, using a u x and a , computes proofs which are indistinguishable
from real ones.

The proof system of [6] and [18] have an on-line simulator. In [16] it is proved that, if
one-way functions exist, any NIZK proof system with efficient prover can be transformed
into NIZK proof system with on-line simulator.

3. NIZKPK with Preprocessing

In this section we give the formal definition of the concept of NIZKPK with preprocess-
ing. We start by defining the concept of a polynomial-time relation.

136 A. De Santis and G. Persiano

Definition 5. A relation is a subset of {0, 1 }* • {0, 1 }*. A polynomial-time relation 79
is a relation such that:

1. There exists a constant a, called the expansion constant of 79, such that if (x, w) 9
79, then [wl _< Ixl a.

2. It is possible to check in time polynomial in]xl whether (x, w) 9 7 9.

We say that (x, u,) 9 79, if (x, u,) 9 79 and Ixl ~ n. For each polynomial-time relation
79 the language

LT~ = {x: 3w for which 79(x, w) holds}

belongs to NP. Conversely, every NP language naturally defines a polynomial-time re-
lation.

Following [25], we model our prover and verifier as interactive Turing machines.

Definition 6. An Interactive Turing Machine (ITM) is a probabilistic Turing machine
running in polynomial time with five tapes: a read-only input tape, a read/write work
tape, a write-only communication tape, a read-only communication tape, and a write-only
output tape.

We say that two ITMs A and B constitute a pair oflTMs if they share the input tape
and the two communications tapes; that is one's write-only (read-only) communication
tape is the other's read-only (write-only) communication.

The computation of a pair of ITMs (A, B) proceeds as follows. A and B take turns
in becoming active with A becoming active first. When a machine is active it reads
from its read-only communication tape, computes and writes a message on its write-
only communication tape. That is, the ith message exchanged is a function of the public
input, the private input, the coin tosses, and the previous messages.

Let (A, B) be a pair of ITMs. By the writing UA,B(X), we denote the probability space
that assigns to each triplet (R, Trans, u) the probability that R is B's random coin tosses
and that Trans and ot are, respectively, the transcript of the conversation between A and
B and the output of A, when x is the public input and B uses R as random coin tosses.
Instead, writing (A ~ B)(x) denotes the probability space that assigns to each pair
(~, fl) the probability that string c~ is written on A's output tape and string/~ on B's
output tape, after an interaction where A and B receive as input x.

To define the notion of proof of knowledge, we need the concept of an extractor. We
say that an extractor is a probabilistic Turing machine that can access an ITM A as an
oracle; i.e., it can feed the ITM with an input, run an interactive protocol with it, and
rewind the machine to a specific state, but cannot read A's private and work tapes. If A
is an ITM and E x t is an extractor, by writing (A ~ Ext) (x) we denote the probability
space that assigns to each pair (c~, fl) the probability that string t~ is written on A's output
tape and that string/3 is on E x t ' s output tape, after Ex t has computed with A as an
oracle on input x.

We are now ready to introduce the concept of NIZKPK with preprocessing.

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 137

Definition 7. A pair (P, V), where P = (Pi, P2) and v = (Vl, V2), is a preprocessing
pa i r if Pl and Vl constitutes a pair of ITMs and P2 is a probabilistic Turing machine run-
ning in polynomial time and v2 is a deterministic Turing machine running in polynomial
time.

Definition 8. Let (P, V) be a preprocessing pair. We say that (P, v) constitutes an
N I Z K P K with preprocessing for the polynomial-time relation 79 if the following three
conditions are satisfied:

1. Completeness . For all constant d > 0, for all (x, w) 9 7 9, and for all sufficiently
large n,

Pr((ot, 13) 4- (P, +~ Vl)(l~ (x, 11) 4- P2(Ot, X, tO): V2(fl, X, I'I) = 1) _ 1-n -d.

. Validity. There exists an extractor algorithm E x t = (E x t 1, Ex t2) such that, for all
pairs Adv = (Advl, Adv2) of efficient algorithms, for all a, and for all sufficiently
large n,-

Pr((~, /3) ~_i (gdvl ~-~ EXtl) (ln) ; (X, Il) <-- Adv2(ot);
tO 4-- Ext2(f l , X, l-I): (x, to) 9 79) > Pn 9 (1 - n-a) ,

where pn denotes the probability

.

p , = Pr((ot,/3) 4- (Advl ~ v 0 (l ") ; (x, Il) +- Adv2(ot): V2(fl, X, I'I) = 1).

