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2.3 Universal one-way hash functions (UOWHF)

Definition 2.3. (universal one-way hash functions (UOWHF)) Let F be a family of functions mapping
strings of length £(n) to strings of length m(n). We say that F is a family of universal one-way hash functions
(following [NY89]) if the following hold:

Samplable F is polynomially samplable (in n).

Efficient There exists a polynomial-time algorithm that given x € {0, 1}[(”) and a description of f € F
outputs f(x).

Compression m(n) < 4(n).
Hardness For all PPT A and & € {0,1}() the following is negligible in n:

Pr[(z,state) <« A(1"),f « F.2' — A(z,state, f): 2’ £z A\ f(2') = f(z)].
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By [Rom90] (full proof is given in [KK05]), it follows that assuming the existence of a one-way function,
there exists a family of universal one-way hash functions for some polynomial £(n) > n. Following [NY89,
Lemma 2.1], we have that the latter construction implies a construction with m(n) < 2€(n).
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2.5 Two-phase commitments

Definition 2.10. (two-phase commitments) A two-phase commitment scheme (S, R), with security parame-
ter n and message lengths (ki,ka) = (k1(n), ka(n)), consists of four probabilistic polynomial-time interactive
protocols: (S}, RL) the first commit stage, (St, RL) the first reveal stage, (S2, R2) the second commit stage,
and (S2, R?) the second reveal stage. Throughout, both parties receive the security parameter 1" as input.

1. In the first commit stage, S} receives a private input o) € {0,1}%1. At the end, S} locally outputs
some private information prvt' and Rl outputs some public string pub’.

2. In the first reveal stage, Sy and R} receive as common input pub! and a string o™ € {0,1}* and S}
receives as private input prvt'. Let trans be the transcript of the first commit stage and the first reveal
stage and includes R ’s decision to accept or reject.

3. In the second commit stage, S2 and R2 both receive the common input trans, and S2 receives a private
input 0 € {0,1}*2. At the end, Sg locally outputs some private information prvt®> and Rz outputs
some public string pub?.

4. In the second reveal stage, S? and R? receive as common input pub? and a string o e {0,1}*2, and
S2? receives as private input prvt®. At the end, R accepts or rejects.
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Definition 2.11. (hiding) A two-phase commitment scheme (S, R), with security parameter n and mes-
sage lengths (k1,k2) = (k1(n),ka(n)), is statistically hiding if the following hold: Given an ITM R* and
oM € {0,1}", let view s1 (), gy (1) denote the distribution on the view of R*(1") when interacting with
Stan,oW). Similarly, for 0@ € {0,1}*2 and A € {0, 1}* let view sz (4(2)) gy (A) denote the distribution on
the view of R*(A) when interacting with S2(c®), A). We require that for any (even all-powerful) R*,

1. The views of R* when interacting with the sender in the first phase on any two messages are sta-

tistically indistinguishable. That is, for all M, 51 € {0,1}5, view(su;(ﬂ(m)k*)(n) is statistically
indistinguishable to view<sg(a<1)),n*>(n).

2. The views of R* when interacting with the sender in the second phase are statistically indistinguish-
able no matter what the sender committed to in the first phase. That is, for all o) e {0,1}%* and
o 7@ € {0,1}"2, view g2 (o(2)), gy (A) is statistically indistinguishable to view s>z »ey(A),

where A = transcript(S (17, o), R*(1™)).

We stress that the second condition of the above hiding definition (Definition 2.11) requires that the view
of receiver in the second phase be indistinguishable for any two messages even given the transcript of the
first phase, A = transcript(S'(17, o), R*(17)).
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Definition 2.12. ((?)-binding) A two-phase commitment scheme (S, R), with security parameter n and

message lengths (k1,k2) = (k1(n), ka(n)), is computationally ( ) binding if there exists a set B of first-phase
transcripts and a negligible function € such that:

1. For every (even unbounded) sender S*, the first-phase transcripts in B make the second phase statis-
tically binding, i.e. ¥S*,Vtrans € B, with probability at least 1 — e(n) over pub?, the output of R? in
(S*(trans), R2(trans)), there is at most one value o € {0,1}*2 such that (S*(pub®, a®), R?(pub?, o(?)) =
Accept.

