

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION

3.1. Adversaries and security.

DEFINITION 3.1 (breaking adversary and security). An adversary A is a function ensemble. The time-success ratio of A for an instance f of a primitive is defined as $\mathbf{R}_{t_n} = T_n/sp_n(A)$, where t_n is the length of the private input to f, T_n is the worst-case expected running time of A over all instances parameterized by n, and $sp_n(A)$ is the success probability of A for breaking f. In this case, we say A is an \mathbf{R} -breaking adversary for f. We say f is \mathbf{R} -secure if there is no \mathbf{R} -breaking adversary for f.

3.2. One-way function.

DEFINITION 3.2 (one-way function). Let $f: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble and let $X \in_{\mathcal{U}} \{0,1\}^{t_n}$. The success probability of adversary A for inverting f is

$$sp_n(A) = \Pr[f(A(f(X))) = f(X)].$$

Then f is an \mathbf{R} -secure one-way function if there is no \mathbf{R} -breaking adversary for f.

3.3. Pseudorandom generator.

DEFINITION 3.3 (computationally indistinguishable). Let $\mathcal{D}: \{0,1\}^{\ell_n}$ and $\mathcal{E}: \{0,1\}^{\ell_n}$ be probability ensembles. The success probability of adversary A for distinguishing \mathcal{D} and \mathcal{E} is

$$sp_n(A) = |\Pr[A(X) = 1] - \Pr[A(Y) = 1]|,$$

where X has distribution \mathcal{D} and Y has distribution \mathcal{E} . \mathcal{D} and \mathcal{E} are \mathbf{R} -secure computationally indistinguishable if there is no \mathbf{R} -breaking adversary for distinguishing \mathcal{D} and \mathcal{E} .

DEFINITION 3.5 (pseudorandom generator). Let $g: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble where $\ell_n > t_n$. Then g is an **R**-secure pseudorandom generator if the probability ensembles $g(\mathcal{U}_{t_n})$ and \mathcal{U}_{ℓ_n} are **R**-secure computationally indistinguishable.

PROPOSITION 3.6. Suppose $g: \{0,1\}^n \to \{0,1\}^{n+1}$ is a pseudorandom generator that stretches by one bit. Define $g^{(1)}(x) = g(x)$, and inductively, for all $i \ge 1$,

 $g^{(i+1)}(x) = \langle g(g^{(i)}(x)_{\{1,\dots,n\}}), g^{(i)}(x)_{\{n+1,\dots,n+i\}} \rangle.$ Let k_n be an integer-valued **P**-time polynomial parameter. Then $g^{(k_n)}$ is a pseudoran-

Let k_n be an integer-valued **P**-time polynomial parameter. Then $g^{(k_n)}$ is a pseudorandom generator.

3.4. Pseudoentropy and false-entropy generators.

DEFINITION 3.7 (computational entropy). Let $f: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ be a P-time function ensemble and let s_n be a polynomial parameter. Then f has \mathbf{R} -secure computational entropy s_n if there is a P-time function ensemble $f': \{0,1\}^{m_n} \to \{0,1\}^{\ell_n}$ such that $f(\mathcal{U}_{t_n})$ and $f'(\mathcal{U}_{m_n})$ are \mathbf{R} -secure computationally indistinguishable and $\mathbf{H}(f'(\mathcal{U}_{m_n})) \geq s_n$.

DEFINITION 3.8 (pseudoentropy generator). Let $f: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ be a P-time function ensemble and let s_n be a polynomial parameter. Then f is an R-secure pseudoentropy generator with pseudoentropy s_n if $f(\mathcal{U}_{t_n})$ has R-secure computational entropy $t_n + s_n$.

DEFINITION 3.9 (false-entropy generator). Let $f: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ be a P-time function ensemble and let s_n be a polynomial parameter. Then f is an **R**-secure false-entropy generator with false entropy s_n if $f(\mathcal{U}_{t_n})$ has **R**-secure computational entropy $\mathbf{H}(f(\mathcal{U}_{t_n})) + s_n$.