Zero knowledge. For each pair '~ = (X~l, xJ2) of ITMs, there exists an efficient algo-
rithm M such that, for all xl, x2 9 Lg , for all efficient nonuniform algorithms
D, for all constants d, and sufficiently large n,

where

IP r (y 4- M (l n , x l , x 2 ): DI . (y) = 1)
- P r (y 4 - V i e w f l (n , x l , x 2 ): D I , (y) = 1)1 < n -d,

Viewfr(n, Xl, x2) = {(R, Trans, ct) 4- up,,~, (1");
(Xl, HI) +'- P2(O/, Xl, Wl);
(X2, 1"I2) 4 - P2(Ot, X2, 1/92);

: (R, Trans, I l l , 1-I2)}.

We say that an interactive pair (P, v) is a noninteractive proof system of knowledge
with preprocessing if completeness and validity are satisfied.

In the definition of validity we let Advl and Adv2 communicate through the string ot
computed as output by AdVl. In our proof, without loss of generality, we let ot be Advl ' s
view of the interaction with "el (including Advl ' s coin tosses).

Our definition handles any number of formulae of arbitrary size in completeness, va-
lidity, and zero-knowledge. That is, every true theorem can be proven, no matter how
long. Of course longer theorems will have longer proofs and thus the verifier will have

138 A. De Santis and G. Persiano

more time to verify the proof. Similarly, we guarantee the extractor to succeed in extract-
ing a witness, with a probability which is close (up to a factor negligible with respect to
the length of the preprocessing stage) to the probability with which the verifier is con-
vinced. The zero-knowledge property holds with respect to nonuniform distinguishing
algorithms whose running time and program size are bounded by a polynomial in the
length of the preprocessing. This means that if a theorem (and thus its proof) is expo-
nentially long in the length of the preprocessing stage, the distinguishing algorithm can
only compare view and output of the simulator for a polynomially long prefix.

4. NIZKPK with Preprocessing for all Polynomial-Time Relations

In this section we present an NIZKPK with preprocessing (p, v) for a polynomial-time
relation 79; we denote by a the expansion constant of 7 9. In our proof system, after a
preprocessing of size n, any polynomial number of ZKPK can be given for instances x
of length at most n. However, as we shall see later, this restriction can be extended using
a standard technique.

The Preprocessing Stage. The preprocessing stage is executed only once and does not
depend on the choice of the theorems that will be proved.

A formal description of the protocol for the preprocessing stage is found in Fig. 1. In
the description of the protocol for the preprocessing stage we denote by (C, D) a secure
commitment scheme and we let COMMIT be the polynomial-time relation defined by

((O', com), (s, dec)) 9 COMMIT iff D(com, dec, cr) = s.

The following fact holds.

Fact 4 [19]. If one-way functions exist, then all polynomial-time relations have a
constant-round zero-knowledge proof system of knowledge.

In what follows, we let (Pro, Ver) be the constant-round zero-knowledge proof system
of knowledge for the polynomial-time relation COMMIT.

In several points of our protocol, one of the two parties needs to check the validity of
the message received from the other either explicitly (e.g., at step 5) or implicitly (e.g.,
at step 6 when executing the proof system (Pro, Ver)). We assume that, if the check is
not passed, the party performing the check stops.

We remark that the preprocessing stage only takes a constant number of rounds.

The Proof Stage. Let F = {f~} be a a-pseudorandom collection of functions and let
the pair (A, B) be an NIZK proof system of membership for the following NP language:

CHECKp = {(~r e, corn, x, y): exist dec and
s s.t. D(com, dec, o-e) = s and (x, y (9 f~(x)) 9 79}.

In what follows we drop the subscript 7 9 and write simply CHECK. A formal description
of Pz'S and v2's programs are found in Fig. 2.

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 139

Protocol for the preproeessing stage
Input: 1" (security parameter).
Phase I

1. Pl: Randomly choose and send o-~, 9 {0, 1}" to vl .
2. v l : Randomly choose p 9 {0, 1}".

Compute (0, 3) *-- C(o- v, p).
Send r/to P l.

3. Pl: Randomly choose and send r 9 {0, 1 }" to Vl.
4. v l : Compute o- = p (9 r.

Send o- and p to p~.
5. pl: Verify that o- = p (3 r.
6. V~ +-> 91: (V~, p~) execute proof system (Pro, Ver), to prove in zero-

knowledge that vl knows 3 such that ((o-v, r/)(p, 3)) 9 COMMIT.
Phase I I

7. vl : Randomly choose o-e 9 {0, 1 }" and send it to pi.
8. Pl: Randomly choose s 9 {0, 1}" and compute (com, d e c) *-- C(o- e, s).