2. ¥V nonuniform PPT S*, S* succeeds in the following game with probability at most e(n) for all suffi-
ciently large n:

(a) S* and RY interact and RY outputs pub'. Let trans' be the transcript of the interaction.
(b) S* outputs two full transcripts trans and trans of both phases with the following three properties:

o Transcripts trans and trans both start with prefiz trans®.

e The transcript trans contains a successful opening of pub® to the value o) € {0,1}* wsing a
first-phase tmnscript not in B, and R: and R? both accept in trans.

o The transcript trans contains a successful opening of pub® to the value 0 € {0,1}* using a
first-phase transcript not in B, and R and R? both accept in trans.

(c) 8% succeeds if all of the above conditions hold and o™ # &1,
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Theorem 2.13. ([NOV06, Theorem 7.10]) If one way functions exist, then on security parameter n, we
can construct in time poly(n) a collection of public-coin two-phase commitment schemes Comy, . ..,Com,
for m = poly(n) such that:

o There exists an index i such that the scheme Com,; is hiding. (This property holds, regardless of whether
the one-way function for which the scheme is based on is one-way or not.)

2

o For every index j, scheme Com, is (1

)—bmding.
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2.6 Extending the message length

While Theorem 2.13 implies a set of two-phase commitment schemes with some given message lengths, for
our purposes we need the message length of the first-phase commitment to be sufficiently (though still poly-
nomially) long. The following lemma allows us to expand the message length of the first-phase commitment.

Lemma 2.14. There exists an efficient procedure that given a two-phase commitment scheme with message
lengths (ki(n),kz2(n)) and a positive polynomial p, outputs a two-phase commitment scheme with message

lengths (p(n), 1), which is hiding whenever the given scheme is hiding and it is @) -binding whenever the

giwen scheme is (?)—binding.

Proof. (of Lemma 2.14) Let (S, R) be a two-phase commitment with message lengths (k1 (n), ka(n)). We as-

sume w.l.o.g. that ki (n) = ka(n) = 1, since we can always decide to use only the first bit of the commitments.
We define the two-phase commitment (S, R) with message lengths (p(n), 1) as follows:
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First-phase commit:
Common input: 1”.
Sender’s private input: z; € {0,1}?().
1. Fori=1...,p(n),
(SE,RY) run (S (z1[i]), RL(14™)), with St and R2 acting as S! and RE respectively.
Let pu b% be the public output and let prvt} be the private output of Cs} in the above execution.

2. S! locally outputs prvt! = (prvti, ..., prvt;)(m) and R} outputs pub® = (pubi,..., pub;}(n)).

First-phase reveal:
Common input: 17, pub’ = (pub%,...,pubrl,(n)) and z; € {0,1}7(,
Sender’s private input: prvt! = (prvt}, ..., prvt;(n)).
1. Fori=1...,p(n),
(81, RL) run (S!(prvtl, puby,z;[i]), RL(pub}), 1 [i]), with S! and R} acting as S} and R}

respectively. Let trans; be the transcript of the execution.

2. S! accepts if ‘5~‘71 accepts in all of the above executions.
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Second-phase commit:

Common input: trans = (transy,. .., trans,,).
Sender’s private input: b € {0,1}.
1. Fori=1...,p(n),
S2,R2) run (S2(b, trans;), RA(trans;)), with S2 and R? acting as S? and R2 respectively.
@ c c 2 c c c c

Let pu b? be the public output and let prvt? be the private output of gz in the above execution.

2. 82 locally outputs prvt? = (prvt?, ..., prvti( ) and R2 outputs pub® = (pub?,...,pubZ.,).

n) p(n)

Second-phase reveal:

Common input: pub? = (pub%, 2 o pubz(n)) and b € {0,1}.
Sender’s private input: prvt? = (prvt3, ..., prvti(n)).
1. Fori=1...,p(n),
(82,R2) run (S2(prvt2, pub?, b), R (pub?), b), with 82 and R2 acting as S2 and R2 respec-
tively. L
2. 82 accepts if S accepts in all of the above executions.
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The correctness of (S, R) is evident, and it is also clear that (S, R) is hiding given that (S, R) is. Assuming
that (S,R) is (?)—binding, we show that (S, R) is (?)-binding as follows: We define B, a set of first-phase
&t () 3 € p(n) s.8. outs? € §}7 where B is the set of

transcripts of (S,R) as B = {out52 = (outs?, . ..,outs?

D
first-phase transcripts of (§ A ﬁ) that make that second-phase commitment statistically binding. It is easy
to see that indeed any transcript in B, makes the second-phase commitment of (S, R) statistically binding
(as in Definition 2.12). Finally, let A be an adveis\ar/y that/\b/reaks til_e\/(f)—binding of (8, R) by outputting
two transcripts trans = (trans; ..., trans,,)) and trans = (trans; ..., trans,,). By our definition of B, there
must exists an index 7 € p(n) such that both trans; and m are not in B , trans; and m contain different
first-phase openings ¢ # 1), and RL and R2 accept in both transcripts.

Since the latter holds for any breaking of the (?)-binding of (S, R), there must exist i’ € p(n) (which can
be efficiently found) such that A breaks the @)—binding of (S,R) conditioned that the above holds w.r.t.
trans; and t?zE. Thus, the existence of A implies an adversary the breaks the (f)—binding of (g, ﬁ) O
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3.1 Main reduction

In this section we construct a bit-commitment scheme such that the following hold: The scheme is statistically
hiding whenever the two-phase commitment is hiding, and the scheme is weekly binding whenever the two-
phase commitment is (?) -binding.

Construction 3.1. (The basic scheme) Let F be a family of universal one-way hash functions mapping
strings of length ¢(n) to strings of length m(n) < %E(n), let H be a family of Boolean pairwise independent

hash functions defined over strings of length £(n) and finally let (5, ﬁ) be a two-phase commitment scheme
with message lengths (£(n),1).
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Commit stage:

Common input: 1™.
Sender’s private input: b € {0,1}.
// First-phase commit:
1. 8. chooses uniformly at random z; € {0, l}f(").
2. (Su,Re) run (St (ml),ﬁi(ln)), with S, and R acting as S* and R: respectively.

Let pub® be the public output and let prvt! be the private output of §(} in the above execution.
3. R chooses uniformly at random f € F and sends it to S.
4. S sends y = f(x1) back to R.
5. Re flips a random coin dec € {0,1}.
Ifdec =0, // Relying on the first-phase commitment. ( bIndIng "m))
(a) Sc chooses uniformly at random h € H and sends h and ¢ = b & h(z) to R..
(b) Re outputs pub = (dec, pub®, f,y, h, c).
(c) S. locally outputs prvt = (prvtt, x).

Otherwise (i.e., dec =1), // Verifying the first-phase commitment and movin

to
second-phase commitment. ( bIndIng if i) )
Se sends 1 to R and (Se, Re) run <§},(prvt17 pub?, xl),ﬁi(publ), x1)), with S and R acting
as S} and R} respectively. Let trans be the transcript of the execution.
If ﬁz rejects, then R outputs L (i.e., it will be impossible to decommit this execution).
Otherwise, I J N N
(a) (Se,Re) run (S2(b, trans), R2(trans)), with S, and R. acting as S2 and R? respectively.

Let pub® be the public output and let prvt® be the private Mt of gf in the above
execution. output

(b) S. locally outputs prvt = prvt? and R. outputs pub = (dec, pubz),
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Reveal stage:

In case dec =0, ( blndlng “Hi))

Common input: 17, b € {0,1} and pub = (0, pub®, f,, h, c).

Sender’s private input: prvt = (prvt!,z;).

S, sends z1 to Ry and (Sp,Ry) run (S:(prvt, pub®, z1), R (pub', z1)), with S, and R, acting as
S} and R} respectively.

If 7%} rejects, or f(x1) #y or ¢ @ h(xz1) # b, then R, outputs Reject.

Otherwise, R, outputs Accept.

In case dec =1, ( blMlI\g lfy#(ﬂ)

Common input: 17, b € {0,1} and pub = (1, pub?).

Sender’s private input: prvt = prvt?.