3.5. Hidden bits.

DEFINITION 3.10 (hidden bit). Let $f: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ and $b: \{0,1\}^{t_n} \to \{0,1\}$ be **P**-time function ensembles. Let $\mathcal{D}: \{0,1\}^{t_n}$ be a **P**-samplable probability ensemble, let $X \in_{\mathcal{D}} \{0,1\}^{t_n}$, and let $\beta \in_{\mathcal{U}} \{0,1\}$. Then b(X) is **R**-secure hidden given f(X) if $\langle f(X), b(X) \rangle$ and $\langle f(X), \beta \rangle$ are **R**-secure computationally indistinguishable.

4.1. Constructing a hidden bit.

PROPOSITION 4.1. Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a one-way function. Then $X \odot R$ is hidden given $\langle f(X), R \rangle$, where $X, R \in_{\mathcal{U}} \{0,1\}^n$.

PROPOSITION 4.3. Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a one-way function. Then $\langle f(X), R, X \odot R \rangle$ and $\langle f(X), R, \beta \rangle$ are computationally indistinguishable, where $X, R \in \mathcal{U}$

 $\{0,1\}^n \text{ and } \beta \in_{\mathcal{U}} \{0,1\}.$

JOHAN HÅSTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY

4.2. One-way permutation to a pseudorandom generator.

PROPOSITION 4.4. Let $f: \{0,1\}^n \to \{0,1\}^n$ be a one-way permutation. Let $x, r \in \{0,1\}^n$ and define **P**-time function ensemble $g(x,r) = \langle f(x), r, x \odot r \rangle$. Then g is a pseudorandom generator.

Proof. Let $X, R \in_{\mathcal{U}} \{0,1\}^n$, and $\beta \in_{\mathcal{U}} \{0,1\}$. Because f is a permutation, $\langle f(X), R, \beta \rangle$ is the uniform distribution on $\{0,1\}^{2n+1}$. By Proposition 4.3, g(X,R) and $\langle f(X), R, \beta \rangle$ are computationally indistinguishable.

Proposition 4.4 works when f is a permutation because

- (1) f(X) is uniformly distributed and hence already looks random;
- (2) for any $x \in \{0,1\}^n$, f(x) uniquely determines x. So no entropy is lost by the application of f.

For a general one-way function neither (1) nor (2) necessarily holds. Intuitively, the rest of the paper constructs a one-way function with properties (1) and (2) from a general one-way function. This is done by using hash functions to smooth the entropy of f(X) to make it more uniform and to recapture the entropy of X lost by the application of f(X).

Proposition 4.4 produces a pseudorandom generator that only stretches the input by one bit. To construct a pseudorandom generator that stretches by many bits, combine this with the construction described previously in Proposition 3.6.

4.3. One-to-one one-way function to a pseudoentropy generator.

PROPOSITION 4.5. Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a one-to-one one-way function. Let $x, r \in \{0,1\}^n$ and define **P**-time function ensemble $g(x,r) = \langle f(x), r, x \odot r \rangle$. Then g is a pseudoentropy generator with pseudoentropy 1.

Proof. Let $X, R \in_{\mathcal{U}} \{0,1\}^n$ and $\beta \in_{\mathcal{U}} \{0,1\}$. Proposition 4.3 shows that g(X,R) and $\langle f(X), R, \beta \rangle$ are computationally indistinguishable, where the reduction is linear-preserving with respect to the alternative definition of computationally indistinguishable. Because f is a one-to-one function and β is a random bit, $\mathbf{H}(f(X), R, \beta) = 2n+1$, and thus g(X,R) has pseudoentropy 1. \square

Note that it is not possible to argue that g is a pseudorandom generator. For example, let $f(x) = \langle 0, f'(x) \rangle$, where f' is a one-way permutation. Then f is a one-to-one one-way function and yet $g(X,R) = \langle f(X), R, X \odot R \rangle$ is not a pseudorandom generator, because the first output bit of g is zero independent of its inputs, and thus its output can easily be distinguished from a uniformly chosen random string.

4.4. Universal hash functions.

DEFINITION 4.6 (universal hash functions). Let $h: \{0,1\}^{\ell_n} \times \{0,1\}^n \to \{0,1\}^{m_n}$ be a **P**-time function ensemble. Recall from Definition 2.9 that for fixed $y \in \{0,1\}^{\ell_n}$, we view y as describing a function $h_y(\cdot)$ that maps n bits to m_n bits. Then h is a (pairwise independent) universal hash function if, for all $x \in \{0,1\}^n$, $x' \in \{0,1\}^n \setminus \{x\}$, and for all $a, a' \in \{0,1\}^{m_n}$,

$$\Pr[(h_Y(x) = a) \text{ and } (h_Y(x') = a')] = 1/2^{2m_n},$$

where $Y \in_{\mathcal{U}} \{0,1\}^{\ell_n}$.