Send corn to Vl.
9. Pl ++ vl : (Pl ,Vl) execute proof system (Pro, Ver), to prove in zero-

knowledge that Pl knows d e c and s such that D(com, dec , o-e) = s.
Ou tpu t for PI : o', o'e, (com, d e c) , s.
Output for Vl: o-, cr e , corn.

Fig. 1. The protocol for the preprocessing stage.

p2's p rog ra m
Input from preprocessing: (o-, o-e, (corn, dec) , s) such that D(com, d e c , ap) = s.
Input to P2: (Xl, W l) , (X 2 , tO2) 9 9 9 6 ~O[trl.
F o r / = 1,2

1. Compute f s (xi) and Yi = wi ~) f.~ (xi) .
2. Run A on input o-e, com, d e c , s, xi , Yi using a as the reference string. Let

Pfi be the output. (P f i is a "proof" that (o-e, com, Xi, Yi) 9 CHECK.)
3. Send ((o-e, corn, xi , yi), Pfi) .

V2'S p r o g r a m
Input f rom preprocessing: o-, o-e, com.
Input f rom P2: ((o-~, corn', xi , 7'/), Pfi) , for i = 1, 2
F o r / = 1,2

 9 Verify that o-e = tr~ and cora=com'.
 9 Execute B's program on input ((o-e, com, xi, yi), P f i) and the reference

string o-.
If all checks are successfully passed accept, otherwise reject.

Fig. 2. The programs for the proof stage.

140 A. De Santis and G. Persiano

The Choice of the NIZK Proof of Membership. Our protocol is quite flexible in the
choice of the NIZK proof system which is used in the proof stage. If other NIZK proof
systems are available, the above protocol could be modified to accommodate them. For
example, if in the preprocessing step prover and verifier establish n oblivious channels,
then they can use the protocol by [28] for NIZK proofs. There are few differences if
we use either of the two NIZK proof systems. First, the minimal assumption on which
such systems have been shown to exist: one-way trapdoor permutation in one case and
oblivious transfer in the other. Second, transferability. Using the reference string the
proofs are transferable to others who trust the correctness of the construction of the
string com. This is a fundamental property for protocols for electronic cash (see [14]).
Another possibility is the use of the NIZK proof systems with preprocessing of [13].
This has the advantage of being based on the sole existence of one-way functions, but
has a drawback that only a small theorem (its size depends on the preprocessing stage)
can be noninteractively proved.

The proof that the above protocol is indeed an NIZKPK is divided into two parts.
First, we prove that it meets the completeness and soundness requirements and then, in
the next section, we prove the more subtle property of zero-knowledge.

Theorem 1. The pair (P, V) is a noninteractive proof system of knowledge with pre-
processing.

Proof. The completeness of (P, V) follows from the completeness of the interactive
proof system of knowledge (Pro, Ver) and the completeness of (A, B).

To prove the validity property, we have to exhibit an extractor (Ext l , Ext2) that,
interacting with an adversary Adv = (Advl, Adv2), is able to compute a witness for the
theorem that is being proved.

Algorithm Ext l behaves exactly like verifier vl except for step 9 when Advl is
supposed to give an interactive proof of knowledge. Here, Ext~ uses the extractor for
the interactive proof system of knowledge (Pro, Ver) to obtain dec and s from Advl. The
probability that Ex t i succeeds in computing dec and s is equal (up to a negligible factor)
to the probability that Ver accepts. This information is then passed onto Exe2 together
with a , trp, and dec (they correspond to string fl of Definition 8). Then Ext2 receives
from Adv2 a quadruple (trp, com, x, },) along with a proof Pf. Ext2 runs algorithm B
on input (trp, com, x, y), the proof Pf, and reference string tr. If B accepts, it outputs
w computed as to = fs (x) ~ y.

We distinguish two cases depending on whether the quadruple (try, com, x, y) does or
does not belong to CHECK. If (cry, com, x, y) belongs to CHECK, then clearly string to
computed by the extractor is a witness for x. On the other hand, if (trp, com, x, y) does
not belongs to CHECK, then (x, to) ~' 79 and we say that the extractor has failed. The
probability that the extractor fails to obtain a witness w for x is equal up to a negligible
factor to the probability that Adv~ succesfully completes the preprocessing stage and that
Adv2 makes v2 accept a quadruple not belonging to CHECK. Indeed the only difference
between the view received by Adv2 when Advl interacts with the extractor and the view
received by Adv2 when Advl interacts with the verifier v~ is in the portion of transcript
regarding step 9. However, by the properties of the extractor of (Pro, Ver), these two

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 141

views are indistinguishable, whence we can conclude that the two probabilities are equal
up to a negligible factor.