(8, Ry) run (S2(prvt2, pub?, b), R2(pub?, b)), with S, and R, acting as S2 and R2 respectively.
R, outputs the same output as R? does in the above evecution.
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3.1.1 The scheme is hiding
Lemma 3.3. If (S,R) is hiding, then (S,R) is statistically hiding.

Proof. Assuming that (§ : ﬁ) is hiding, then the hiding in the case that dec = 1 is evident. That is, by
the hiding of (S, R), no information about @, (and thus about b) has leaked to the receiver. Note that the
receiver also gets the values of f and f(x1), but this information could be generated from z; and thus it
reveals no additional information about zs.

In the complementary case (dec = 0) the situation is a bit more involved. Essentially, the only information
that the receiver obtains about b is y = f(z1) and ¢ = b @ h(z1). Since f is condensing and by the pairwise
independence of H, it is easy to see that with overwhelming probability (y,c) contains only negligible
information about b and thus the protocol is hiding.
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3.1.2 The scheme is weakly binding

Lemma 3.5. If F is a family of universal one-way hash functions and (S,R) is (f)—bz‘nding, then (S,R) is
17 _binding.
18

Proof. Let S* = (57, 5)) be an algorithm trying to break the binding of (S, R) and recall BndBreak from

Definition 2.6. Let iLG {07 1} and let p be a positive polynomial, we define

V5P (n) L Progs <S:(1,,L)’Rc(1n)>[BndBreakS:’Rr(outs) > Fln)\dec = 4]. Namely, 2 P(n) is the probability
that the output of the commit stage enables S* to cheat in the reveal stage with noticeable probability. The
proof of the Lemma 3.5 follows by the next claim.

Claim 3.6. For any PPT S* and any positive polynomial p, for large enough n there exists i € {0,1} such
that %S*’p(n) <8

Therefore, for any positive polynomial p and large enough n, Proyes — <5+ (17),%.(17)> [Bnd Break® R- (outs) >

ﬁ] = Prldec = 0] - 75 P(n) + Pr[dec = 1] - 77 P(n) < 1 — 3 - 1, and the proof of Lemma 3.5 follows.
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Claim 3.6. For any PPT S* and any positive polynomial p, for large enough n there exists i € {0,1} such
that v7 P(n) < 8

Proof. (of Claim 3.6) We assume toward a contradiction that the claim does not hold and prove that
either the hardness of the universal one-way hash functions or the (f)—binding of the underlying two-phase
commitment scheme are violated. More formally, let S* be algorithm and p be a positive polynomial such
that for infinitely many n’s and for both values of ¢ € {0,1}, it holds that ’yf “P(n) > 2. Assuming that
the (f)—binding of the underlying bit-commitment scheme holds, we use S* to construct an algorithm MS",
described next, that breaks with noticeable probability the hardness of the universal one-way hash functions.
Recall that in order to break the hash function, M*~ should first select a value = and then given a random
hash function f, it needs to output another element z’ # x such that f(z) = f(z').

Before presenting the algorithm, we would like first to make the dependency of S; and R. on the their
random-coins explicit. That is, we assume that S and R, are deterministic efficient algorithms that get
as additional inputs random strings rands- € {0, 1}s: ™ and (dec, f,randr,) € {0,1} x F x {0,1}re(™
respectively. We assume w.l.o.g. that both £s- and {z, are some known polynomials.
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MS™:

First stage, selecting a value z.

Input: 1"

a Select uniformly at random rands- € {0, 1}45:™ randg, € {0,1}¢7<™ and f € F.

b Simulate (S} (rands:), Re(1, f,randr,))-
Let outs = (prvt,pub) be the private output of S and the public output in the above
simulation and let outs[z1] be the value of z; in pub (see the commit stage of Construction 3.1
for dec = 1).

¢ Output 2 = outs[z;] and state = (rands:,randr,).

Second stage, finding a collision.