DEFINITION 2.4 (Renyi entropy). Let \mathcal{D} be a distribution on a set S. The Renyi entropy of \mathcal{D} is $\mathbf{H_{Ren}}(\mathcal{D}) = -\log(\Pr[X=Y])$, where $X \in_{\mathcal{D}} S$ and $Y \in_{\mathcal{D}} S$ are independent.

There are distributions that have arbitrarily large entropy but have only a couple of bits of Renyi entropy.

Proposition 2.5. For any distribution \mathcal{D} , $\mathbf{H_{Ren}}(\mathcal{D}) \leq \mathbf{H}(\mathcal{D})$.

4.5. Smoothing distributions with hashing.

LEMMA 4.8. Let $\mathcal{D}: \{0,1\}^n$ be a probability ensemble that has Renyi entropy at least m_n . Let e_n be a positive-integer-valued parameter. Let $h: \{0,1\}^{\ell_n} \times \{0,1\}^n \to \{0,1\}^{m_n-2e_n}$ be a universal hash function. Let $X \in_{\mathcal{D}} \{0,1\}^n$, $Y \in_{\mathcal{U}} \{0,1\}^{\ell_n}$, and $Z \in_{\mathcal{U}} \{0,1\}^{m_n-2e_n}$. Then

 $\mathbf{L}_{\mathbf{1}}(\langle h_Y(X), Y \rangle, \langle Z, Y \rangle) < 2^{-(e_n+1)}$.

Theorem 3: Let X be a random variable over the alphabet \mathcal{X} with probability distribution P_X and Rényi entropy R(X), let G be the random variable corresponding to the random

choice (with uniform distribution) of a member of a universal class of hash functions $\mathcal{X} \to \{0,1\}^r$, and let Q = G(X). Then

$$H(Q|G) \ge R(Q|G) \ge r - \log_2 (1 + 2^{r - R(X)})$$

 $\ge r - \frac{2^{r - R(X)}}{\ln 2}.$

Generalized Privacy Amplification

Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M. Maurer, Senior Member, IEEE

Proposition 4.9. Let k_n be an integer-valued polynomial parameter.

- Let $\mathcal{D}: \{0,1\}^n$ be a probability ensemble. There is a probability ensemble $\mathcal{E}: \{0,1\}^{nk_n}$ satisfying
 - $\mathbf{H_{Ren}}(\mathcal{E}) \ge k_n \mathbf{H}(\mathcal{D}) nk_n^{2/3},$
 - $\mathbf{L}_{\mathbf{1}}(\mathcal{E}, \mathcal{D}^{k_n}) \le 2^{-k_n^{1/3}}.$
- Let $\mathcal{D}_1: \{0,1\}^n$ and $\mathcal{D}_2: \{0,1\}^n$ be not necessarily independent probability ensembles; let $\mathcal{D} = \langle \mathcal{D}_1, \mathcal{D}_2 \rangle$. There is a probability ensemble $\mathcal{E}: \{0,1\}^{2nk_n}$, with $\mathcal{E} = \langle \mathcal{E}_1, \mathcal{E}_2 \rangle$, satisfying the following:
 - For every value $E_1 \in \{0,1\}^{nk_n}$ such that $\Pr_{\mathcal{E}_1}[E_1] > 0$, $\mathbf{H}_{\mathbf{Ren}}(\mathcal{E}_2|\mathcal{E}_1 = E_1) > k_n \mathbf{H}(\mathcal{D}_2|\mathcal{D}_1) nk_n^{2/3}$.
 - $-\mathbf{L}_{\mathbf{1}}(\mathcal{E},\mathcal{D}^{k_n}) \leq 2^{-k_n^{1/3}}.$

COROLLARY 4.10. Let k_n be an integer-valued P-time polynomial parameter.