We now show that the probability that (ap, cora, x, y) ~g CHECK and V2 accepts the
proof provided by Adv2 is negligible thus proving that the extractor fails with negligible
probability and concluding the proof of the validity property. To this aim, we consider
the following mental experiment.

A Mental Experiment. We have Adv interact with an efficient machine G defined
as follows. During Phase I, G follows v l ' s program but instead of sending string p he
has committed to, he sends a random string p'. Then, at step 6 he uses the simulator
of proof system (Pro, Ver) to produce a transcript of a proof that convinces Advl that
p ' is the string he has committed to. In Phase II, G behaves exactly as Ext~ (i.e., it
computes s and dec using the extractor of (Pro, Ver)). Then Adv2 receives from Advl
the transcript of the preprocessing stage (along with Advl 's own random coin tosses),
chooses strings x, F and sends (ap, corn, x, F) along with a proof string Pf. G checks if
(crp, corn, x, y) r CHECK (remember that G knows s and dec) and v2 accepts. If this
is the case G outputs 1 otherwise it outputs 0.

We now compare the view received by Adv2 from Advl when interacting with the
extractor and the view received by Adv2 in the experiment. The differences between the
two views are the following:

 9 In the view of Advl interacting with the extractor, string p is the string committed to
at step 2, while in the experiment p ' is chosen independently from the commitment
of step 2.

 9 In the view ofgdv~ interacting with the extractor, the proof at step 6 is obtained by
running Ver's program while in the experiment it is produced by the simulator.

Therefore, by the indistinguishability of the string commitments and by the zero-knowl-
edgeness of the proof system (Pro, Ver), the two views are indistinguishable and this
implies that the probability that the extractor fails and the probability that G outputs 1
are equal up to a negligible factor.

Next, we argue that the probability that G outputs 1 is equal (up to a negligible factor)
to the probability that Adv2 makes v2 accept a quadruple not in CHECK when the
reference string is chosen at random. Indeed we have the following two observations:

 9 As p' is chosen at random, reference string cr with respect to which Adv2 has to
produce a noninteractive proof is random.

 9 The view that Adv2 receives in the second experiment is indistinguishable from the
view that Adv2 receives from Adv~ interacting with Vl. This can be shown in a way
similar to what was done before.

Whence we conclude that the probability that the extractor fails to obtain a witness and
the verifier accepts is equal up to a negligible factor to the probability that Adv2 makes
v2 accept a quadruple not in CHECK when the reference string is chosen at random.
The latter probability is, by the soundness of (A, B), negligible thus proving the validity
property. []

142 A. De Santis and G. Persiano

4.1. (p, V) Is Zero-Knowledge

In this section we prove the following theorem.

Theorem 2. The pair (p, V) is an NIZKPK with preprocessing.

Intuitively (p, v) is zero-knowledge because all the verifier sees is just commitments
and zero-knowledge proofs on those commitments which would not give additional
information.

Let c be a constant. Without loss of generality, we consider for each pair of ITM V' =
(v' l, v[) , the familyofrandom variablesviewv, : {viewv,(n, .~)[x 9 L p and I~1 = nC} 9
Views(n , i) represents the view of what a verifier (v' 1, v[) sees when 1 n is given as
input in the preprocessing stage and ~ are the inputs of the noninteractive phase. Viewv~
consists of the following components:

 9 R, the random tape of v ' l .
 9 the n-bit strings tr, cr v , a , , O, r, p.
 9 Log~, the transcript of the interactive ZKPK that p is the string committed to.
 9 coax, the commitment of a random n-bit string s (unknown to v ' t) computed using

O'/,.
 9 Log2, the transcript of the interactive ZKPK that p knows the string committed to

by coax.
 9 F = (Yl y,c), where Yi = f s (x i) 9 wi and wi is a witness for xi.
 9 PF = (P f l P f , c) , where P f i is an NIZK proof of"correctness" of yi.

For the sake of compact notation, in what follows we drop the subscript V' t . We present a
simulator M such that the family of random variables .M = {M (1 n, Y): ~ 9 L~} cannot
be distinguished from View by any efficient nonuniform algorithm.

Here is a sketch of the simulator M. A formal description can be found in Fig. 3. M
receives as inputs 1" and an nC-tuple ~ and we let S = (Si, $2) be the on-line simulator
for the NIZK proof system (A, B). M starts by running St and obtains a string cr along
with some information a u x that allows $2 to simulate convincing noninteractive "proofs"
of any statement. Then M starts an interactive protocol with ~l at the end of which both
v ' l and M would have agreed on a as the string to use for the noninteractive proofs.
This is accomplished by running the protocol twice in the following way. The first run
is intended for M to learn the random string p to which v ' 1 has committed and, once p is
known, M rewinds v ' l and chooses his string so to obtain the string tr. Then M executes
step 9 of the preprocessing stage just as P would do.

In the simulation of the proof stage, M does not compute Yi as f s (x i) ~ wi (he
does not know wi !) but instead assigns to ~'i a truly random string. Then M runs the
simulator $2 for the NIZK on input or, aux, and the quadruple (try, coax, xi, Yi) to
ob t a in p f i .

First, clearly M runs in expected polynomial time. Indeed all computations can be
performed efficiently and the probability that at step 2.4 M has to restart is negligible
(this follows from the properties of the secure committment scheme).

We now compare the output of M on input (1 n, .~) with an element chosen from
v iew(n , .~). We see that some of the components have the same distribution; for example,

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 143

The program of M
Input: 1" and a tuple ,~ E L;o.

0. Set (~r, aux) +-- $1(1~).
Randomly choose random bits R for v ' 1 .

I. F i r s t
l . l
1.2
1.3
1.4
1.5

1.6

.

Trial .
Randomly choose tr,, ~ {0, 1 }n and send it to v ' 1 .
Receive commitment rl from V' 1.
Randomly choose r e {0, 1 }" and send it to v ' 1 .
Receive t~ and p from v ' 1 .
Check that 0 has been properly computed. If not, O u tpu t :
(R, o~, r/, r , ~', p).
Execute interactively with v ' 1 Ver's program to verify that V' l knows 8
such that ((cr,,, r/), (p, ~)) ~ COMMIT and let Log I be the transcript
of the interaction.
If Ver does not accept, then Ou tpu t : (R , r v , ~, r, 6 , p , 1,o9"1).

Obtaining or.
2.1 Rewind v ' 1 to state after step 1.2.
2.2 Send string ~ = o ~ p to v',.
2.3 Receive tr ' and p ' from v ' I.

Check that a ' has been properly
(R, tr,,,O, f , a ' , p ') .

computed. If not Ou tpu t :

2.4 Execute interactively with v ' l Ver's program to verify that v ' 1 knows 8'
such that ((~r,,, r;'), (p ' , 5')) ~ COMMIT and let Log I be the transcript
of the interaction.
If Ver does not accept, then Ou tpu t : (R, ~r v , rl, {', cr', p ' , Log I).
If Vet accepts but tr ~ tr ' , then goto 0.

3. Receive tre from v ' 1.
Randomly choose s e {0, l} n, compute (corn, d e c) +- C(trp, s), and send
com tO V' 1 .

4. Prove in zero-knowledge to v ' I knowledge of s and d e c such that
D(com, d e c , c r e) = s.
Let Log 2 be a transcript of the protocol.

5. F o r / = 1 n C
5.1 Randomly choose Fi E {0,1}" and compute Pf i 4--

$2 (O" e , C ore, Xi, Yi, O', aux) .
6. Set F = (Yl Y,c) and PF = (P f l Pf,c) .

Ou tpu t : (R, or,,, r/, ?, tr, p ' , LO9"I, o'e, com, Log 2, F, PF).

Fig. 3. The program of the simulator M.

cr,, and tre are random strings just as in the view of v ' , corn is the commitment of a
random n-bit string, and Log I is the transcript of a "conversation" between Pl and v ' 1.
Nonetheless, the two distributions are very different. First, the yi 's are not computed
correctly (that is, by xoring a witness of x i ' s with f s (xi)); moreover, string tr is not truly
random, as it should be. Though we shall prove that the two distributions cannot be told
apart by a polynomial ly bounded machine.

144 A. De Santis and G. Persiano

We assume for the sake of contradiction that there exists a nonuniform efficient algo-
rithm H = {Hv, } that violates the zero-knowledge property.

Consider the following family of random variables Z = {Z(n, :7)1~ 9 L~ and 1:71 =
nC}. For each :7 e Lv , the random variable Z(n, :7) consists of the output of algorithm
Z~ on input n. Z~ has "wired-in" Wl w , such that, for i = 1 n ~, (xi, wi) 9 79
and executes the same instructions of M on input (1" , :7) with one exception; at step 5.1,
Fi is computed as Fi = f,(x~) @ ws. We have the following lemma.

L e m m a 2. The families of random variables Z and V i e w are indistinguishable.

Proof. Suppose that Z and View are distinguished by an efficient nonuniform algo-
rithm D = {DI,, ~}. That is, there exists a constant a such that, for an infinite set 2- of
tuples :7,

where

and

IPrview(n, :7) - P r z (n , .r)l > n-a,

Prv iew(:7) = P r (a +-- v i e w (n , :7): D~(c0 = !)

