

called a round.

Definition: An *Interactive proof protocol* is given by two functions:

V:
$$\Sigma^* \times \Sigma^* \times \Sigma^* \to \Sigma^* \cup \{\text{accept, reject}\}\$$

P: $\Sigma^* \to \Sigma^*$

Let s_i denote the concatenation of i pairs of messages, $s_i = \#x_1 \# y_1 \# \cdots \# x_i \# y_i$. We write $V(w,r,s_i) = x_{i+1}$ to mean that V on input w, with random sequence r, and current message stream—s-produces next message x_{i+1} . We say $P(s_i \# x_{i+1}) = y_{i+1}$ to mean that P produces next message y_{i+1} given current message stream $s_i \# x_{i+1}$. The exchange of a single pair of messages is

 \mathbf{S}_{j} (x_{1} can always contain w)

For a given input w and random sequence r we say

 $(V^*P)(w,r)$ accepts

Shafi Goldwasser, Michael Sipser

if there exists a message stream $s = \#x_1 \#y_1 \# \cdots \#x_l \#y_l$ such that V(w,r,s) =accept, and for each i < l, $V(w,r,s_i) = x_{i+1}$ and $P(s_i \#x_{i+1}) = y_{i+1}$.

(uniformly)

Shafi Goldwasser, Michael Sipser

Let us assume for simplicity that there is a function l such that for inputs w of length n, V will only accept if the length of ris l(n). Then we write Pr[(V*P)(w) accepts]to mean $Pr[(V^*P)(w,r)]$ accepts] for r chosen $\sum I(|w|)$ randomly from $\Sigma^{l(|x|)}$. Further we let Pr[V(w) accepts]denote $\max_{P} \Pr[(V^*P)(w) \text{ accepts}].$

Let the language of the verifier, L(V) =

 $\{w: \Pr[V(w) \text{ accepts}] > 1/2\}$

Say V has error probability e if for all $w \in \Sigma^*$:

1) if $w \in L(V)$, $Pr[V(w) \text{ accepts}] \ge 1 - e$ 2) if $w \notin L(V)$, $Pr[V(w) \text{ accepts}] \le e$

For $W \subseteq \Sigma^*$, we say $W \in IP$ if there is a polynomial time verifier V with error probability

1/3 accepting W. As we shall see later, the class IP is unaffected if we substitute e for 1/3, where $\frac{2-\text{poly}(n)}{2} \le e \le 1/2 - 2^{-\text{poly}(n)}$.

 $2^{-\operatorname{poly}(n)} \le e \le 1/2 - 1/\operatorname{poly}(n)$

Definition: An Interactive proof protocol with public coin is defined as above with the following difference. The random input r is considered to be the concatenation of l strings $r = r_1 r_2 \cdots r_l$ where l is the number of rounds and V is restricted to produce r_i as it's ith message, i.e., for $i \le l$, $V(w,r,s_i) = r_i$ or accept or reject.

This notion is essentially identical to that of the Arthur-Merlin game defined by Babai in [B]. Following his terminology we say that for $W \subseteq \Sigma^*$, $W \in AM(poly)$ if $W \in IP$ as above and the interactive proof protocol uses a public coin. We refer to an Arthur-Merlin game as an A-M protocol.

For polynomial Q, say $W \in IP[Q(n)]$ if $W \in IP$ with a verifier which never sends more than Q(n) messages for inputs of length n. Similarly define AM[Q(n)].

4.1. Approximate lower bound lemma

Shafi Goldwasser, Michael Sipser

This lemma, an application of Carter-Wegman universal hashing [CW], due to Sipser [Si], plays a key role in our proof of equivalence. Its application to approximate lower bounds was first given by Stockmeyer [St]. Its application in Arthur-Merlin protocols first appears in Babai [B].

 \boldsymbol{c} .

