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3.1. Adversaries and security.

DEFINITION 3.1 (breaking adversary and security). An adversary A is a function
ensemble. The time—success ratio of A for an instance f of a primitive is defined as
R:, = T, /spn(A), where t, is the length of the private input to f, T, is the worst-
case expected running time of A over all instances parameterized by n, and sp,(A) is
the success probability of A for breaking f. In this case, we say A is an R-breaking
adversary for f. We say f is R-secure if there is no R-breaking adversary for f.
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3.2. One-way function.

DEFINITION 3.2 (one-way function). Let f : {0,1}» — {0,1}» be a P-time
function ensemble and let X €y {0,1}t». The success probability of adversary A for
inverting f is

spn(4) = Prf(A(f(X))) = fF(X)].

Then f is an R-secure one-way function if there is no R-breaking adversary for f.
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3.3. Pseudorandom generator.

DEFINITION 3.3 (computationally indistinguishable). Let D : {0,1}* and & :
{0,1}% be probability ensembles. The success probability of adversary A for distin-
guishing D and & is

spa(A) = |Pr{A(X) = 1] - Pr{A(Y) = 1],

where X has distribution D and Y has distribution €. D and € are R-secure compu-
tationally indistinguishable if there is no R-breaking adversary for distinguishing D
and &.
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DEFINITION 3.5 (pseudorandom generator). Let g : {0,1}» — {0,1}¢" be a
P-time function ensemble where £, > t,. Then g is an R-secure pseudorandom
generator if the probability ensembles g(Uy,) and Uy, are R-secure computationally
indistinguishable.
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PROPOSITION 3.6. Suppose g : {0,1}" — {0,1}"+! is a pseudorandom generator
that stretches by one bit. Define gV (z) = g(x), and inductively, for all i > 1,

g @0 (2) 1,...n)), 99 (@) i1, mri -

Let k,, be an integer-valued P-time polynomial parameter. Then g%~ is a pseudoran-
dom generator.

JOHAN HASTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY



3.4. Pseudoentropy and false-entropy generators.

DEFINITION 3.7 (computational entropy). Let f : {0,1}» — {0,1}*» be a P-
time function ensemble and let s, be a polynomial parameter. Then f has R-secure
computational entropy s, if there is a P-time function ensemble f’ : {0,1}"» —
{0,1}~ such that f(Uy,) and f'(U, ) are R-secure computationally indistinguishable
and H(f'(Up,)) > Sn.

n
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DEFINITION 3.8 (pseudoentropy generator). Let f : {0,1}» — {0,1}* be a P-
time function ensemble and let s, be a polynomial parameter. Then f is an R-secure
pseudoentropy generator with pseudoentropy s, if f(U;,) has R-secure computational
entropy t, + sp.-

DEFINITION 3.9 (false-entropy generator). Let f : {0,1}» — {0,1}* be a P-
time function ensemble and let s, be a polynomial parameter. Then f is an R-secure
false-entropy generator with false entropy s, if f(Uz,) has R-secure computational
entropy H(f(U,)) + Sn-
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3.5. Hidden bits.

DEFINITION 3.10 (hidden bit). Let f : {0,1}» — {0,1}* and b : {0,1}» —
{0,1} be P-time function ensembles. Let D : {0,1}" be a P-samplable probability
ensemble, let X €p {0,1}, and let 3 €y {0,1}. Then b(X) is R-secure hidden given
F(X) if (f(X),b(X)) and (f(X),B) are R-secure computationally indistinguishable.
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4.1. Constructing a hidden bit.

PROPOSITION 4.1. Let f : {0,1}" — {0,1}%" be a one-way function. Then X ® R
is hidden given (f(X), R), where X, R €4 {0,1}".
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PROPOSITION 4.3. Let f : {0,1}" — {0,1}* be a one-way function. Then
(f(X), R, XOR) and (f(X), R, B) are computationally indistinguishable, where X, R €
{0,1}"™ and B €y {0,1}.
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4.2. One-way permutation to a pseudorandom generator.

PROPOSITION 4.4. Let f : {0,1}" — {0,1}" be a one-way permutation. Let
x,r € {0,1}" and define P-time function ensemble g(xz,r) = (f(z),r,x @ r). Then g
is a pseudorandom generator.