• Let $\mathcal{D}: \{0,1\}^n$ be a probability ensemble, let $m_n = k_n \mathbf{H}(\mathcal{D}) - 2nk_n^{2/3}$, and let $h: \{0,1\}^{p_n} \times \{0,1\}^{nk_n} \to \{0,1\}^{m_n}$ be a universal hash function. Let $X' \in_{\mathcal{D}^{k_n}} \{0,1\}^{k_n \times n}$ and let $Y \in_{\mathcal{U}} \{0,1\}^{p_n}$. Then

$$\mathbf{L}_{\mathbf{1}}(\langle h_Y(X'), Y \rangle, \mathcal{U}_{m_n + p_n}) \le 2^{1 - k_n^{1/3}}.$$

• Let $\mathcal{D}_1: \{0,1\}^n$ and $\mathcal{D}_2: \{0,1\}^n$ be not necessarily independent probability ensembles, and let $\mathcal{D} = \langle \mathcal{D}_1, \mathcal{D}_2 \rangle$. Let $m_n = k_n \mathbf{H}(\mathcal{D}_2 | \mathcal{D}_1) - 2nk_n^{2/3}$. Let $h: \{0,1\}^{p_n} \times \{0,1\}^{nk_n} \to \{0,1\}^{m_n}$ be a universal hash function. Let $\langle X'_1, X'_2 \rangle \in_{\mathcal{D}^{k_n}} \{0,1\}^{k_n \times 2n}$ and let $Y \in_{\mathcal{U}} \{0,1\}^{p_n}$. Then

$$\mathbf{L}_{1}(\langle h_{Y}(X_{2}'), Y, X_{1}' \rangle, \langle \mathcal{U}_{m_{n}+p_{n}}, X_{1}' \rangle) \leq 2^{1-k_{n}^{1/3}}.$$

4.6. Pseudoentropy generator to a pseudorandom generator.

PROPOSITION 4.11. Let $\mathcal{D}: \{0,1\}^n$ and $\mathcal{E}: \{0,1\}^n$ be two probability ensembles and let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble. Let \mathcal{D} and \mathcal{E} be computationally indistinguishable. Then $f(\mathcal{D})$ and $f(\mathcal{E})$ are computationally indistinguishable.

PROPOSITION 4.12. Let k_n be an integer-valued **P**-time polynomial parameter. Let $\mathcal{D}: \{0,1\}^{\ell_n}$ and $\mathcal{E}: \{0,1\}^{\ell_n}$ be **P**-samplable probability ensembles. Let \mathcal{D} and \mathcal{E} be computationally indistinguishable. Then \mathcal{D}^{k_n} and \mathcal{E}^{k_n} are computationally indistinguishable. Construction 4.13. Let $f: \{0,1\}^n \to \{0,1\}^{m_n}$ be a **P**-time function ensemble and let s_n be a **P**-time polynomial parameter. Let $k_n = (\lceil (2m_n + 1)/s_n \rceil)^3$ and $j_n = \lfloor k_n(n+s_n) - 2m_nk_n^{2/3} \rfloor$. Let $h: \{0,1\}^{p_n} \times \{0,1\}^{k_nm_n} \to \{0,1\}^{j_n}$ be a universal hash function. Let $u \in \{0,1\}^{k_n \times n}$, $y \in \{0,1\}^{p_n}$, and define **P**-time function ensemble $g(u,y) = \langle h_y(f^{k_n}(u)), y \rangle$.

THEOREM 4.14. Let f and g be as described in Construction 4.13. Let f be a pseudoentropy generator with pseudoentropy s_n . Then g is a pseudorandom generator.