Definition: Let D be a $k \times b$ Boolean matrix. The linear function $h_D: \Sigma^k \to \Sigma^b$ is given by $h_D(x) = x \cdot D$ using ordinary matrix multiplication modulo 2. A random linear function is obtained by selecting the matrix D at random. If $H = \{h_1, \ldots, h_l\}$ is a collection of functions, $C \subseteq \Sigma^k$, and $D \subseteq \Sigma^b$ then H(C) denotes $\bigcup h_i(C)$, and $H^{-1}(D)$ denotes $\bigcup h_i^{-1}(D)$. Let |C| denote the cardinality of

Lemma: Given b,k,l>0, $l>\max(b,8)$, and $C\subseteq \Sigma^k$. Randomly select l linear functions $H=\{h_1,\ldots,h_l\}$, $h_i:\Sigma^k\to\Sigma^b$ and l^2 strings $Z=\{z_1,\ldots,z_{l^2}\}\subseteq\Sigma^b$. Then

- 1. If $b=2+\lceil \log |C| \rceil$ then
 - a) $\Pr[|H(C)| \ge |C|/l] \ge 1 2^{-l}$
 - b) $\Pr[H(C) \cap Z \neq \emptyset] \ge 1 2^{-l/8}$
- 2.
- a) $|H(C)| \leq l|C|$
- b) If for d>0, $|C| \le 2^b/d$ then:

$$\Pr[H(C) \cap Z \neq \emptyset] \leq l^3/d$$

if $2^b/4 \ge |C| \ge 2^b/8$ then $\Pr[H(C) \cap Z = \emptyset] \le 2^{-b/8}$ if $|C| \le 2^b/d$, d>0, then $\Pr[H(C) \cap Z \neq \emptyset] \le \beta/d$

- 1. If $b=2+\lceil \log |C| \rceil$ then
 - a) $\Pr[|H(C)| \ge |C|/l] \ge 1 2^{-l}$ b) $\Pr[H(C) \cap Z \ne \emptyset] \ge 1 - 2^{-l/8}$

Proof 1a: Since $2^b \ge 4|C|$ the following chain of statements are easily verified. Let $(h_i(x))^j$ denote the j^{th} bit of the string $h_i(x)$. Fix $x,y \in \Sigma^k$, $x \neq y$, i,j > 0, except where quantified. $\Pr[(h_i(x))^j = (h_i(y))^j] = 1/2$ $\Pr[h_i(x) = h_i(y)] = 2^{-b}$ $\Pr[\exists y \in C \ (x \neq y \& h_i(x) = h_i(y))] \leq |C| \cdot 2^{-b} \leq 1/4$ $\Pr[\forall i \leq l \ \exists \ y \in C \ (x \neq y \& h_i(x) = h_i(y))] \leq 4^{-l}$ $\Pr[\exists x \in C \ \forall i \leq l \ \exists y \in C \ (x \neq y \& h_i(x) = h_i(y))]$ $\leq |C| \cdot 4^{-l} \leq 2^{-l}$ Therefore $\Pr[|H(C)| \ge |C|/l] \ge 1-2^{-l}$

- 1. If $b = 2 + \lceil \log |C| \rceil$ then

 a) $\Pr[|H(C)| \ge |C|/l] \ge 1 2^{-l}$
 - b) $\Pr[H(C) \cap Z \neq \emptyset] \ge 1 2^{-l/8}$

Proof 1b: Since
$$|C| \ge 2^b/8$$
, if $|H(C)| \ge |C|/l$ then

$$\frac{|H(C)|}{|\Sigma^b|} \ge \frac{1}{8l}$$

Thus it is likely that one of the l^2 strings in Z will be in H(C).

$$\Pr[H(C) \cap Z = \emptyset] \le (1 - 1/8l)^{l^2} + 2^{-l} < 2^{-l/8}$$

2.

- a) $|H(C)| \leq l|C|$
- b) If for d>0, $|C| \leq 2^b/d$ then:

 $\Pr[H(C) \cap Z \neq \emptyset] \leq l^3/d$

Proof 2a: Obvious.