Proof. Let X, R €, {0,1}", and B &, {0,1}. Because f is a permutation,
(f(X),R, () is the uniform distribution on {0,1}?"*1. By Proposition 4.3, g(X, R)
and (f(X), R, B) are computationally indistinguishable. O
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Proposition 4.4 works when f is a permutation because

(1) f(X) is uniformly distributed and hence already looks random;
(2) for any x € {0,1}"™, f(z) uniquely determines x. So no entropy is lost by the
application of f.

For a general one-way function neither (1) nor (2) necessarily holds. Intuitively, the
rest of the paper constructs a one-way function with properties (1) and (2) from
a general one-way function. This is done by using hash functions to smooth the
entropy of f(X) to make it more uniform and to recapture the entropy of X lost by
the application of f(X).

Proposition 4.4 produces a pseudorandom generator that only stretches the input
by one bit. To construct a pseudorandom generator that stretches by many bits,
combine this with the construction described previously in Proposition 3.6.
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4.3. One-to-one one-way function to a pseudoentropy generator.

PROPOSITION 4.5. Let f : {0,1}" — {0,1}% be a one-to-one one-way function.
Let z,r € {0,1}" and define P-time function ensemble g(xz,r) = (f(x),r,z@r). Then
g is a pseudoentropy generator with pseudoentropy 1.

Proof. Let X, R €14 {0,1}™ and 3 €, {0,1}. Proposition 4.3 shows that g(X, R)
and (f(X), R, B) are computationally indistinguishable, where the reduction is linear-
preserving with respect to the alternative definition of computationally indistinguish-
able. Because f is a one-to-one function and £ is a random bit, H(f(X), R, 8) = 2n+1,
and thus ¢g(X, R) has pseudoentropy 1. O

Note that it is not possible to argue that g is a pseudorandom generator. For
example, let f(z) = (0, f/(x)), where f’ is a one-way permutation. Then f is a one-
to-one one-way function and yet g(X, R) = (f(X), R, X ® R) is not a pseudorandom
generator, because the first output bit of g is zero independent of its inputs, and thus
its output can easily be distinguished from a uniformly chosen random string.
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4.4. Universal hash functions.

DEFINITION 4.6 (universal hash functions). Let h: {0,1}%" x {0,1}" — {0,1}™
be a P-time function ensemble. Recall from Definition 2.9 that for fized y € {0,1}¢",
we view y as describing a function hy(-) that maps n bits to m,, bits. Then h is a
(pairwise independent) universal hash function if, for all x € {0,1}", 2’ € {0,1}™ \
{z}, and for all a,a’ € {0,1}",

Pr(hy(z) = a) and (hy(z') = d)] = 1/2?™",
where Y €y {0,1}%.
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DEFINITION 2.4 (Renyi entropy). Let D be a distribution on a set S. The Renyi
entropy of D is Hren(P) = —log(Pr[X = Y]), where X €p S and Y €p S are
independent.

There are distributions that have arbitrarily large entropy but have only a couple
of bits of Renyi entropy.
PROPOSITION 2.5. For any distribution D, Hren(D) < H(D).
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4.5. Smoothing distributions with hashing.

LEMMA 4.8. Let D : {0,1}™ be a probability ensemble that has Renyi entropy at
least m,,. Let e, be a positive-integer-valued parameter. Let h : {0, 1} x {0,1}" —
{0,1}mn=2¢n be a universal hash function. Let X €p {0,1}", Y €y {0,1}*, and
Z €y {0,1}™n=2¢n_ Then

L1(<hY(X)7Y>7 <Z’ Y>) S 27(6n+1)-
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Theorem 3: Let X be a random variable over the alphabet
X with probability distribution Px and Rényi entropy R(X),
let G be the random variable corresponding to the random
choice (with uniform distribution) of a member of a universal
class of hash functions X — {0,1}", and let ) = G(X). Then

H(QIG) > R(QIG) > r — log, (1 +277F))
9r—R(X)
Zr———.
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PROPOSITION 4.9. Let k,, be an integer-valued polynomial parameter.

o Let D : {0,1}" be a probability ensemble.
There is a probability ensemble € : {0,1}"* satisfying

— Hpen(€) > ko H(D) — nk2/?,

— Ly (€,DF») < 27k,
o Let Dy : {0,1}™ and Dy : {0,1}™ be not necessarily independent probability
ensembles; let D = (D1, Ds). There is a probability ensemble &€ : {0, 1}27kn
with €& = (€1, &), satisfying the following:

— For every value Ey € {0,1}"" such that Pre,[E1] > 0,
Hgen(&2/6 = Ev) > k,H(D2|Dy) — nk2/®.