Prz(:7) = Pr(ot <--- Z(n, :7): D~(ot) = 1).

We now describe a nonuniform algorithm C = {Cl~ .:~1.~ 9 CHECK} which distinguishes
the output of S from the view of B in the proof system (A, B). This would contradict
the zero-knowledgeness of (A, B) and prove the lemma.

Let X = ((X l , O p , c o m , oll) (Xn,',cre,com, ctn,')) 9 CHECK with :7 =
(Xl x, ,) 9 Z. Cj~ has "wired-in" witness wi for xi, i = 1 n C, and a string
such that corn is a commitment of g computed using string ~L. Cl~ receives as input
a pair (5-, I-l), with 161 = n, which is either the view of B on input X when an n-bit
random string is shared with A, or the output of S on input .~ and 1" C - executes M ' s

 9 I n . X

program with the following exceptions: at step 0, C,,~ sets cr = 6 ; at step 3, the string
s is set equal to g; at step 5.1, it sets Fi = oti; and at step 6, it sets PF = FI. Then C,.~
feeds D,,,~ with Test = (R, or,,, r/, r, ~r, p, Log I , c U, corn, Log 2, F, H). Now, if (6, H)
is distributed according to S(I", X), then Test is distributed according to Z(n, x); on
the other hand, if (5", H) is distributed according to B 's view, then Test has the same
distribution of View. Since D dis t~guishes between the two random variables, C is able
to distinguish the output of S(I" , X) from B's view. Contradiction. []

We now prove that Z and .A.4 are indistinguishable. By Fact 1, this will prove that M
and v i e w are indistinguishable and conclude the proof of the zero-knowledgeness of
(P, V).

The main difference between the two random variables is in the nature of F. In fact,
in Z the ith component of F consists of the xor of fs(Xi) and a witness for xi, where s
is the string committed to by com, while in the output of M it is just a random string.
However. as (C, D) is a secure commitment scheme and F is a pseudorandom family of
functions the two distributions are indistinguishable.

We use the following lemma.

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 145

L e m m a 3 . Let c be a constant. The fami l ies o f random variables ld =
{U,~ I I-~1 = n c a n d s ~ L p } and V = {V,..~ I I~1 = n ~ a n d ~ ~ L p } defined
as

U,n~ = {a, s + - {0, 1}"; (corn, d e c) +-- C(cr, s) ; /71 = fs(Xl);

~.~ = fs(x.~): (~r, corn,)71 r/.,)}

and

V,..; = {~,s +-- {0, l}n; (corn, d e c) +- C(o', s); r/l +- {0, 1}";

r/.r ~ {0, 1}n: (o', com, r/l r/.,.)}

are indistinguishable.

Proof. Consider the family of probability distributions T = {T~o~ [Is = n c and .~
L p } where

T,..; = {cr, s , g *-- {0, 1}"; (com, d e c) ~-- C(o ' , s) ;

r/l = f , (x l) ;

r/.c = fs(x.c): (tr, corn,)71 r/.c)}.

1. T is indistinguishable from V.
Suppose they are not and let C be an efficient nonuniform algorithm that distin-

guishes T and V. That is, there exist a constant d and an infinite set 2- of (n, s
for which the probability that C,..~ outputs 1 on input a string chosen according
to T,n~ differs by more than I~1 -a from the probability that it outputs 1 on input a
string chosen according to Vt..~.

Then we construct an algorithm D = {Dl. } that distinguishes a randomly chosen
function from F from a completely random function 9

Let n be such that there exists a .~ for which (n, s ~ 2. D,. has .~ "wired-
in" and proceeds as follows 9 It randomly chooses a, s ~ {0, 1 }n and computes
a commitment corn of s using a ; then it asks for the value of the function at
xl x c receiving answers)71 rLc. Finally, it gives as output the result of the
computation of C,n~ on input TEST = (a, corn, r/l r/no). Now, if the function
D,n has access to is randomly chosen from F, then TEST is distributed according
to T,n.~. On the other hand, if the function Dl~ has access to is a truly random one,
then TEST is distributed according to V,.~. Thus, D is a distinguishing algorithm
for F which contradicts the pseudorandomness of F.

2. T is indistinguishable from/A.
Again, suppose they are not and let C be an efficient nonuniform algorithm such

that, for a constant d and an infinite set 2 of (n, .~), the probability that C~..~ outputs
1 on input a string chosen according to T,.~ differs by more than I~1 -a from the
probability that it outputs 1 on input a string chosen according to U,n.~.

Consider now the following nonuniform algorithm Go~ that receives as input

146 A. De Santis and G. Persiano

a commitment corn, computed using tr, of a string of length n = Isl = I~1 and
outputs a guess to whether c om is the commitment of g. The algorithm knows s 9 2"
of size n c. Such a tuple exists for infinitely many values of n. G.~ computes rh =
f~ (x l) %,,. = f~ (x~ Then it gives in output the result of the computation of
C,o~ on input TEST = (a, c o m , /~l l~.c).

If com is a commitment of 6", then TEST is distributed according to U,,~. While
if com is a commitment of a random string of length n, then TEST is distributed
according to T,.~. Thus, algorithm B contradicts Lemma I.

Using the transitivity of the indistinguishability relation, the lemma follows. []

We have thus proved Theorem 2. The following theorem also holds.

Theorem 3. I f one-way functions exist and all NP languages have an NIZK proof
system of membership with efficient prover, then all polynomial-time relations have an
NIZKPK with constant-round preprocessing.

Proof. The theorem is proved using Theorems 1 and 2 and the facts that one-way
functions imply the existence of pseudorandom collections of functions (Fact 3), secure
commitment schemes (Fact 3), and constant-round zero-knowledge proof system of
knowledge for all polynomial-time relations (Fact 4). []

Remark. As we have observed, in the proof system (P, v) all instances have length
bounded by the length n of the preprocessing stage (actually, by the length of the string s
to which the prover committed in the preprocessing). The extension to instances of length
polynomial in n can be achieved by breaking (see [6]) a long instance into a polynomial
number of instances of length at most n and proving each of them individually.

Applications. In our proof system it is not necessary that the verifier is the same in
the preprocessing and in the proof stage. Instead, it is enough that the verifier of the
proof stage trusts the correctness of the preprocessing stage. This suggests replacing
the interactive preprocessing stage (that now has to be performed with each potential
verifier) with a preprocessing stage that is performed with a trusted center. In a sense,
this preprocessing is some sort of a registration of the prover and is conceptually similar
to the interaction needed in establishing a new key in a public-key cryptosystem. This
makes our results of potential applicability in the traditional public-key setting.

Acknowledgments

We thank an anonymous referee for carefully reading the manuscript. The second author
would like to thank Michael O. Rabin for his constant support and encouragment.

References

[1] J. Bar-Ilan and D. Beaver, Non-Cryptographic Fault-Tolerant Computation in a Constant Number of
Rounds of Interaction, Proceedings of the 8th PODC, 1989, pp. 201-209.

The Power of Preprocessing in Zero-Knowledge Proofs of Knowledge 147

[2] D. Beaver, S. Micali, and E Rogaway, The Round Complexity of Secure Protocols, Proceedings of the
22nd Annual Symposium on the Theory. of Computing, 1990, pp. 503-513.

[3] M. Bellare and O. Goldreich, On Defining Proofs of Knowledge, Proceedings of CRYPTO '92, Lecture
Notes in Computer Science, vol. 740, Springer-Verlag, Berlin, pp. 390-420.

[4] M. Bellare, S. Micali, and R. Ostrowsky, Perfect Zero Knowledge in Constant Rounds, Proceedings of
the 22nd Annual Symposium on the Theo~, of Computing, 1990, pp. 482--493.

[5] M. Bellare and M. Yung, Certifying Cryptographic Tools: the Case of Trapdoor Permutations, Pro-
ceedings of CRYPTO '92, Lecture Notes in Computer Science, vol. 740, Springer-Verlag, Berlin,
pp. 442--460.

[6] M. Blum, A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero Knowledge, SIAM Journal on
Computing, vol. 20, December 1991, pp. 1084-1118.

[7] M. Blum, E Feldman, and S. Micali, Non-Interactive Zero-Knowledge Proof Systems and Applications,
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 1988, pp. 103-112.

[8] G. Brassard, Constant-Round Perfect Zero Knowledge Made Easy (and Efficient), manuscript available
from the author, 1990.

[9] G. Brassard, C. Cr~peau, S. Laplante, and C. L~ger, Computational Convincing Proofs of Knowledge,
Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS 9 I),
Lecture Notes in Computer Science, vol. 480, Springer Verlag, Berlin, pp. 251-262.

[10] G. Brassard, C. Cr6peau, and M. Yung, Constant-Round Perfect Zero-Knowledge Computationally Con-
vincing Protocols, Theoretical Computer Science, vol. 84, 1991, pp. 23-52.