Proof. Let $f': \{0,1\}^{n'_n} \to \{0,1\}^{m_n}$ be the **P**-time function ensemble that witnesses the pseudoentropy generator of f as guaranteed in Definition 3.7 of computational entropy; i.e., f'(X') and f(X) are **R**-secure computationally indistinguishable and $\mathbf{H}(f'(X')) \geq n + s_n$, where $X \in_{\mathcal{U}} \{0,1\}^n$ and $X' \in_{\mathcal{U}} \{0,1\}^{n'_n}$. Let $U \in_{\mathcal{U}} \{0,1\}^{k_n \times n}$, $W \in_{\mathcal{U}} \{0,1\}^{k_n \times n'_n}$, and $Y \in_{\mathcal{U}} \{0,1\}^{p_n}$. By Proposition 4.12, $f^{k_n}(U)$ and $f'^{k_n}(W)$ are computationally indistinguishable. From Proposition 4.11, it follows that $g(U,Y) = \langle h_Y(f^{k_n}(U)), Y \rangle$ and $\langle h_Y(f'^{k_n}(W)), Y \rangle$ are computationally indistinguishable. Because $\mathbf{H}(f'(X')) \geq n + s_n$, by choice of k_n and j_n , using Corollary 4.10, it follows that $\mathbf{L}_1(\langle h_Y(f'^{k_n}(W)), Y \rangle, \mathcal{U}_{j_n+p_n}) \leq 2^{-k_n^{1/3}}$. Thus, it follows that g(U,Y) and $\mathcal{U}_{j_n+p_n}$ are computationally indistinguishable. Note that by choice of k_n , the output length $j_n + p_n$ of g is longer than its input length $nk_n + p_n$.

4.7. False entropy generator to a pseudoentropy generator.

Construction 4.15. Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble. Let s_n be a **P**-time polynomial parameter and assume for simplicity that $s_n \leq 1$. Let \mathbf{e}_n be an approximation of $\mathbf{H}(f(X))$ to within an additive factor of $s_n/8$, where $X \in_{\mathcal{U}} \{0,1\}^n$. Fix $k_n = \left\lceil (4n/s_n)^3 \right\rceil$ and $j_n = \left\lceil k_n(n-\mathbf{e}_n) - 2nk_n^{2/3} \right\rceil$. Let $h: \{0,1\}^{p_n} \times \{0,1\}^{nk_n} \to \{0,1\}^{j_n}$ be a universal hash function. For $u \in \{0,1\}^{k_n \times n}$ and $r \in \{0,1\}^{p_n}$, define **P**-time function ensemble

$$g(\mathbf{e}_n, u, r) = \langle f^{k_n}(u), h_r(u), r \rangle.$$

LEMMA 4.16. Let f and g be as described in Construction 4.15. Let f be a false-entropy generator with false entropy s_n . Then g is a mildly nonuniform pseudoentropy generator with pseudoentropy 1.

4.8. Mildly nonuniform to a uniform pseudorandom generator.

PROPOSITION 4.17. Let \mathbf{a}_n be any value in $\{0,\ldots,k_n\}$, where k_n is an integer-valued \mathbf{P} -time polynomial parameter. Let $g:\{0,1\}^{\lceil\log(k_n)\rceil}\times\{0,1\}^n\to\{0,1\}^{\ell_n}$ be a \mathbf{P} -time function ensemble, where $\ell_n>nk_n$. Let $x'\in\{0,1\}^{k_n\times n}$ and define \mathbf{P} -time function ensemble $g'(x')=\oplus_{i=1}^{k_n}g(i,x'_i)$. Let g be a mildly nonuniform pseudorandom generator when the first input is set to \mathbf{a}_n . Then g' is a pseudorandom generator.

4.9. Summary.

• a reduction from a one-way permutation to a pseudorandom generator (from subsection 4.2);

• a reduction from a one-to-one one-way function to a pseudorandom generator(combining subsections 4.3 and 4.6);

• a reduction from a pseudoentropy generator to a pseudorandom generator (from subsection 4.6);

• a reduction from a false-entropy generator to a pseudorandom generator (combining subsections 4.7, 4.6, and 4.8).

JOHAN HÅSTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY

6.2. Construction and main theorem.

Let

(6.1)
$$f: \{0,1\}^n \to \{0,1\}^{\ell_n}$$

be a one-way function and let

(6.2)
$$h: \{0,1\}^{p_n} \times \{0,1\}^n \to \{0,1\}^{n+\lceil \log(2n) \rceil}$$

be a universal hash function. Similar to Construction 5.1, for $x \in \{0,1\}^n$, $i \in \{0,\ldots,n-1\}$, and $r \in \{0,1\}^{p_n}$, define **P**-time function ensemble

(6.3)
$$f'(x,i,r) = \langle f(x), h_r(x)_{\{1,\dots,i+\lceil \log(2n)\rceil\}}, i,r \rangle$$

$$(6.4) k_n \ge 125n^3.$$

DEFINITION 2.7 (degeneracy of f). Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ and let $X \in \mathcal{U}$ $\{0,1\}^n$. The degeneracy of f is $\mathbf{D}_n(f) = \mathbf{H}(X|f(X)) = \mathbf{H}(X) - \mathbf{H}(f(X))$.