— Ly (€, Dkn) < 2%,
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COROLLARY 4.10. Let k,, be an integer-valued P-time polynomial parameter.

e Let D : {0,1}" be a probability ensemble, let m, = k,H(D) — 2nk72/3, and

let b : {0,1}P» x {0,1}™*» — {0,1}™" be a universal hash function. Let
X' €prn {0,112 %" and let Y €y {0,117~ Then

Ll <<hY <Xl)7 Y>,um”+pn) < 21_k71‘/3 o

o Let Dy : {0,1}™ and Dy : {0,1}™ be not necessarily independent probabil-
ity ensembles, and let D = (Dy,Ds3). Let m, = k,H(Ds|D;) — 2nk72/3.
Let h : {0,1}P» x {0,1}"*» — {0,1}™ be a universal hash function. Let
(X1, X5) €Eprn {0,1}5n%2" gnd let Y €1y {0,1}P». Then

Ly ((hy (X3), Y, X1, U, 490, X1)) < 207907,
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4.6. Pseudoentropy generator to a pseudorandom generator.

PROPOSITION 4.11. Let D : {0,1}™ and € : {0,1}"™ be two probability ensembles
and let f : {0,1}™ — {0, 1} be a P-time function ensemble. LetD and & be computa-
tionally indistinguishable. Then f(D) and f(E) are computationally indistinguishable.

PROPOSITION 4.12. Let k,, be an integer-valued P-time polynomial parameter.
Let D : {0,1}* and & : {0,1}*» be P-samplable probability ensembles. Let D and &
be computationally indistinguishable. Then D*» and E*~ are computationally indis-
tinguishable.
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CONSTRUCTION 4.13. Let f:{0,1}" — {0,1}"™" be a P-time function ensemble
and let s, be a P-time polynomial parameter. Let k, = ([(2my +1)/s,])® and j, =
lkn(n + sn) — anki/gj. Let b : {0,1}P~ x {0,1}F»™n — {0,1}/" be a universal hash
function. Let u € {0,1}*»>" 4 € {0,1}P~, and define P-time function ensemble

g(U,y) w <hy(fkn (U)),y>
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THEOREM 4.14. Let f and g be as described in Construction 4.13. Let f be a
pseudoentropy generator with pseudoentropy s,. Then g is a pseudorandom generator.

Proof. Let f': {0,1}™» — {0,1}"™ be the P-time function ensemble that wit-
nesses the pseudoentropy generator of f as guaranteed in Definition 3.7 of computa-
tional entropy; i.e., f/(X’) and f(X) are R-secure computationally indistinguish-
able and H(f'(X’)) > n + s,, where X €, {0,1}" and X’ €y {0,1}"». Let
U ey {0,1}f=xn W &, {0, 1}k"X"Q», and Y €, {0,1}~. By Proposition 4.12,
fF(U) and f’ k”(W) are computationally indistinguishable. From Proposition 4.11,
it follows that g(U,Y) = (hy (f*=(U)),Y) and (hy (f'*"(W)),Y) are computationally
indistinguishable. Because H(f'(X’)) > n + s,, by choice of k,, and j,, using Corol-
lary 4.10, it follows that Ly ({(hy (f/*(W)),Y),U;, 4p.) < 27%/*. Thus, it follows
that g(U,Y) and U, +p, are computationally indistinguishable. Note that by choice
of k,, the output length j,, + p, of g is longer than its input length nk,, + p,. 0
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4.7. False entropy generator to a pseudoentropy generator.

CONSTRUCTION 4.15. Let f : {0,1}" — {0,1}* be a P-time function ensemble.
Let s,, be a P-time polynomial parameter and assume for simplicity that s,, < 1. Let
e, be an approzimation of H(f(X)) to within an additive factor of s, /8, where X €

(0,1}, Fiz k, = [(4n/sn)®] and jp = [kn(n —e,) — 2nka/*]. Let h : {0,1}7" x
{0,1}"k» — {0,1}/» be a universal hash function. For u € {0,1}f"*" and r €
{0,1}P~, define P-time function ensemble

glen,u,r) = <fk" (u), her(u), 7).

LEMMA 4.16. Let f and g be as described in Construction 4.15. Let f be a false-
entropy generator with false entropy s,,. Then g is a mildly nonuniform pseudoentropy

generator with pseudoentropy 1.
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4.8. Mildly nonuniform to a uniform pseudorandom generator.