Proof 2b: Since

$$\frac{|H(C)|}{\Sigma^b} \le \frac{l|C|}{d|C|} = \frac{l}{d}$$

The probability that each z_i is in H(C) is at most l/d. Thus the probability that any of the l^2 strings in Z is in H(C) is at most l^3/d .

We use this lemma to obtain Arthur-Merlin protocols for showing an approximate lower bound on the size of sets. Let C be a set in which Arthur can verify membership, possibly with Merlin's help. Then let Arthur picks random H and Z and Merlin attempt to respond with $x \in C$ such that some $x \in H^{-1}(z)$. If C is large then he will likely succeed and if C is small he will likely fail.

if
$$2^b/4 \ge |C| \ge 2^b/8$$
 then $\Pr[H(C) \cap Z = \emptyset] \le 2^{-1/8}$ if $|C| \le 2^b/d$, $d > 0$, then $\Pr[H(C) \cap Z \neq \emptyset] \le l^3/d$

4.2. Main Theorem

Theorem: IP[Q(n)] = AM[Q(n)+2] for an polynomial Q(n)

 $|\alpha_0|/2^l$.

An informal proof sketch: Let's focus on 1round protocols. Assume V has an exponentially small error probability e, sends only messages of length m, and uses random sequences of length l. For each $x \in \Sigma^m$ let $\beta_r = \{r: V(r, w, \#) = x\}.$ For every $y \in \Sigma^m$ let V(w, r, #) $\alpha_{xy} = \{r: r \in \beta_x \& V(\underline{r, w}, \#x \# y) = \text{accept}\}. V(\underline{w, r, \#x \# y})$ Clearly, for each x, the optimal prover will select a y_x maximizing $|\alpha_{xy}|$. Let $\alpha_x = \alpha_{xy}$. Let $\alpha_0 = []\alpha_x$. Then Pr[V(w) accepts] =

NOTA: the $\alpha_{\rm y}$ are disjoint.

We next present the protocol by which A and M simulate V and P. M tries to convince A that $|\alpha_0| > e \cdot 2^l$ because this implies that $\Pr[V(w) \text{ accepts}] > e$ and hence ≈ 1 . He does this by showing that there are "many" α_x 's which are "large", where "many"×"large"> $e \cdot 2^l$. The tradeoff between "many" and "large" is governed by a parameter b sent by M to A.

More precisely, M first sends b to A. Then two approximate lower bound protocols ensue. The first convinces A that $|\{x: |\alpha_x| \ge \frac{2^b}{(e \cdot 2^l)}\}| \ge 2^b$. M produces an x in that set as per the approximate lower bound lemma. The second convinces A that x really is in that set as claimed, i.e., that $|\alpha_x| \ge \frac{2^b}{(e \cdot 2^l)}$.

For g-round protocols iterate the first approximate lower bound protocol to obtain $\alpha_0 \supseteq \alpha_1 \supseteq \cdots \supseteq \alpha_g$ where there are "many_i" ways to extend α_{i-1} to α_i and α_g is "large". Require that $(\Pi''' \operatorname{many}_i)'' \times "\operatorname{large}'' \geq e \cdot 2^l$.

the reader.

Amplification Lemma: Let p(n) be a polynomial. Let V be a verifier which on inputs of length n a total of at most g(n) messages, each of length m(n), using l(n) random bits, and with error probability at most 1/3. Then there is a V' such that L(V) = L(V'), with a total of at most g(n) messages, each of length O(p(n)m(n)), using O(p(n)l(n)) random bits and with an error probability of at most $2^{-p(n)}$.

proof: V' performs O(p(n)) independent

parallel simulations of V and takes the majority vote of the outcomes. Details left to

(Full proof)

Let $X = \sum_{i} X_{i}$ be a sum of independent random indicator variables X_{i} . For each i, let $p_i = \Pr[X_i = 1]$, and let $\mu = \mathbb{E}[X] = \sum_i \mathbb{E}[X_i] = \sum_i p_i$.

