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4.2 Interactive Hashing

Ostrovsky, Venkatesan and Yung [OVY93] introduced a powerful tool known as interactive hashing
(IH), which is a protocol between a sender Siy and receiver Ryy. The sender begins with a private
input y, and at the end both parties outputs yo and y; such that y € {yo,y1}. Informally, the IH
protocol has the following properties:

1. (Hiding) If the sender’s input y is uniformly random, then the receiver does not learn which
of yp or y; equals to y.

2. (Binding) The sender can “control” the value of at most one of the two outputs.

Naor, Ostrovsky, Venkatesan and Yung [NOVY98] showed that interactive hashing can be used to
construct statistically hiding commitment schemes from one-way permutations.

We extend the notion of interactive hashing to allow multiple outputs (instead of just two output
strings). Since we allow the number of outputs to be possibly superpolynomial, we succinctly
describe the set of outputs as the image of a polynomial-sized circuit C': {0,1}* — {0,1}9, where
k and g are polynomially related to the security parameter.
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For a relation W, let Wy, = {z : W(y, 2) = 1} and we refer to any z € W), as a valid witness for
y. In the definitions below, we use general relations, and hence do not require that relation W be
polynomial-time computable.

Definition 4.2. An interactive hashing scheme with multiple outputs is a polynomial-time protocol
(Str, Rin) where both parties receive common inputs (19,1%), Sy receives a private input y €
{0,1}4, with the common output being a circuit C: {0,1}* — {0,1}9, and the private output of
Str being a string 2 € {0, 1}¥. We denote g to be the input length and & to be the output length.
The protocol (S, Ri) has to satisfy the following security properties:

1. (Correctness) For all R* and all y € {0,1}9, letting C = (Sm(y), R*)(19,1%) and z =
outputg,, (Sm(y), R*), we have that C(z) = y.

2. (Perfect hiding) For all R*, (V, Z) is distributed identically to (V, Uy), where V' = view g« (St (Uy ), R*)
and Z = outputg,, (Sm(Uy), R¥).

3. (“Computational” binding) There exists an oracle PPT algorithm A such that for every S* and
any relation W, letting circuit C' = (S*, R) (19, 1%) and ((zo, 20), (21, 21)) = outputg. (S*, R ),
if it holds that

Pr[l’o € WC(zo) Nx1 € WC(zl) A zy # Zﬂ > &,

where the above probability is over the coin tosses of Ry and S*. Then we have that

Pr_[A5"(y,19,1%,¢) e W,] > 27F - (¢/¢)°W.
y—{0,1}¢
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We make three remarks regarding the above definition.

1. The security requirements should hold for all, even computationally unbounded R* (for cor-
rectness and perfect hiding) and computationally unbounded S* (even though binding is
“computational”). In addition, the relation W need not be polynomial-time computable.

2. To simplify notation, we often write A% (y), or even A(y), to denote A5 (y,19,1% ¢).

3. Although the output of the honest sender Sty is always a string z, the output of the cheating
sender S* is arbitrary; hence, we can assume without loss of generality that S* breaks binding
by producing two pairs of strings (zo, z0) and (1, 21).

We think of the string z € {0,1}* as a k-bit string commitment associated to one of the 2¥
outputs strings, namely y = C(z), and a witness x € W, = W¢(;) as a decommitment to z.
Intuitively, the knowledge of = gives the sender the ability to decommit to z. The “computational”
binding property, read in its contrapositive, says that if it is hard to find a witness for a uniformly
random string y, then it is hard for a sender to successfully decommit to two different values. Notice
that this property holds even if the set of “hard” y’s is not fixed in advance, but depends on the
algorithm trying to find a witness for y, namely an element in W,.
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Protocol 4.5. Interactive Hashing Scheme with Multiple Outputs (Sty, Rin)-

Inputs:
1. Input length 19 and output length 1%, both given as common input.

2. String y € {0,1}7, given as private input to sender St.

Protocol:

Ryy: Select hg,hi, ..., hq—g—1 such that each h; is a random vector over GF[2] of the form
071{0,1}2==! (i.e., i number of 0’s followed by a 1, and random choice for the last
q — i — 1 positions).

For j=0,...,g—k — 1, do the following:

Ry — Sma: Send hy.
SIH — RIH3 Send Cj = <hj y).

Output:

e Common output is a circuit C: {0,1}* — {0,1}9. computing an affine transformation
whose image is {y : (hj,y) =¢; ¥4 =0,...,¢q —k—1}.

e Output of Syy is a string 2z € {0, 1}* such that C(z) = y. (In fact, 2z can be taken to be
the last & bits of y.)
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B.1 Hiding Property
Lemma B.1 (perfect hiding). Protocol 4.5 is perfectly hiding in the sense of the Definition 4.2.

The proofs presented in this section and the next are very similar in nature to those in [NOVY98],
with additional analysis needed to handle interactive hashing for multiple outputs.

Proof. The view of any R* will be the hash functions ho, b1, - - , hg—k—1 together with S’s respond
€0,C1,...,Cq—k—1. Given these values, we show that there are 2¢=F possible y’s that would make
S(y) respond to co, ¢y, ..., Cq—k—1 (given queries hg, hy,--- , hq—j—1 from R*).

Consider the matrix H = (hg, h1, - - - , hq—r—1) Whose rows are the h;’s, vector ¢ = (co, €1, - . . , Cq—k—1),
and the equation Hy = ¢. Since h; is of the form 091{0,1}9-%"!  the first ¢ — k columns of the
matrix are linearly independent. Hence, any setting of the last & bits of y will fully determine the
first ¢ — k bits of it. These are the 29=% strings y that satisfy Hy = c. a

B.2 Binding Property

Lemma B.2 (computational binding). Protocol 4.5 is computationally binding in the sense of the
Definition 4.2.
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We prove Lemma B.2 by providing an algorithm A that finds a valid witness (according to
relation W) for a random string y < {0,1}9 with nonnegligible probability. Before describing A,
we provide the following definitions.

Definitions. In the enumerated definitions below, h; is of the form 0¢1{0,1}¢=¢1 and h;(y) =
(hi,y). Without loss of generality, we can assume that S* is deterministic because every probabilistic
S* can be converted to a (nonuniform) deterministic one with the same success probability and
running time by fixing its random coins to maximize its success probability.

FROM [NOVY98]

We begin by making &’ deterministic which can be done using standard techniques.
Suppose that we choose an assignment to the random tape of S’ and count the number
of queries of R (i.e., hy, ..., h,_1) on which S’ succeeds in cheating. By assumption,
if the assignment is random, then the expected fraction of such queries is at leaste. Let
2 be the set of assignments on which &’ is successful on at least ¢/2 of R’s queries.
By a simple counting argument we can conclude that € consists of at least £/2 of
the possible assignments. Algorithm .4 described below requires S’ to be deterministic.
Therefore we choose m = 2n /e random assignments w;, @y, . . ., w,, and run m times the
algorithm .4 with the random tape of S’ initialized with w;, s, . .., ®,,. With probability
1—-(1—¢/2)" >1—e" some o, € Q. Therefore from now on we assume that S’ is
deterministic and its probability of success over R’s queries is at least &/2.
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1. For 0 < i < g, let H; denote the set of hash functions of the form 0°1{0,1}91 i.e.,
H; = {0f1w : w € {0,139 1)

2. A node N at level ¢ is defined by a series of hash functions (hg, hq,...,hi—1), where each
h; € H;. (Since S* is deterministic, this determines co, ..., ci—1 where ¢; = S*(hg, ..., h;).)
Let L; denote the set of nodes at level i.

3. The set of compatible hash functions at node N € L; is denoted as
Comp(N,y) = {h; € H; : S*(N, h;) = hi(y)},
where S*(N, h;), with N = (hg, ..., hi—1), denotes S*(ho, ..., h;).
4. A string y is y-balanced at N € L; if

1-v Comp(V,y) 147
PR 7| 2

A string y is vy-fully-balanced at N € L; if it is y-balanced at all its parental nodes. That
is, letting N = (hg,...,hi—1), y is required to be v-balanced at all Ny = (ho),N1 =
(ho,h]), 500 ,N = Ni—l = (ho7 5o g hi—1)~

ho
5. A string y is said to be compatible with a node N = (ho,...,h;—1) if h;(y) = S*(}z, N)
for all 0 < j < i. Let U(N) denote the set of compatible y’s with node N. Note that for
every N € L;, we have |[U(N)| = 29-%.

6. Let B(N) and F(N) denote the set of v-balanced strings and ~-fully-balanced strings at
node N respectively. Moreover, let G(N) = U(N) \ F(N) be the set of strings that are not
fully-balanced. Note that for every node N, we have F'(N) C B(N) C U(N).

7. At every node N € Ly, we can assume WLOG that S*(IN) outputs a pair of strings (zo, z0)
and (z1,21), but it is not necessarily the case that any of 2, € Wg(,)-

Definitions.
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Description of the witness finding algorithm. Algorithm A: On input y € {0,1}9,1¢,1* and
g, do the following.

1. Set parameters v = 1/q,
3 =log(1/e) + 2log(q) + 4log(1/y) + 4, and
a=q—[0—k.
. Repeat the following for i = f Lo — 1

When A is at node N € L;, explore along a random h; « Comp(N,y) to get to a
new node N’ = (N, h;) € Li11. (This can be done efficiently by choosing a random
hi < H; and querying S* to make sure that h; € Comp(N,y), and repeat up to 8¢
times if not. If after 8¢ repetitive tries and fail to encounter any h; € Comp(N, y),
then output fail.)

. At node N € L, choose random hy «— Ha, ..., hayg—1 < Hayg—1, to arrive at node N =
(N, hayhat1s- - hatp—1) € Layp. (Note that ¢ —k = o+ 3, and hence N € Loy g = Lg_.)

. Query S*(]V) to get (o, 20) and (21, 21). If either of C(2;) = y, then output z,. Else, output
fail.

It is clear that the above algorithm runs in polynomial time (with oracle queries to S*). All
we need to show is that it succeeds with nonnegligible property, and we prove that property in the
following claims.
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Claim B.3. For every node N € L;, the set of unbalanced strings, U(N)\ B(N) < 2/~2.

The next claim follows by a union bound on the unbalanced elements.

Claim B.4. For every node N € L;, the set of strings that are not fully balanced, G(N) = U(N) \
F(N) < 2i/4%. In particular, for y = 1/q, |F(N)| > |U(N)| /2 fori < q — 4logq.

Claim B.5. For every node N € Ly, the fraction of children nodes Noipg with greater than one
element from G(N) is at most e/4.
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)

|S*(N)n G(N)|=2
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A node N € Lot = Lg_y, is witness revealing if both of S*(N)’s outputs, namely (2o, 20) and
(w1, 21), satisty C(z) € U(N) and x, € Wey,,), for b € {0,1}. A node N € L, is said to be good if
greater than /2 of its children at level ¢ — k are witness revealing.

Claim B.6. The fraction of good nodes at level a is at least /2.

Claim B.7. For any fited N € Lo and y' € F(N), we have
1 1 1 1 1
— . —— P reaches N Ay =19 < ——  ——— ——=
2 T el = v=YlS s T Tl

where the probability is taken over y € {0,1}7 and the random coins of A.

Claim B.8.

Pr[The node N reached by A is good Ny € F(N)] > m.

where the probability is taken over y € {0,1}¢ and the random coins of A.

Claim B.9. In any good node N € L, the fraction of nonbinding children of N at level a+ (3 that
has one or less image in G(N) is at least e/4.
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)

= N |S*(N)n G(N)|=1



Minh-Huyen Nguyen Shien Jin Ong Salil Vadhan

Claim B.10. For any fized N € Ly and y' € F(N), we have

1 1-79\¢
Pr[y = y'|A reaches N ANy € F(N)] > (—) A
ly =yl yeFNI 2 mom T

where the probability is taken over y € {0,1}7 and the random coins of A.

We have now reached our final claim to complete the proof of the binding theorem.

Claim B.11. W,

E)rl} Ay) € ﬁ/] > c- (e3¢7%27%) — exp(q), for some constant ¢ > 0.
y<—{0,1}9
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Claim B.8.

Pr[The node N reached by A is good Ny € F(N)] > ﬁ.

where the probability is taken over y € {0,1}¢ and the random coins of A.

Claim B.9. In any good node N € L, the fraction of nonbinding children of N at level a+ (3 that
has one or less image in G(N) is at least €/4.

Claim B.10. For any fized N € Ly, and y' € F(N), we have

1 1—y\“
Prly = 4| A reaches N Ay € F(N)] > (7) )
lv <ol M1 = 1w \ Ty

where the probability is taken over y € {0,1}¢ and the random coins of A.
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We have now reached our final claim to complete the proof of the binding theorem.

Claim B.11. W,

1{301“1} [A(y) € ﬁy] > c- (3¢7%27%) — exp(q), for some constant ¢ > 0.
y—{0,1}¢

Proof of claim. Note how A operates. On input y, it follows a random compatible
(with y) hash functions h; out of node N € L;, for 1 < i < «, and then takes random
h;’s (not necessarily compatible with y) when a@ <4 < a+ 3. (For now, we can ignore
failure to obtain compatible hash functions.)

Our algorithm A will find a valid witness for y if the following conditions happen.

1. Algorithm A reaches a good node N € L, such that y € F(N). By Claim B.8,
this happens with probability at least £/(4(1 + v)%).

2. Algorithm A reaches a witness revealing child with at most one element in G(IV).
Given that (1) occurs, by Claim B.9, this happens with probability at least /4.
In this case, S* will output (zo, 20) and (z1, 21), such that at least one (zp, 2p) will
be such that , € Wey,,) and C(z) € U(N) \ G(N) = F(N). Let y' = C(z).

3. The string y = y’ = C(z). If this happens, then A will output z; € Ry, a valid
witness for y. By Claim B.10, we have that

1 11
Pr[y = 9/|A reaches N Ay’ € F(N 27<7> .
lv=y W2 Tra \ Ty
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Combining all the probabilities, we have

Wy
€ 1 1—y\¢
o RN (1+v>

1 22 1—7v “
> o SN )
> g (a o)

With settings of v = 1/¢q and § = log(1/e) + 2log(q) + 4log(1/v)) + 4, we have
the probability of finding a witness to be greater than c- (£3¢=%27%), for some constant
c>0.

Finally, we need to account for the case when we fail to find compatible hash func-
tions h; out of node N € L;, for 1 < i < a. However, because our analysis has only
focused on fully balanced y, and we repeat 8¢ times to find a compatible hash, the

probability of failure is exponentially small. Therefore, the overall success probability
is greater than c - (e3¢7%27F) — exp(q). O

= ™
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Claim B.3. For every node N € L;, the set of unbalanced strings, U(N)\ B(N) < 2/~2.

Proof of claim. Let X C U(N) be a set of size 2¢, for some value of d. We also interpret
X as a distribution that puts equal weights on each of its 2¢ elements.

Let H; be the set of hash functions after node N of the form 0°1{0, 1}9=%=1. Observe
that for every x # @', Pry,—p,[hi(x) = hi(z")] < 1/2. Also, note that h; requires exactly
q — i — 1 bits to describe.

Computing the collision probabilities (using the notation H; to denote a random
hash function from that family), we get

Col((Hs, Hi(X))) < Col(H;)(Col(X) + Pr[Hy(X) = Hi(X') : X # X))
Col(H;) - (1/2¢ +1/2)

2-(@=1=1)(1/2¢ 4+ 1/2), whereas

CO](Hz) g 1/2

) (1/2).

IN

COI((Hi, U1))




From Stinson’s book

Definition 2.5: A real-valued function f is a concave function on an interval

3 TENEEET

2 B 2
forall z,y € I. fis a strictly concave function on an interval [ if

PSR

2 2

forall z,y € I, z # y.

Here is Jensen’s inequality, which we state without proof.

THEOREM 2.5 (Jensen’s inequality) Suppose f is a continuous strictly con-
cave function on the interval 1. Suppose further that

n
Zai =1
v=ll

anda; > 0,1 < i < n. Then

Z(hf(%) <f (Z (17T1> 5

=il o=l

where x; € I, 1 < i < n. Further, equality occurs if and only if 1 = - - - = xp,.
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Therefore,

A((Hi, Hi(X)), (Hi, Ur)) 1/2 |(Hi, Hi(X)) — (Hi, Uy

1/2 - V271 [Col((Hs, Hy(X))) = Col((Ha, 1))
1/24/1/2

9-d/2-1

IN A

Setting d = 2log(1/7v), we get that A((H;, H;i(X)), (Hs, U1)) < v/2. Next, assume
for sake of contradiction that U(N) \ B(N) > 2¢t! = 2/42. Then we will have a set
M C U(N) \ B(N) of size greater then 2¢ with elements that are unbalanced in one
direction (i.e. all > 1/2++, or all < 1/2—~). But this contradicts the assumption that
A((Hi, Hi(T)), (Hi, Ur)) < /2 (since |T] > 2%). O




Minh-Huyen Nguyen Shien Jin Ong Salil Vadhan

The next claim follows by a union bound on the unbalanced elements.

Claim B.4. For every node N € L;, the set of strings that are not fully balanced, G(N) = U(N) \
F(N) < 2i/¥%. In particular, for v =1/q, |[F(N)| > |U(N)| /2 fori < q—4logq.
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Claim B.5. For every node N € L, the fraction of children nodes Noipg with greater than one
element from G(N) is at most /4.

Proof of claim. Consider any fixed node N € L,. The number of non-fully-balanced
(aka bad) elements in that node is G(IN). Hence, the number of pairs of these bad
elements is at most |G(N)|?. Since for each = # y € U(N), Pr[hi(z) = hi(y)] < 1/2
for all @ <4 < a+ 3, the fraction of children nodes N’ € Lo, with greater than one
element, from G(N) is at most |G(N)|* /2°.

Since 8 = log(1/¢) 4 2log(q) + 4log(1/7) + 4, we can bound |G(N)[? /27 as follows:

IG)|*-27% < (2077%)%27F
< 4¢’y"27F
< e/4.

The result follows. O
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Claim B.9. In any good node N € L, the fraction of nonbinding children of N at level a+ [ that
has one or less image in G(N) is at least e/4.

Proof of claim. The fraction of nonbinding children is greater than ¢/2, and by
Claim B.5, the fraction of children nodes of N with greater than one element from
G(N) is at most €/4. O
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B.1°

R

B.10 B.8
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A node N € Lyyg = Ly, is witness revealing if both of S*(IN)’s outputs, namely (zo, zp) and
(w1, 21), satisty C(z) € U(N) and x € Wez,), for b € {0,1}. A node N € L, is said to be good if
greater than e/2 of its children at level ¢ — k are witness revealing.

Claim B.6. The fraction of good nodes at level « is at least /2.
Proof of claim. By the assumption that
Prlzg € Weg) A1 € W) : C = (S*,R)(lq,lk); ((%o, 20), (z1,21)) = outputg«(S™, R)] > &,

we know that at least e fraction of all the nodes at level ¢ — k are nonbinding. And, by
a Markov bound, we have that /2 fraction of nodes at level a are good. Ol
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Claim B.7. For any fited N € Lo and y' € F(N), we have

1 1 1 1 1 1
207 (1+79)* |Lal

where the probability is taken over y € {0,1}7 and the random coins of A.

Proof of claim. Let N = (ho,h2,...,ha—1), and for 1 < j < o, define N; =
(ho, ..., hj—1). To get the upper bound,

Pr[A reaches N Ay = ¢/ Pr[y = y'] - Pr[A reaches N]

@=I1l

= v
],1;[0 Comp(Nj,y)
@=I1l

|
A 4]
1 1 1
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To get the lower bound, we use very similar techniques.

a—1

2749 E—
].1:[0 Comp(N. )

Pr[A reaches N Ay = /]

a—1

2 Q= IL o 1
= +7  [Hl
1 1 1

Our result follows.
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Claim B.8. a
Pr[The node N reached by A is good Ny € F(N)] > m

where the probability is taken over y € {0,1}7 and the random coins of A.

Proof of claim. Let N € L, be any good node at level a. Then,

Pr[A reaches N Ay € F(N)] = Z Pr[A reaches N Ay = o]
y'€F(N)
1 1 1
> Z ..
= q—a a
yeri 1 Lel 207 MR
_ EV T 1
S22 Ly A+
_ EV 1 1
UN)| Lol (1 +7)
1 1 1
S Nl

T 2 Lo (147
with the last inequality following from the fact that |F(N)|/|U(N)| > 1/2, noting
a < g — 3log g (refer to Claim B.4).
There are |L,| nodes at level a, and at least £/2 fraction of them are good. Hence,
we multiply the above probability by (¢/2) |L,| to get our stated result. O
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Claim B.10. For any fized N € Ly, and y' € F(N), we have

1 1—v\“
Prly = y/|A reaches N Ny € F(N Z—(—> )
ly=yl Ml 2 ma \ Ty

where the probability is taken over y € {0,1}7 and the random coins of A.

Proof of claim. For any fixed N € L, and y' € F(N),

Pr[A reaches N Ay = /]
Prly = '|A hes N F(N)] = ’
rly = y'|A reaches N Ay € F(N)] Pr[A reaches N Ay € F(N)]

For the numerator, by Claim B.7,
Pr[A reaches NAy =¢/] > —  —— -
«

For the denominator, also using Claim B.7,

Pr[A reaches N Ay € F(N)] = g Pr[A reaches N Ay = 3]
y'€F(N)
1 1 1

< L

= q—o —_ ~e
2 T T T

1 1 1
= FW)| g

Combining the two, we have our result.
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4.1 Hashing and Randomness Extraction

Entropy. The entropy of a random variable X is H(X) = E r, [log(1/Pr[X = z])]), where here
and throughout the paper all logarithms are to base 2. Intuitively, H (X ) measures the amount of
randomness in X on average (in bits). The min-entropy of X is Hoo(X) = ming[log(1/Pr[X = z])];
this is a “worst-case” measure of randomness. In general H(X) < H(X), but if X is flat (i.e.
uniform on its support), then H(X) = Hoo(X) = log [Supp(X)|.

A family of hash functions Hap = {h : {0,1}* — {0,1}*} is pairwise independent if for any
two x # 2’ € {0,1}% and any two y,y’ € {0,1}°, when we randomly choose h «— H,p, we have:
Pr[h(z) = y A h(z') = ¢/] = 33. We define £(a,b) to be the number of bits required to describe an
element of the hash function family H,p; that is, £(a,b) = max{a, b} +b. We will use the following
strong extractor property of Hg p.

Lemma 4.1 (Leftover Hash Lemma [BBR8S, ILL89]). Let H,, be a pairwise independent family of
hash functions mapping {0,1}% to {0,1}°. Let Z be a random variable taking values in {0,1}% such
that Hoo(Z) > b+ 2log(1/e). Then the following distribution has statistical difference at most e
from the uniform distribution on Hap x {0,1}°: Choose h «— M,y and x «— Z and output (h, h(z)).
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2.2 1l-out-of-2-Binding Commitments

Definition 2.4. A 2-phase commitment scheme (S, R), with security parameter n and message
length k = k(n), consists of four interactive protocols: (S}, R}) the first commitment stage, (S}, R})
the first reveal stage, (S2, R?) the second commitment stage, and (S2, R?) the second reveal stage.
For us, both reveal phases will always be noninteractive, consisting of a single message from the
sender to the receiver. Throughout, both parties receive the security parameter 1" as input.

1. In the first commitment stage, Sg receives a private input oM e {0, 1}’“ and a sequence of coin
tosses rs. At the end, S} and R} receive as common output a commitment (). (Without
loss of generality, we can assume that z(!) is the transcript of the first commitment stage.)

2. In the first reveal stage, S} and R} receive as common input the commitment 2(!) and a string
o) € {0,1}* and S} receives as private input rs. At the end, S} and R} receive a common
output 7. (Without loss of generality, we can assume that 7 is the transcript of the first
commitment stage and the first reveal stage and includes R!’s decision to accept or reject.)

3. In the second commitment stage, Sf and Rg both receive the common input 7 € {0,1}*,
and Sf receives a private input o®@ e {0,1}* and the coin tosses rg. Sc2 and Rg receive as
common output a commitment z(2). (Without loss of generality, we can assume that 2@ s
the concatenation of 7 and the transcript of the second commitment stage.)

4. Tn the second reveal stage, S7 and R2 receive as common input the commitment z(®) and a
string 0 € {0,1}*, and S2 receives as private input rg. At the end, R? accepts or rejects.

o §=(5",58%) = ((S:,57).(82,5)) and R = (R, R?*) = ((R¢, Ry), (RZ, RY)) are computable
in probabilistic polynomial time.

e We say that (S, R) is public-coin if it is public-coin for R.



Minh-Huyen Nguyen Shien Jin Ong Salil Vadhan

Note that instead of providing S with decommitment values as private outputs of the commit-
ment phases, we simply provide it with the same coin tosses throughout (so it can recompute any
private state from the transcripts of the previous phases).

As for standard commitment schemes, we define the security of the sender in terms of a hiding
property. Loosely speaking, the hiding property for a 2-phase commitment scheme says that both
commitment phases are hiding. Note that since the phases are run sequentially, the hiding property
for the second commitment stage is required to hold even given the receiver’s view of the first stage.

Definition 2.5 (hiding). 2-phase commitment scheme (S, R), with security parameter n and mes-
sage length k = k(n), is statistically hiding if for all adversarial receiver R*,

1. The views of R* when interacting with the sender in the first phase on any two messages are

statistically indistinguishable. That is, for all o), 1) e {0,1}*,

{viewR* (sg(a<1>),R*)(1")}neN ~ {viewR*(SCl(G(l)),R*)(l")}neN.

2. The views of R* when interacting with the sender in the second phase are statistically in-
distinguishable no matter what the sender committed to in the first phase. That is, for all
oW, 0@ 5@ e {0,1}*,

{viewr: (2(e®), RYA1M} _ w, {viewr- (S2G®), R)(A,1)}
ne ne

where A = transcript(S* (™), R*)(17).
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We stress that the second condition of the above hiding definition (Definition 2.5) requires that
the view of receiver in the second phase be indistinguishable for any two messages even given the
transcript of the first phase, A = transcript(S* (¢(), R*)(1).

Loosely speaking, the binding property says that at least one of the two commitment phases
is (computationally) binding. In other words, for every polynomial-time sender S*, there is at
most one “bad” phase j € {1,2} such that given a commitment 2, §* can open z9) successfully
both as ¢ and 5V # ¢ with nonnegligible probability. Actually, we allow this bad phase to be
determined dynamically by S*. Moreover, we require that the second phase be statistically binding
if the sender breaks the first phase. Our construction achieves this stronger property, and using it
simplifies some of our proofs.
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Definition 2.6 (1-out-of-2-binding). 2-phase commitment scheme (S, R), with security parameter
n and message length k& = k(n), is computationally (?)—binding if there exist a set B of first phase
transcripts and a negligible function e such that:

1. For every (even unbounded) sender S*, the first-phase transcripts in B make the second phase
statistically binding, i.e. V.S*, V7 € B, with probability at least 1—e(n) over 2 = (S*, R2)(7),
there is at most one value 0 € {0,1}* such that output(S*, R?)(2(?), () = accept.

2. V nonuniform PPT S*,7 §* succeeds in the following game with probability at most &(n) for
all sufficiently large n:

(a) S* and R} interact and output a first-phase commitment 2(%).
(b) S* outputs two full transcripts 7 and 7 of both phases with the following three properties:

e Transcripts 7 and 7 both start with prefix z().

e The transcript 7 contains a successful opening of z(!) to the value ¢ {0,1}F
using a first-phase transcript not in B, and R: and R? both accept in 7.

e The transcript 7 contains a successful opening of z™) to the value 7@ & {0,1}*
using a first-phase transcript not in B, and R} and R? both accept in 7.

(c) S* succeeds if all of the above conditions hold and o) # (1.
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3 Our Results

Our main theorem, Theorem 1.1, is established via the following theorems.

Theorem 3.1. If one-way functions exist, then on security parameter n, we can construct in time
poly(n) a collection of public-coin 2-phase commitment schemes Comy, - - - , Comy, for m = poly(n)
such that:

e There exists an index i € [m] such that scheme Comy; is statistically hiding.
o For every index j € [m], scheme Comy; is computationally (%)—bmdmg.

Theorem 3.2. Assume that on security parameter n, we can construct in time poly(n) a collection
of public-coin 2-phase commitment schemes Comy,-- - ,Com,, for m = poly(n) such that:

o There exists an index i € [m] such that scheme Comy; is statistically hiding.
e For every index j € [m], scheme Com; is (%)—computationally binding.

Then, every language in NP has a public-coin statistical zero-knowledge argument system.
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Protocol 4.6. 2-Phase Commitment Scheme (S, R) based on f: {0,1}" — {0,1}".

Parameters: Integers t € {1,2,...,n}, k € {1,2,...,n}, Ay € {0,1,...,t}, and Ay €
{0,1,...,n —t}.

Sender’s private input: String € {0,1}". (Note that this is not the value to which the
sender is committing, but is rather part of its coin tosses, which will be chosen uniformly
at random by S unless otherwise specified.)

First phase commit:

1. S} sets y = f(x).

2. Let Hy = {h1: {0,1}* — {0,1}}"21} be a family of pairwise independent hash
functions. S} chooses a random hash hy < Hj, and computes v = (h1,h1(y)) €
{0,1}4.

3. (S%, Rl) run Interactive Hashing Scheme (Protocol 4.5) (Six(v), Rim)(19,1%), with
Si and Ri acting as Sty and Ry respectively.

Let circuit C™M: {0,1}* — {0,1}7 be the common output and d € {0,1}* be
St’s private output in (S (v), Rmm)(19, 1%).

First phase sender’s private output: String dV) e {0, 1}*.

(to commit to a string z("), the sender sends d("0z(") to the receiver )

First phase reveal:
S1 sends the tuple (1) = (d1), y, hy).
Receiver R! accepts if and only if CD(dM) = (hy, hi(y)).
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Protocol 4.6. 2-Phase Commitment Scheme (S, R) based on f: {0,1}" — {0,1}".

Second phase commit:
Second phase common input: First-phase transcript 7 = transcript(S*(z), R'), which in
particular includes the string y.

1. Let Ho = {hg: {0,1}® — {0,1}**=22} be a family of pairwise independent hash
functions. S? chooses a random hash hy «— Ha, and computes w = (ha, ha(z)) €
{0,1}4.

2. (S2, R?) run Interactive Hashing Scheme (Protocol 4.5) (S (w), Ry )(19, 1%), with
S? and R? acting as Sty and Ry respectively.

Let circuit C®: {0,1}* — {0,1}7 be the common output and d® € {0,1}* be
St’s private output in (SIH(’U)7 RIH)(lq, lk).

Second phase sender’s private output: String d® e {0, 1}’“.

(to commit to a string z, the sender sends d@[1z®? to the receiver )

Second phase reveal:
52 sends the tuple v2) = (d®), z, hy).
Receiver R? accepts if and only if f(z) = y and C®(d®) = (hy, ha(x)).
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Lemma 4.7 (statistical hiding). If f is a regular function with H(f(Uy)) € (to — 1,to], then
Protocol 4.6, with setting of parameters t = to, k < q(n), and Ay = Ay = w(logn), is statistically
hiding in the sense of Definition 2.5.

Proof Sketch. For every y € Support(f(U,)), we have p(y) = Pr[f(U,) = y] € [27 ;2 o +1)

We denote the distribution f(U,) by Y. The flat source Y has min-entropy at least tp — 1.
By the Leftover Hash Lemma (Lemma 4.1), the distribution Z = (Hy, Hy(Y)) is 2= close
to the uniform distribution (Hy,Ui—a,). By the hiding property of interactive hashing, the first
commitment phase is 2-A1) statistically hiding.

Let 7 be the transcript of the first phase and y the string sent in the first reveal phase. Con-
ditioned on 7, the string @ comes from the uniform distribution X over f~1(y) and X is a flat
souce with min-entropy at least n — tyo. By the Leftover Hash Lemma (Lemma 4.1), the distribu-
tion W = (Hy, Ho(X)) is 2-4A2)_close to the uniform distribution (Ha, Uy, ¢ a,). By the hiding
property of interactive hashing, the second commitment phase is 2*Q(A2)—statistically hiding. O
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Lemma 4.8. If f is a s(n)-secure one-way function (not necessarily regular), then for any value
of t € {1,--- ,n}, Protocol 4.6, with setting of parameters k = O(logn), A; = Ay < (log(s(n)))/4,
is 1-out-of-2 computationally binding in the sense of Definition 2.6.

The proposition will be proved in two steps. For every ¢ € {1,--- ,n}, we define the set of
“light” strings Ly = {y € {0,1}" : Pry, [f(U,) = y] < 271723}, for a parameter Az that we will set
at the end of the proof. We define B to be the set of transcripts where the sender reveals y € L.
We will first show that if the first commitment transcript is in B, then the second phase will be
statistically binding. We will then prove that the first phase is computationally binding, i.e. if there
exists an adversary that can break the binding property for the first phase, then there exists an
adversary that can invert f with nonnegligible success probability.
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Claim 4.9. For the binding set B defined above, Condition 1 of Definition 2.6 is satisfied with
g(n) = poly(n) - 2-UAs=A2),

Proof of Claim 4.9. Let y be the string sent in the first reveal phase. Let T' = {(ha, ha(x)) : ha €
Hom—t—ns, @ € f~H(y)} and u(T) denote the density of the subset 7. Since he maps {0,1}" to
{0,1}7t=22 e have

i 1 A 1 -
w(T) < |f l(y)| . < () t As) 9(A2—Ay3)

By the binding property of the second execution of the interactive hashing protocol for static
sets, we have

Q(A3—A2)

Pr [(wo, w1) = output(Sty, Rix) satisfies wg € T Aw; € T] < 27 - poly(q).
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Claim 4.10. For the binding set B defined above, if there exists a PPT S* that succeeds with
nonnegligible success probability € in the game in Condition 2 of Definition 2.6, then there exists a
PPT T that can invert f with success probability at least

M. 1/poly(n) . 9~ (k+A1+A3)

Proof of Claim 4.10. We define the relation R:

R = {((hlvw), (y,x)) W= hl(y)v Y= f(T), y & Lt}

Let Ry, = {(y,2) : R(v,(y,x)) = 1}. Suppose we have a PPT S* with success probability
greater than ¢ in the game of Definition 2.6. Then we have a PPT Sjj; in the interactive hashing
protocol such that

Pr[OUtPUtSI*H (Sf‘Hv RIH) : ((an U1)7 (y7 I)7 (?/7 Tl)) such that
(vo,v1) = output(Siyy, Rin), (¥, ) € Ruy, (v, 2') € Ryy] > €

By the binding property of the interactive hashing protocol, there exists a PPT A such that

P A(v,14,¢) e R, >2"“~<£>
veHlxli/t,Al[ (U ) } Zl
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Consider the PPT T that on input y picks a hash function h; uniformly from H, ;—a,, runs A on
input v = (h1, h1(y)) and outputs the second component of A(v). Assume without loss of generality
that A is deterministic. Then:

Un,rp
= Fr [A(H, B(f(Un))2 € T U)]
> Z UH,EII;,TA[(HL Hl(f(Un))) . (hhw) A A(hlv w) € R(h1,w)]
(h1,w)EHp 1 —a; x{0,1}t-A1
1
= T ) Pr[hi(f(Un)) = w]
=L (h1,w) s.t. A(hl,w)GR(hl,w)
1
> — P U,) = A(hq,
> ) Hf(Un) = Al w)]

(h1 ,w) s.t. A(hl 7w)ER(h1 )

1 B A e\ _i A
n,l—Aq

- = i .9~ (k+A1+A3)
4

The first inequality comes from considering fixed values of h; and w and restricting the success
probability of A to the case where y € L;. The third inequality comes from considering only values
of (hy,w) such that w = hy(y) for some y & L;. Such strings y have mass at least 27¢=23, O
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The lemma follows from the above two claims by setting Az = Ag+ (log s(n))/4 < (log s(n))/4.
With this, Claim 4.9 shows that Condition 1 in Definition 2.6 is satisfied with e(n) = poly(n) -
2oz s(n)) — neg(n) because s(n) = n*(M. Condition 2 of Definition 2.6 is satisfied with negligible
probability £(n) because otherwise f can be inverted with probability

£00) .1 Jpoly(n) - 3-R+AI+AD) 5 L00) .1 poly () - 2~ (OUogn)+(3/4)-(10g s(m)
= %W . 1/poly(n) - s(n) =31,

which is greater than 1/s(n) if € is nonnegligible.
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Statistical Zero-Knowledge Arguments for NP
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