DEFINITION 2.13 $(\tilde{\mathbf{D}}_f)$. Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble. For $z \in \text{range}_f$, define the approximate degeneracy of z as

$$\tilde{\mathbf{D}}_f(z) = \lceil \log(\sharp \operatorname{pre}_f(z)) \rceil.$$

Part of the construction is to independently and randomly choose k_n sets of inputs to f' and concatenate the outputs. In particular, let $X' \in_{\mathcal{U}} \{0,1\}^{k_n \times n}$, $I' \in_{\mathcal{U}} \{0,1\}^{k_n \times \lceil \log(n) \rceil}$, $R' \in_{\mathcal{U}} \{0,1\}^{k_n \times p_n}$. Part of the construction is then $f'^{k_n}(X',I',R')$.

Let
$$I \in_{\mathcal{U}} \{0, \dots, n-1\}$$
, let

(6.5)
$$\mathbf{p}_n = \Pr[I \le \tilde{\mathbf{D}}_f(f(X))],$$

$$(6.6) m_n = k_n \mathbf{p}_n - 2k_n^{2/3}$$

(6.7)
$$h': \{0,1\}^{p'_n} \times \{0,1\}^{k_n} \to \{0,1\}^{m_n}$$

be a universal hash function, let $U \in_{\mathcal{U}} \{0,1\}^{p'_n}$, and define **P**-time function ensemble

(6.8)
$$g(\mathbf{p}_n, X', Y', I', R', U) = \langle h'_U(\langle X'_1 \odot Y'_1, \dots, X'_k \odot Y'_k \rangle), f'^{k_n}(X', I', R'), U, Y' \rangle.$$

JOHAN HÅSTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY

JOHAN HÅSTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY

THEOREM 6.2. Let f be a one-way function and g be as described above in (6.1)–(6.8). Then g is a mildly nonuniform false-entropy generator with false entropy $10n^2$.

7. A direct construction. We have shown how to construct a false-entropy generator from an arbitrary one-way function, a pseudoentropy generator from a false-entropy generator, and finally a pseudorandom generator from a pseudoentropy generator. The combinations of these constructions give a pseudorandom generator from an arbitrary one-way function as stated in Theorem 6.3. By literally composing the reductions given in the preceding parts of this paper, we construct a pseudorandom generator with inputs of length n^{34} from a one-way function with inputs of length n. This is obviously not a suitable reduction for practical applications. In this subsection, we use the concepts developed in the rest of this paper, but we provide a more direct and efficient construction. However, this construction still produces a pseudorandom generator with inputs of length n^{10} , which is clearly still not suitable for practical applications. (A sharper analysis can reduce this to n^8 , which is the best we could find using the ideas developed in this paper.) The result could only be considered practical if the pseudorandom generator had inputs of length n^2 , or perhaps even close to n. (However, in many special cases of one-way functions, the ideas from this paper are practical; see, e.g., [Luby96].)

Construction 7.1.

$$g(\mathcal{X}',Y',R_1,R_2,R_3) = \langle h_{R_1}(\mathcal{X}'), h_{R_2}(b^{k_n}(\mathcal{X}',Y')), h_{R_3}(f'^{k_n}(\mathcal{X}')), Y', R_1, R_2, R_3 \rangle.$$

Theorem 7.2. If f is a one-way function and g is as in Construction 7.1, then g is a mildly nonuniform pseudorandom generator.

We still need to use Proposition 4.17 to get rid of the mild nonuniformity. From the arguments above, it is clear that an approximation of both \mathbf{e}_n and \mathbf{p}_n that is within 1/(8n) of their true values is sufficient. Since $0 \le \mathbf{e}_n \le n$, and $0 \le \mathbf{p}_n < 1$, there are at most $\mathcal{O}(n^3)$ cases of pairs to consider. This means that we get a total of $\mathcal{O}(n^3)$ generators, each needing an input of length $\mathcal{O}(n^7)$. Thus the total input size to the pseudorandom generator is $\mathcal{O}(n^{10})$, as claimed.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION