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Cryptographic Distinguishability Measures
for Quantum-Mechanical States

Christopher A. Fuchs and Jeroen van de Graaf

Abstract—This paper, mostly expository in nature, surveys four
measures of distinguishability for quantum-mechanical states.
This is done from the point of view of the cryptographer with
a particular eye on applications in quantum cryptography. Each

of the measures considered is rooted in an analogous classi-

cal measure of distinguishability for probability distributions:
namely, the probability of an identification error, the Kolmogorov
distance, the Bhattacharyya coefficient, and the Shannon dis-
tinguishability (as defined through mutual information). These
measures have a long history of use in statistical pattern recog-
nition and classical cryptography. We obtain several inequalities
that relate the quantum distinguishability measures to each other,
one of which may be crucial for proving the security of quantum
cryptographic key distribution. In another vein, these measures
and their connecting inequalities are used to define ainglenotion
of cryptographic exponential indistinguishability for two families
of quantum states. This is a tool that may prove useful in the
analysis of various quantum-cryptographic protocols.

Index Terms—Bhattacharyya coefficient, distinguishability of
guantum states, exponential indistinguishability, Kolmogorov dis-
tance, probability of error, quantum cryptography, Shannon
distinguishability.

I. INTRODUCTION

T

been dreamt of before. The most successful example of this

far has been quantum-cryptographic key distribution. For t

task, quantum mechanics supplies a method of key distributi
for which the security against eavesdropping can be assured

physical law itself. This is significant because the Iegmmaﬁat are of particular interest to cryptography: the probability

communicators then need make no assumptions about
computational power of their opponent.

their quantum-mechanical states. For instancé, raight be
encoded into a system by preparing it in a stajeand al
might likewise be encoded by preparing it in a state The
choice of the particular states in the encoding will generally
determine not only the ease of information retrieval by the
legitimate users, but also the inaccessibility of that information
to a hostile opponent. Therefore, if one wants to model and
analyze the cryptographic security of quantum protocols, one
of the most basic questions to be answered is the following.
What does it mean for two quantum states to be “close” to
each other or “far” apart? Giving an answer to this question is
the subject of this paper. That is, we shall be concerned with
defining and relating various notions of “distance” between
two quantum states.

Formally a quantum state is nothing more than a square
matrix of complex numbers that satisfies a certain set of
supplementary properties. Because of this, any of the notions
of distance between matrices that can be found in the math-
ematical literature would do for a quick fix. However, we
adhere to one overriding criterion for the “distance” measures
considered here. The only physical means available with
which to distinguish two quantum states is that specified by

HE field of quantum cryptography is built around th‘?he general notion of a quantum-mechanical measurement.

singular idea_that physical i_nf(_)rmat_ion carriers are alwa¥§ince the outcomes of such a measurement are necessarily
guantum-mechanical. When this idea is taken seriously, Ne\Yieterministic and statistical

possibilities open up within cryptography that could not hay,

only measures of “distance”
fhat bear some relation to statistical-hypothesis testing will
b considered. For this reason, we prefer to call the mea-
Ures considered herailistinguishability measuramther than

stances.”

I this paper, we discuss four notions of distinguishability
8t€n identification error, the Kolmogorov distance (which
turns out to be related to the standard trace-norm distance),

Common to all quantum-cryptographic problems is the w

. S : e Bhattacharyya coefficient (which turns out to be related
information is encoded into quantum systems, namely, thro

U8 uhimann’s “transition probability”), and the Shannon dis-
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erive a very simple upper bound on the Shannon distinguisha-
bility as a function of the trace-norm distans®(po, p1) <

0018-9448/99$10.001 1999 IEEE



FUCHS AND VAN DE GRAAF: CRYPTOGRAPHIC DISTINGUISHABILITY MEASURES FOR QUANTUM-MECHANICAL STATES 1217

%Tr |po — p1|. (The usefulness of this particular form for thanequalities, again both classically and quantum mechanically.
bound was realized while one of the authors was workilg Section VI these inequalities are applied to proving a
on [1], where it is used to prove security of quantum ketheorem about exponential indistinguishability. Section VII
distribution for a general class of attacks.) Similarly, we cagiscusses an application of this notion—in particular, we
bound the quantum Shannon distinguishability by functions gfve a simple proof of a theorem in [5] that the Shannon
the quantum Bhattacharrya coefficient. distinguishability of the parity (i.e., the overall exclusive—or) of