[11] A. De Santis, G. Di Crescenzo, and G. Persiano, Statistical Zero-Knowledge Arguments and Public-Key
Cryptography, Information and Computation, vol. 121, No. 1, August 1995, pp. 23-40.

[12] A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-Knowledge Proof-Systems, in Advances
in Cryptology--CRYPTO 87, ed. C. Pomerance, Lecture Notes in Computer Science, vol. 293, Springer
Verlag, Berlin, pp. 52-72.

[13] A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-Knowledge Proof-Systems with Pre-
processing, in Advances in Co'ptology--CRYPTO 88, ed. S. Goldwasser. Lecture Notes in Computer
Science, vol. 403, Springer-Verlag, Berlin, pp. 26%282.

[14] A. De Santis and G. Persiano, Communication Efficient Zero-Knowledge Proofs of Knowledge (with
Applications to Electronic Cash), Proceedings of the 9th Annual Symposium on Theoretical Aspects
of Computer Science (STACS '92), ed. A. Finkel and M. Jantzen, Lecture Notes in Computer Science,
vol. 577, Springer-Verlag, Berlin, pp. 449-460.

[15] A. De Santis and G. Persiano, Zero-Knowledge Proofs of Knowledge Without Interaction, Proceedings
of the 33rd Symposium on Foundations of Computer Scienee, 1992, pp. 427-437.

[16] A. De Santis and M. Yung, Cryptographic Applications of the Non-Interactive Metaproof and Many-
Prover Systems, in Advances in C~.ptology--CRYPTO '90, eds. A. J. Menezes and S. A. Vanstone,
Lecture Notes in Computer Science, vol. 537, Springer-Verlag, Berlin, pp. 366-377.

[17] U. Feige, A. Fiat, and A. Shamir, Zero-Knowledge Proofs of Identity, Journal of Cryptology, vol. I,
1988, pp. 77-94. (preliminary version in Proceedings of the 19th Annual ACM Symposium on Theot 3' of
Computing, 1987, pp. 210-217.)

[18] U. Feige, D. Lapidot, and A. Shamir, Multiple Non-interactive Zero-Knowledge Proofs Based on a
Single Random String, Proceedings of the 22nd Annual Symposium on the Theoo' of Computing, 1990,
pp. 3O8-317.

[19] U. Feige and A. Shamir, Zero-Knowledge Proof of Knowledge in Two Rounds, Advances in Co'ptology--
CRYPTO 89, Lecture Notes in Computer Science, vol. 435, Springer-Verlag, Berlin, pp. 526-544.

[20] E Feldman and S. Micali, Optimal Algorithms for Byzantine Agreement, Proceedings of the 20th Annual
Symposium on the Theory. of Computing, 1988, pp. 148-161.

[21] M. Fischer, S. Micali, and C. Rackoff, A Secure Protocol for the Oblivious Transfer, Eurocrypt, 1984.
[22] O. Goldreich, S. Goldwasser, and S. Micali, How To Construct Random Functions, Journal of the

Association for Computing Machinery, vol. 33, no. 4, 1986, pp. 792-807.
[23] O. Goldreich and H. Krawczyk, On the Composition of Zero-Knowledge Proof Systems, Proceedings of

the 17th International Colloquium on Automata, Languages and Programming, t986, pp. 174-187.
[24] O. Goldreich, S. Micali, and A. Wigderson, Proofs that Yield Nothing but Their Validity and a Methodol-

ogy of Cryptographic Design, Proceedings of the 27th Annual Symposium on Foundations of Computer
Science, 1986, pp. 174-187.

148 A. De Santis and G. Persiano

[25] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof-Systems,
SlAM Journal on Computing, vol. 18, no. 1, February 1989, pp. 281-308.

[26] J. H~tstad, Pseudorandom Generators Under Uniform Assumptions, Proceedings of the 22nd Annual
ACM Symposium on Theo~' of Computing, 1990, pp. 395-404.

[27] R. Impagliazzo, L. Levin, and M. Luby, Pseudo-Random Generation from One-Way Functions, Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing, 1989, pp. 12-24.

[28] J. Kilian, S. Micali, and R. Ostrowsky, Minimum-Resource Zero-Knowledge Proofs, Proceedings of the
30th IEEE Symposium on Foundation of Computer Science, 1989, pp. 474--479.

[291 M. Naor, Bit Commitment Using Pseudorandomness, Journal of Cryptology, vol. 4, no. 2, pp. 151-158.
[30] M. Tompa and H. Woll, Random Self-Reducibility and Zero-Knowledge Interactive Proofs of Possession

of Information, Proceedings of the 28th Symposium on Foundations of Computer Science, 1987, pp. 472-
482.