Chernoff Bound (Upper Tail).

$$\Pr[X > (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \text{ for any } \delta > 0.$$

 $\Pr[X > (1+\delta)\mu] < e^{-\mu\delta^2/3}$ for any $0 < \delta < 1$.

Chernoff Bound (Lower Tail).

$$e^{\delta}$$
 μ

 $\Pr[X < (1-\delta)\mu] < \left(\frac{e^{\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} < e^{-\mu\delta^2/2} \text{ for any } \delta > 0.$

By this lemma we may assume: $e(n) \leq l(n)^{-12g^2(n)}$ Further we may assume that $l(n) > \max(g(n), m(n), 80).$ We write g, m, e, l for g(n), m(n), e(n) and l(n) where n is understood.

We now describe the functions A and M. simulating V and P, informally as two parties exchanging messages. The variables x_i and y_i represent messages sent by V and P respectively. In essence, the idea is for A to use the random hash functions to force M to produce a generic run of the V,P protocol and then finally to prove that this run would likely cause V to accept. The numbers b_i that M produces roughly correspond to the log of the number of possible generic messages that V can make at round i.

1≤*i*≤*g*

W∈L

$$b_1 = 2 + [\log|\gamma_{max}|]$$

$$H \in \mathbb{R}(\Sigma^m \to \Sigma^{b_1})^l, \mathbf{Z} \in \mathbb{R}(\Sigma^m)^{l^2}$$

$$(\Sigma^m \to \Sigma^{b_1})^l$$
, $\mathbf{Z} \in \mathbb{R}(\Sigma^{b_1})^l$

=2+[log|
$$\gamma_{max}$$
|]

$$\log |\gamma_{max}|$$

$$x_{j} \in H^{-1}(Z) ?$$

$$\mathcal{L}_{\mathsf{X}_i} = \gamma_{\mathsf{max}}, \mathbf{y}_{\mathsf{l}} \vdash (S_{i-1} + \mathsf{l}_i), \mathbf{b}_{\mathsf{l}}$$

$$\mathcal{H} \in \mathbb{R}(\sum^m \to \sum^{b_{i+1}})^l, \mathbf{Z} \in \mathbb{R}$$

$$\mathbf{x}_{j} \in H^{1}(Z), \ \alpha_{\mathbf{x}_{i}} \in \gamma_{max}, \ \mathbf{y}_{j} = P(s_{i-1} \# \mathbf{x}_{i}), \ \mathbf{b}_{j+1} = 2 + [\log|\gamma_{max}|]$$

$$\mathbf{H} \in \mathbb{R}(\sum^{m} \rightarrow \sum^{b_{i+1}})^{l}, \ \mathbf{Z} \in \mathbb{R}(\sum^{m})^{l^{2}}$$

$$\mathbf{H} \in \mathbb{R}(\Sigma^m \to \Sigma^{b_{j+1}})^l, \mathbf{Z} \in \mathbb{R}(\Sigma^m)^{l^2}$$

$$H \in \mathbb{R}(\sum^{m} \to \sum^{b_{i+1}})^{l}, Z \in \mathbb{R}(\sum^{m})^{l^{2}}$$

$$I \leq i \leq q, V(w, q)$$

 $r \in H^{-1}(Z)$?

Poly-Time

 $1 \le i \le g$, $V(w,r,s_{i-1}) = x_i$?

 $V(w,r,s_{\alpha})$ = "accept" ? $\sum b_i \ge 1 - g \log 1$?

Shafi Goldwasser, Michael Sipser Public Coins in Interactive Proof Systems protoco **Arthur's** Coins versus

A initially makes a null move and receives number b_1 from M. Go to round 1. Round $i (1 \le i \le g)$: So far A has received b_1, \ldots, b_i , and strings $x_1, \ldots, x_{i-1}, y_1, \ldots, y_{i-1}$ from M. Now A randomly selects l linear functions $H = \{h_1, \ldots, h_l\}, h_i: \Sigma^m \to \Sigma^{b+1} \text{ and } l^2 \text{ strings } \Sigma^{b_i}$ $Z = \{z_1, \ldots, z_{l^2}\} \subseteq \Sigma^{b+1}$ and them sends to $M \cdot \sum_{i=1}^{b_i} z_i$

 $x_i \in H^{-1}(Z)$. If not then A immediately Final round g+1:

 $\sum b_i \geq l - g \log l$.

Round 0:

rejects. Then A performs round i+1. Let $s_i = x_1 \# y_1 \# \cdots \# x_i \# y_i$. A randomly selects *l* linear functions $H = \{h_1, \ldots, h_l\}$, (and sends to M) $h_i: \Sigma^l \to \Sigma^{b_{g+1}}$ and l^2 strings $Z \subseteq \Sigma^{b_{g+1}}$. It then

expects to receive a string $r \in \Sigma^l$ from M and

A then expects to receive strings x_i and y_i and number b_{i+1} from M. A checks that

checks that $r \in H^{-1}(Z)$. A accepts if for each $i \le g \ V(w,r,s_i) = x_{i+1}, \ V(w,r,s_e) = accept$ and (Full proof)

Can Merlin convince Arthur?

Now we show that Pr[V(w)]accepts > e(n) iff $Pr[A(w) \text{ accepts}] \ge 2/3$.

 (\rightarrow) Merlin's protocol when $w \in W$

First some notation. For $r \in \Sigma^{l}$ and $s = v_1 # v_2 # \cdots # v_k$ a stream of messages we say

 $(V^*P)(w,r)$ accepts via s

if the first k messages sent by V and P agree with s and $(V^*P)(w,r)$ accepts.

Suppose $Pr[V(w) \text{ accepts}] \ge 2/3$. Fix any P such that $Pr[(V^*P)(w) \text{ accepts}] \ge 2/3$. We now exhibit a protocol for M such that $\Pr[(A*M)(w) \text{ accepts}] \ge 2/3.$

 $1 \le i \le q$

protoco

Merlin's

Obtain b_i $(i \le g)$: Let $s_{i-1} = \#x_1 \# y_1 \# \cdots \# x_{i-1} \# y_{i-1}$ be the message stream for the V-P protocol produced so far. For each $x \in \Sigma^m$ let $\alpha_x = \{r : (V^*P)(w,r)\}$

accepts via $s_{i-1}\#x$. Group these α 's into lclasses $\gamma_1, \ldots, \gamma_l$ where γ_d contains α 's of size $>2^{d-1}$ and $\le 2^d$. Choose the class γ_{max} whose union $\bigcup \gamma_{\max} = \bigcup \{\alpha_x : \alpha_x \in \gamma_{\max}\}$ is largest. Send $b_i = 2 + \lceil \log | \gamma_{\max} | \rceil$.

Round i:

M receives h_1, \ldots, h_l from A and strings z_1, \ldots, z_{l^2} . If there is an $x \in H^{-1}(Z)$ such that $\alpha_x \in \gamma_{\max}$, call it x_i . Then, M responds with the pair x_i, y_i where $y_i = P(s_{i-1} \# x_i)$. Otherwise M responds with "failure". In the later analysis we refer to the set α_{x_i} as α_i . Set $i \leftarrow i+1$. Goto "obtain b_i ".

Obtain b_{g+1} : M produces the value b_{g+1} as follows: Let $s_g = s_{g-1} \# x_g \# y_g$ be the message stream that has been selected. So $\alpha_{g=}\{r: (V^*P)(w,r) \text{ accepts via } s_g\}$. Send

 $b_{g+1}=2+\lceil \log |\alpha_g| \rceil$. Round g+1:

M receives h_1, \ldots, h_l and strings $z_1, \ldots, z_{l^2} \in \Sigma^{b_{g+1}}$. If there is an $r \in \alpha_g \cap H^{-1}(Z)$, then M responds with r. Oth-

erwise M responds with "failure". (Note that $r \in \alpha_g$ implies that $V(w,r,s_g) = \mathbf{accept}$)

End of Protocol.

 $\geq 2/3$. Let $\alpha_0 = \{r: (V^*P)(w,r) = \text{accept}\}$. Since $\Pr[V \text{ accepts } w]$ is high, $|\alpha_0| \geq (2/3)2^l$. By the definition of M, A will accept provided M never responds "failure" and $\sum b_i \geq l - g \log l$. By the approximate lower bound lemma the probability that M responds failure at any round is $\leq 2^{-l/8}$. Hence, the probability that M ever responds failure is $\leq g2^{-l/8} << 1/3$.

if $2^{b}/4 \ge |C| \ge 2^{b}/8$ then $Pr[H(C) \cap Z = \emptyset] \le 2^{-1/8}$

We now show that Pr[(A*M)(w) accepts]

$$|\alpha_i| \ge \frac{|\alpha_{i-1}|}{l2^{b_i}}$$

(Full proof $w \in L$)

Proof: Consider round i and the sets α_r

Shafi Goldwasser, Michael Sipser

defined in "obtain b_i ". By definition the α_r 's partition α_{i-1} and hence $\bigcup \alpha_x = \alpha_{i-1}$. Hence

 $|\bigcup \gamma_{\max}| \ge \frac{|\alpha_{i-1}|}{l}$ (there are l possibilities for γ_i , thus at least one is of size total/l)

Since all members of γ_{max} differ in size by at most a factor of 2 and since $\alpha_i \in \gamma_{max}$ we have

 $|\alpha_i| \geq \frac{|\bigcup \gamma_{\max}|}{2|\gamma_{\max}|}$ and since $b_i = 2 + \lceil \log |\gamma_{max}| \rceil$ we have

 $2^{b_{i+1}} \ge 2|\gamma_{\max}|$

Thus

$$|\alpha_i| \geq \frac{|\bigcup \gamma_{\max}|}{2^{b_i}} \geq \frac{|\alpha_{i-1}|}{l2^{b_i}}$$

(Claim 1/6) (Full proof $w \in L$)

 $\alpha_{v} = \{r : (VP)(w,r) \text{ accepts via } s_{i-1} \# x\}$

Claim 2: $\sum b_i \geq l - g \log l$

Shafi Goldwasser, Michael Sipser

Proof: By Claim 1 we have:
$$|\alpha_g| \geq \frac{|\alpha_0|}{l^g \cdot \prod_{i \leq g} 2^{b_i}}$$
 Since $|\alpha_0| \geq (2/3)2^l$ and taking logs
$$\log |\alpha_g| \geq (l-1) - (g \log l + \sum_{i \leq g} b_i)$$

 $\sum b_i \ge l - g \log l$

Since $b_{g+1} > 1 + \log |\alpha_g|$

(\leftarrow) Merlin's impotence when $w \notin W$ Show that if $\Pr[V(w) \text{ accepts}] \leq e$, then $\Pr[A(w) \text{ accepts}] \leq 1/3$. For every i > 0 and $s_i = x_1 \# y_1 \# \cdots \# x_i \# y_i$ let $a(s_i) = \max_P \Pr[(V^*P)(w) \text{ accepts via } s_i]$. For each $x \in \Sigma^m$ let y_x be any $y \in \Sigma^m$ maximizing $a(s_i \# x \# y)$.

The following three claims show that $a(s_{i+1})$ is likely to be much smaller than $a(s_i)$.

Claim 3: $a(s_i) = \sum a(s_i \# x \# y_x)$

(Full proof $w \notin L$)

Fix $0 \le i < g$ and s_i . For every c > 0 let $X_c = \{x: a(s_i \# x \# y_x) \ge a(s_i)/c\}$ Claim 4: $|X_c| \le c$

(Full proof $w \notin L$)

b,d>0. Choose l random functions $H = \{h_1, \ldots, h_l\}, h_i: \Sigma^m \to \Sigma^b \text{ and } l^2$ random strings $Z \subseteq \Sigma^b$. Pick any $x \in H^{-1}(Z)$ and any $y \in \Sigma^m$. Let $s_{i+1} = s_i \# x \# y$.

We now describe a collection of events corresponding to exceptional luck on Merlin's part.

Call the following event E_{i+1} : $a(s_{i+1}) \ge \frac{a(s_i)}{2^b/d}$

Shafi Goldwasser, Michael Sipser

Proof: Let $c = |d/2^b|$. Then $|X_c| \le 2^b/d$ by claim 4. Since $a(s_i \# x \# y_x) \ge a(s_{i+1})$ by the definition of y_x , if $a(s_{i+1}) \ge a(s_i)/(2^b/d)$ then

Claim 5: $Pr[E_i] \leq l^3/d$

 $x \in X_c$. Since $x \in H^{-1}(Z)$,

Shafi Goldwasser, Michael Sipser

 $Pr\left|a(s_{i+1}) \ge \frac{a(s_i)}{2^b/d}\right|$ $=\Pr[x\in X_c\cap H^{-1}(Z)]$

 $=\Pr[H(X_c)\cap Z\neq 0]$

 $\leq l^3/d$

by the approximate lower bound lemma part 2b.

(Claim 5/6) if $|C| \le 2^b/d$, d>0, then $\Pr[H(C) \cap Z \ne \emptyset] \le l^3/d$ (Full proof w∉L)

 $\Pr[E_{g+1}] \le l^3/d$ Proof: By the approximate lower bound lemma part 2b, since $|\{r: (V*P)(w,r) \text{ accepts}\}|$ $\text{via } s_{g}\} = 2^{l}a(s_{g}). \blacksquare$

if
$$|C| \le 2^b/d$$
, d>0, then $Pr[H(C) \cap Z \ne \emptyset] \le l^3/d$

(Full proof w∉ L)

(Claim 6/6)

Assume no E_i occurs. Then we show that A will reject, provided that $\Pr[V(w) \text{ accepts}] \leq e$. Since $\forall i \leq g, \neg E_i$, we have: $\frac{a(s_0)}{\prod\limits_{i \leq g} (2^{b_i}/d)} \geq a(s_g)$ Since $\neg E_{g+1}$:

Shafi Goldwasser, Michael Sipser

or $2^la(s_g)\!\geq\!2^{b_g+1}/d$

 $(V^*P)(w,r) \neq \text{accept}$

Thus if $(V^*P)(w,r)$ accepts, combining the above: $2^{l}a(s_s) > \prod_{i=1}^{n} (2^{b_i}/d)$

$$2^{l}a(s_0) \ge \prod_{1 \le i \le g+1} (2^{b_i}/d)$$

so, since
$$l \ge g+1$$
, taking logs:
 $l + \log a(s_0)$

Shafi Goldwasser, Michael Sipser

$$\geq \sum b_i - (g+1)\log d$$

$$\geq \sum b_i - (g+1)$$

$$\geq \sum b_i - 10g \log l$$
 but

$$a(s_0) = \Pr[V(w) \text{ accepts}] \le e \le l^{-12g}$$

so
$$l - 12g^2 \log l \ge \sum b_i - 10g \log l$$

Thus

Shafi Goldwasser, Michael Sipser

$\sum b_i \leq l - 2g \log l < l - g \log l$

Recall that Arthur only accepts $(V^*P)(w,r)$ accepts and $\sum b_i \ge l - g \log l$.

Therefore if $\forall i \leq g+1, E_i$ occurs and $Pr[V(w) \text{ accepts}] \leq e$, then Arthur will reject. Hence $Pr[A(w) \text{ accepts}] \leq 1/3$.