Input: x, state = (randg:,randr,), f' € F

d Simulate (S} (rands:), R¢(0, f';randr,)).
Let outs’ = (prvt/,pub’) be the private output of S* and the public output in the above
simulation.

e For both ¢ € {0,1}:
Simulate (S} (prvt’, pub’, b), R, (pub’, 4)).
Let z; be the value of the variable 1 that R, gets from S} in the simulation (see the reveal
stage of Construction 3.1 for dec = 0).

f If R, accepts for both i € {0,1}, output 2’ = z;, where j € {0,1} is such that z; # z. (Note
that since R, accepts in both cases, it follows that i = ¢ @® h(z;) for both i € {0,1} and thus
o # 21).

Iftach Haitner Omer Reingold




Some intuition: By the (f)—bmding of (§7 75,), it follows that after the first-phase commit, there is only a
single value, T, such that if the first-phase commitment is “opened” to this value, it might be possible to cheat
in the second-phase commitment. Since S* manages to cheat (also) for dec = 1 and therefore S* is able to
break the second-phase commitment of (g', ﬁ), it holds w.h.p. that ©, defined in the first-stage of M5", is
equal to .

Let us now consider the second-stage of MS". Since S does not know the value of dec when sending
y in the simulation of Line (d), it should send y such that y = f'(T) where y is the value sent by S} to
R, after the first-phase commit. The point is that since we are using the same random coins as in the first
stage, this is the same T as before. Whenever S* breaks the commitment for dec = 0, it needs to open the
first-phase commitment into two elements zo # z1 such that f'(z0) = f'(z1) = y. Thus, w.h.p. it holds that
f'(z0) = f'(z1) = f'(&) and M5 violates the hardness of F.
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We now return to the formal proof. For any value of the parties random coins frand = (rands:,dec, f,randg,) €
{0,1}%5:0 % {0,1} x F x {0, 1}=e(") et outs(frand) & (prvt(frand), pub(frand)), where prvt(frand) and
pub(frand) are the private output of Si and the public output in (S} (rands: ), R((dec, f, randr,)) respec-
tively. The following lemma is the heart of our proof.

Lemma 3.7. Assuming that (S, R) is (f)—binding and that Claim 3.6 does not hold w.r.t. 8*, then there
exists a set L C {0, 1}[53(”) x {0,1}R=e(™) of density % for which the following hold:

1. For all (randgsy,randg,) € L and any value of dec € {0,1},

. 1
Pr [BndBreak® ™" (outs(rand «, dec, f, rand >—]>
, Pr, [BndBreak" ™ (outs(rands;  dec, f,randr, ) > ~5] >

[SUI )

)

2. There exists a mapping o : {0,1}%52( x {0, 1}~ — {0,1}£®) 5.t for all (rands:,randg,) € L,

N | —

Plr]__[outs(ranrh;;7 1, f,randg,)[z1] = o(randss , randg, )] >
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Claim 3.8. Pr,qnq— c[fz € {0, 1}1(”) s.t. wrd(z) > %] = neg.

Thus, we conclude the proof of Lemma 3.7, by letting o(rand) =  if there exists Z such that w"*"%(z) > 1
and letting o(rand) = 0 otherwise, and defining L = G N {r(md s w4 (g (rand)) 2}

Proof. (of Claim 3.8) For any random coins frand = (rands:, 1, f,randz,) € {0, 1}4s: (™) % {0,1} x F x
{0,1}=<(™) let trans(frand) be the first-phase transcript of the interaction with R embedded in the tran-
script of (S;(rands:), Re((1, f,randg,)) (ie., the transcripts of the interactions with ﬁl and R1). Recall
the set B from Definition 2.10 w.r.t. (g ﬁ) which has the property that if a first-phase transcript of an

interaction with R is in B, then the second-phase commitment with R is statistically binding. It follows
that for almost all (rands:,randg,) € G (save but a set of negligible probability) it holds that,

(3]

" 1
. Erf[BndBreakS"’R*(outs(mndSE, 1, f,randr,)) > ) /\trans(rands:., 1, f,randr,) ¢ B] > B neg(n).

Let’s assume towards a contradiction that Claim 3.8 does not hold. Therefore, by the above observation
there exists non-negligible set G’ C G, such that the following holds for any rand € G’:
L. Pz € {0,134 st wrand(z) > 1,

2. Pr) e f[BndBreakS:’RT(outs(mndSE, 1, fyrandg,) Atrans(rands:, 1, f,randg,) & B]) > 2.

1
2 5m
We conclude the proof, by showing that the above set implies violation of the (f)—binding of (g . 7~2) Before
doing that, we would like to make the dependence of R, in its random coins even more explicit. Recall that
we assume that R, is a deterministic algorithm gets as additional input the random coins (dec, f,randg.) €
{0,1} x F x {0,1}*=<(®), To make the discussion more precise, we write that randr, = (randg, , randoiher )
where randz, € {0, 1}2@(") is the random-coins used in the execution of ﬁ} embedded in the execution of

R.. The following algorithm breaks the (f) -binding of (§ , ﬁ)
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T5":
Input: 1™

The interaction part.

a Select uniformly at random rands- € {0, 1}653(").

b Interact with RL(1") by invoking Sg(rands:) and simulating its interaction with R. by for-
warding messages between S and 7%%
Let trans' be the transcript of the above interaction and let randfai be the random coins
used by ﬁ} in the above interaction. (We do not need to actually know the value of 1"cmd7€l

for the run of 75" and only use it in order to simplify notation.)

Producing two transcripts.
a Select uniformly at random randoiper € {0, 1}[733(")4@(").
b For i e {0,1}:
1. Select uniformly at random f; € F.
2. Simulate (S} (rands: ), Re(1, fi, mndﬁc, randother) starting from Line 3 of Construction
3.1 (note that given trans!, we do not need to know randg in order to simulate).
Let outs? = (prvt?, pub?), where prvt? and prvt? are the private output of S* and the pub-
lic output in the above simulation respectively. Let trans? and trans} be the transcripts
of the interactions with R! and R? in the above simulation.
3. Simulate (S*(prvt?, pubZ, 0), R (pub?,0)).
Let trans; be the transcript of the interaction with ﬁf in the above simulation.
4. Set trans; = (trans®, trans?, trans?, trans}).
c Output (trans, transy).
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Claim 3.9. T breaks the (?) -binding of (g, 7~2) with non-negligible probability.
Proof. Conditioned on rand = (rands: ,randz, , randoiher) € G, we have by the second property of G
Prj,  #[BndBreak® " (outsy) > ﬁ A(trans!, trans?) ¢ B] > 2. (3)

Clearly, the above also holds w.r.t. f1, outs; and trans}. Moreover, by the first property of G’, we have the
following w.r.t. any z € {0, 1}4(),

Pry, — rlouts;[x1] # z A BndBreak™ " (outs) > ﬁ A(trans!, trans?) ¢ B] > 2 — 1 = & (4)

Setting z = outsy[z1], since f is independent of fo, it follows that

- 1
N JE§1 A f[outs(][afl] # outsy [1] /\Vz‘ € {0,1} BndBreak®~ ™" (outs;) > 70 /\(transl,transf) ¢ B]
> 3 L
- 5 10 25

&les
=
e

1. both transy and trans; starts with trans!,
2. the first-phase transcripts (i.e., (trans®,trans?)) in both transy and trans; are not in B,
3. the value of x; in transy and in trans; is different,

4. R} and R2 accept in both transy and trans;.

Since we assume that G’ is non-negligible, 7" breaks the (f)—binding of (g, 7€) O
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3.2 Completing the construction

The following corollary follows by the lemmata about Construction 3.1 (Lemma 3.1 and Lemma 3.5) and
the standard bit-commitment binding amplification (Proposition 2.9).

Corollary 3.10. There exists an efficient procedure that given a family of universal one-way hash functions
and a two-phase commitment scheme, outputs a bit-commitment scheme which is statistically hiding whenever

Zﬁedu.nderlymg protocol is hiding and it is computationally binding whenever the underlying protocol is (1)—
inding.

By the above Corollary, the existence of universal one-way hash functions ([Rom90, KKO05]), the exis-
tence of a collections of two-phase commitment schemes that are all (f)—binding and at least one of them is
hiding (Theorem 2.13) and the standard bit-commitment hiding amplification (Proposition 2.8). It follows
that statistical bit-commitment can be constructed using any one-way function. Finally, the proof of Theo-
rem 1.1 follows by the above conclusion and the standard transformation of a bit-commitment scheme into
a commitment scheme of any polynomial length.
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