PROPOSITION 4.17. Let a,, be any value in {0, ..., k,}, where ky is an integer-
valued P-time polynomial parameter. Let g : {0,1}M1°8(F)1 % {01} — {0,1}%" be a
P-time function ensemble, where £, > nky,. Let x' € {0,1}f»*" and define P-time
function ensemble g'(z') = @f;lg(i,x;). Let g be a mildly nonuniform pseudorandom
generator when the first input is set to a,,. Then ¢’ is a pseudorandom generator.
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4.9. Summary.

a reduction from a one-way permutation to a pseudorandom generator
(from subsection 4.2);

a reduction from a one-to-one one-way function to a pseudorandom genera-
tor(combining subsections 4.3 and 4.6);

a reduction from a pseudoentropy generator to a pseudorandom generator
(from subsection 4.6);

a reduction from a false-entropy generator to a pseudorandom generator
(combining subsections 4.7, 4.6, and 4.8).
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6.2. Construction and main theorem.

Let

&1y B (0,1}

be a one-way function and let

(6.2) AR, 1] — {0, 1} [los(2n)]

be a universal hash function. Similar to Construction 5.1, for € {0,1}", i €
{0,...,n—1}, and r € {0,1}P~, define P-time function ensemble

(63) f/(xa i, T) = <f({L'), hr(x){l,...,i+[log(2n)]}a %, 7,.>

(6.4) kn > 12503,
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DEFINITION 2.7 (degeneracy of f). Let f : {0,1}" — {0,1} and let X €y
{0,1}™. The degeneracy of f is D, (f) = H(X|f(X)) = H(X) — H(f(X)).

DEFINITION 2.13 (Dy). Let f: {0,1}" — {0,1}*" be a P-time function ensem-
ble. For z € rangey, define the approximate degeneracy of z as

Dy(z) = [log(tpre; ()] -
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Part of the construction is to independently and randomly choose k, sets of in-
puts to f’ and concatenate the outputs. In particular, let X’ € {0, 1}F»*" I’ g
{0, 1}k xlog(m1 | R' 1, {0, 1}»*Pn. Part of the construction is then f* (X', I', R').

Let I €4 {0,...,n — 1}, let

(6.5) Pn = Pr[l < D4 (f(X))],
(6.6) My = knDp — 2k2/3
(6.7) B : {0,1}P» x {0,1}%» — {0,1}™=

be a universal hash function, let U €, {0, 1}1’%, and define P-time function ensemble

(6.8) g(me’,Y’,I’,R’,U)
= (Wu((X|0¥,...,X} O ), f*™(X',I'R),UY".

JOHAN HASTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY



THEOREM 6.2. Let f be a one-way function and g be as described above in (6.1)—
(6.8). Then g is a mildly nonuniform false-entropy generator with false entropy 10m?.
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7. A direct construction. We have shown how to construct a false-entropy
generator from an arbitrary one-way function, a pseudoentropy generator from a
false-entropy generator, and finally a pseudorandom generator from a pseudoentropy
generator. The combinations of these constructions give a pseudorandom generator
from an arbitrary one-way function as stated in Theorem 6.3. By literally composing
the reductions given in the preceding parts of this paper, we construct a pseudorandom
generator with inputs of length n3* from a one-way function with inputs of length n.
This is obviously not a suitable reduction for practical applications. In this subsection,
we use the concepts developed in the rest of this paper, but we provide a more direct
and efficient construction. However, this construction still produces a pseudorandom
generator with inputs of length n'®, which is clearly still not suitable for practical
applications. (A sharper analysis can reduce this to n®, which is the best we could
find using the ideas developed in this paper.) The result could only be considered
practical if the pseudorandom generator had inputs of length n?, or perhaps even
close to n. (However, in many special cases of one-way functions, the ideas from this
paper are practical; see, e.g., [Luby96].)
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CONSTRUCTION 7.1.

g(Xla Y/,Rla R27R3) - <hR1 (X/)v th (bkn (ley/))y hRs (f/kn (X/)),Y,a Rl,R?a R3>'

THEOREM 7.2. If f is a one-way function and g is as in Construction 7.1, then g
s a mildly nonuniform pseudorandom generator.
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We still need to use Proposition 4.17 to get rid of the mild nonuniformity. From
the arguments above, it is clear that an approximation of both e, and p, that is
within 1/(8n) of their true values is sufficient. Since 0 < e, < n, and 0 < p, < 1,
there are at most O(n?) cases of pairs to consider. This means that we get a total of
O(n?) generators, each needing an input of length O(n7). Thus the total input size
to the pseudorandom generator is O(n'?), as claimed.
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