In another connection, we consider an application of theagquantum-bit string decreases exponentially with the length of
inequalities to protocol design. In the design of cryptographibe string. Moreover, the range of applicability of the theorem
protocols, one often definesfamily of protocols parameter- is strengthened in the process.
ized by asecurity parametern—where this number denotes This paper is aimed primarily at an audience of computer
the length of some string, the number of rounds, the numbersafientists, at cryptographers in particular, with some small
photons, etc. Typically, the design of a good protocol requirésickground knowledge of quantum mechanics. Readers need-
that the probability of cheating for each participant vanishésg a more systematic introduction to the requisite quantum
exponentially fast, i.e., is of the ordér(c™), for ¢ between theory should consult Hughes [6] or Isham [7], for instance.
0 and 1. As an example, one technique is to compare thevery brief introduction can be found in the appendix of [8].
protocol implementation (the family of protocols) with the
ideal protocol specificatioand to prove that these two become
exponentially indistinguishablg2], [3].

To move this line of thought into the quantum regime,
it is natural to consider two families of quantum states pa-
rameterized byn and to require that the distinguishability Let Xo be a stochastic variable over a finite s&t Then
between the two families vanishes exponentially faspri- we can definepo(x) 4 Prob[X, = z], S0 X, induces a
ori, this exponential convergence could depend upon whiphobability distributionp, over X'. Let p; be defined likewise.
distinguishability measure is chosen—after all, the quantur@f course,X.cx p:(x) = 1 for t = 0, 1. After relabeling the

Il. PROBABILITY DISTRIBUTIONS

mechanical measurements optimal for each distinguishabilaytcomesr, 2, 3, -+, 2, 10 1,2,3,---,m we get
measure can be quite different. However, with the newly

derived inequalities in hand, it is an easy matter to show that 7=1 =92 =3 T =m
exponential indistinguishability with respect to one measure

implies exponential indistinguishability with respect to each Xo | 7o =§ po(1) po(2) po(3) -+ po(m)
of the other four measures. In other words, these four notionsX: | 71 = 5 (1) pi(2) p(3) - p(m)

are equivalent, and it is legitimate to speak of a single, unified
exponential indistinguishabilityor two families of quantum  Here 7 and =, are thea priori probabilities of the two
states. o _ _ _ stochastic variables; they sum uptoThroughout this paper
The contribution of this paper is threefold. In the first placgye taker, = 7, = %. (Even though much of our analysis
even though some of the quantum inequalities derived hig,id be extended to the casg # =, # 1, it seems not too
are minor extensions of classical inequalities that have begflevant for the questions addressed here.) Two distributions
known for some time, many of the classical inequalities atge equivalent(i.e., indistinguishabl® if po(z) = pi(z) for
scattered throughout the literature in fields of research faifdyj ;. ¢ x| and they areorthogonal(i.e., maximally indistin-

remote from the present one. Furthermor.e, though eIement%gfshabk) if there exists na: for which bothpo(z) andp, ()
this work can also be found in [4], there is presently no papgfe nonzero.
that gives a systematic overview of quantum distinguishability opserve thap, (+) denotes the conditional probability that

measures from the cryptographer’s point of view. In the second _ ., giventhat7 = ¢, written asProb [X = z|T = ¢]. So
place, some of the inequalities in Section VI are new, evVeRe joint probability is half that value

within the classical regime. In the third place, a canonical
definition for quantum exponential indistinguishability is ob- Prob[X = 2 AT =t] =Prob [T’ = t]Prob [X = z|T" = ]

tained. The applications of this notion may be manifold within 1)
qguantum cryptography. _ 9

The structure of the paper is as follows. In the following ?pt(x) (2)
section we review a small bit of standard probability theory, =3 pi(@). ®3)

mainly to introduce the setting and notation. Section lll \ye define the conditional probability (') := Prob [I' =]
discusses density matrices and measurements, showing hew. 2], and the probability thaX = « regardlessof ¢, that

the pombination of the two n'otions leads to a probapilit;,é, p(z) := Prob[X = z]. Using Bayes' Theorem we get
distribution. In Section IV, we discuss four measures of distin-

guishability, first for classical probability distrubitions, then for;(z) =Prob [T = t|X = z] 4)
quantum-mechanical states. In Section V, we discuss several — pyoh [T = #] Prob [X = z|T = #]/Prob[X = z] (5)

L
1This notion is more commonly callestatistical indistinguishabilityin =3 pi(z)/p(x.) (6)
the cryptographic literature. However, since the word “statistical” is likely to .
already be overused in this paper, we prefer “exponential.” Observe thato(z)+7r1(z) = 1 for all . Usingp(z) andr;(x)
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we can represent the situation also in the following way: can be viewed as the quantum counterpart of a stochastic

variable. A density matrix completely descrili&s knowledge

t=1 =2 z=3 T=m of the sample. Two different ensembles with the same density
matrix are indistinguishable as far &sis concerned; when
X r) 2 20) p(m) this is the case, there exists no measurement that can Bllow
Xo | 7o = % ro(1)  7o(2)  7o(3) ro(m) a decision between the ensembles with probability of success
X, |m=1 (1) r(2) r(3) ri(m) better than chance.

The fact that a density matrix describB's a priori knowl-

edge implies that additional classical information can change
. that density matrix. This is so, even when no measurement

Recall that a quantum state is said to heuee state if there is performed and the quantum system remains untouched.
exists some (fine-grained) measurement that can confirm tigo typical cases of this are: 1) wheA reveals toB
fact with probability 1. A pure state can be represented binformation about the the outcome of her coin toss, or 2)
a normalized vectofy)) in an N-dimensional Hilbert space, when A and B share quantum entanglement (for example,
i.e., a complex vector space with inner product. Alternativelginstein—Podolsky—Rosen, or EPR, particles), Argknds the
it can be represented by a projection operd#gr+/| onto the results of some measurements she performs on her system to
rays associated with those vectors. In this papeis always B. Observe that, consequently, a density matrix is subjective
taken to be finite. in the sense that it depends on wiaknows.

Now consider the following preparation of a quantum
system:A flips a fair coin and, depending upon the outcome,
sends one of two different pure statgs,) or |¢1) to B.
Then the “pureness” of the quantum state is “diluted” by the
classical uncertainty about the resulting coin flip. In this case,
no deterministic fine-grained measurement generally exists for
identifying A’s exact preparation, and the quantum state is
said to be amixedstate.B’s knowledge of the system—that
is, the source from which he draws his predictions about
any potential measurement outcomes—can now no longer b&)

DENSITY MATRICES AND MEASUREMENTS

Example (Continued):

1) Suppose that, aftek has sent an equal mixture ¢H)
and|Vv), she reveals t® that for that particular sample
she preparedv ). ThenB’s density matrix changes, as
far as he is concerned, from

<1(/)2 1?2) o <8 (1)

An identical change happens in the following situation:

(8)

represented by a vector in a Hilbert space. Rather, it must

A prepares two EPR-correlated photons in a combined

be described by density operatowor density matrix formed pure state
from a statistical average of the projectors associated Aigh 1
possible fine-grained preparations. |¥™) = NG (V) = [V)IH)) 9)

Definitions 1. (See for Instance [9], [7], [10]):A density

matrix p is an N x N matrix with unit trace that is Hermitian

(i.e., p = p') and positive semi-definite (i.e{z\|p|’) > 0
for all ¢ € H).
Example: Consider the case wherA prepares either
a horizontally or a vertically polarized photon. We can

choose a basis such that) = (;) and|V) = (}). Then
A’s preparation is perceived by as the mixed state

=300 0)+3( )
:<1(/)2 1?2)

which is the “completely mixed state.”
Note that the same density matrix will be obtainedAif

SIHYHI 4 SIVIEV]

(7)

known as the singlet state. Following that, she sends one
of the photons td. As far asB is concerned, his pho-
ton’s polarization will be described by the completely
mixed state. On the other hand AfandB measure both
photons with respect to the same polarization (vertical,
eliptical, etc.), we can predict from the overall state that
their measurement outcomes will be anticorrelated. So
if, upon making a measuremett,finds that her particle

is horizontally polarized (i.e.|H)) and she tells this to

B, thenB’s density matrix will change according to (8).

As an aside, it is worthwhile to note that physicists some-
times disagree about whether the density matrix should be
regarded ashe state of a system or not. This, to some extent,
can depend upon one’s interpretation of quantum mechanics.
Consider, for instance, the situation wheBe has not yet

prepares an equal mixture of left-polarized and right-polariz&gCceived the additional classical information to be senfby
photons. In fact, any equal mixture of two orthogonal pur\é\/hat is the state of his system? A pragmatist might answer that

states will yield the same density matrix.

Any source of quantum samples (that is, any imaginAry
who secretly and randomly prepares quantum states accordid§"

to some probability distribution) is called ansembleThis

the state is simply described Bys density matrix. Whereas a
realist might argue that the state is really something different,
ely, one of the pure states that go together to form that
density matrix:B is merely ignorant of the “actual” state. For
discussion of this topic we refer the reader to [7] and [11].

2In general, we shall be fairly lax about the designations “matrix” anflere we leave this deep question unanswered and adhere to

“operator,” interchanging the two rather freely. This should cause no troubtl
as long as one keeps in mind that all operators discussed in this paper

linear.

ﬁg pragmatic approach, which, in any case, is more relevant
from an information-theoretical point of view.
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Now let us describe how to compute the probability of atherwise—i.e., the Kronecker-delta). With this requirement,
certain measurement result from the density matrix. Mathte operatorsZ, are necessarily projection operators, and so
matically speaking, a density matrix can be regarded ascan be thought of as the eigenprojectors of an Hermitian
an object to which we can apply another operatgy to operator. One consequence of this is that the number of
obtain a probability. In particular, taking the trace of theutcomes in a PVM can never exceed the dimensionality of
product of the two matrices yields the probability that théhe Hilbert space. General POVM's need not be restricted in
measurement result i given that the state wag, i.e., this way at all; moreover, thé&, need not even commute.

Prob[result = z|state= p] = Tr(pE,). Here thex serves  Example:Measuring whether a photon is polarized ac-
as a label, connecting the operaffy and the outcome, but cording to anglex or to o+ 7 /2 is done by the POVM
otherwise has no specific physical meaning. (This formula may 2 s 2 _es
help the reader understand the designation “density operator”: {(CS &2 ), <_cs 2 )} (12)
it is required in order to obtain a probability density function
for the possible measurement outcomes.)

Most generally, a quantum-mechanicaéasuremenis de-
scribed formally by a collection (ordered set) of operators, one

for each outcome of the measurement.

where ¢ = cosa and s = sina. This is a PVM.
When applied to a photon known to be in staké),
for instance, this results in the probability distribution
(c?, s%), using (10).

An example of a POVM which is not a PVM is

Definition 2. (See [10]):Let £ = (E4,- -, Ex,) be a col-  the symmetric three-outcome “trine” POVM: let =
lection (ordered set) of operators such that 1) all Heare cos (n/3) ando = sin (x/3)

positive semi-definite operators, and?2) E, = Id, whereld 2/1 0\ 2/~2 9 2

. . . . . . “ v Yo ¥ —vyo

is the identity operator. Such a collection specifieBasitive {3 <0 0), < o o2 ), <_ o o2 )} (12)
Operator-Valued MeasurdPOVM) and corresponds to the hich simolif Z i

most general type of measurement that can be performed onVNich SIMplMes 1o

a quantum system. {(% 0) <1% %\1/3> < 1% _%1\/3>}. (13)
Applying a POVM to a system whose state is describedbya |\0 0/’\§v3 3 J'\-¢v3 3

density matrixp results in a probability distribution according Applying this POVM to the stat@/ ) results in the prob-

to ability distribution (0, 1, 1), again according to (10).

There are two advantages to using the formalism of
OVM’s over that of PVM's. First, it provides a compact

where z ranges froml to m. formalism for describing measurements that the PVM

As an alternative for the designation POVM, one sometim&&malism has to stretch to obtain—by considering ancillary
sees the term “Probability Operator Measure” used in tf¥Stems, extra time evolutlons., etc., in the measurement
literature. It is a postulate of quantum mechanics that aRjocess. Secondly, and most importantly, there are some
physically realizable measurement can be described byygl_atlons that call for all _these extra ste_ps to obtain an
POVM. Moreover, for every POVM, there i@ principle a opt|r_na_\l m_easurement. A simple _example is that of havmg
physical procedure with which to carry out the associatd@ distinguish between three possible states for a system with
measurement. Therefore, we can denote the set of all possfléwo-dimensional Hilbert space: the optimal POVM wiill
measurements, or equivalently the set of all POVM’s Ads generally have three outcomes, whereas a direct von Neumann

Warning: It should be noted that the scheme of measurgleasurement on the system can only have two.
ments defined here is the most general that can be contem-
plated within quantum mechanics. This is a convention that
has gained wide usage within the physics community only We have just seen that a measurement (a POVM) applied to
relatively recently (within the last 15 years or so). Indeed, density matrix results in a probability distribution. Suppose
almost all older textbooks on guantum mechanics describenaw we have two density matrices defined over the same
more restrictive notion of measurement. In the usual approattilbert space. Then we find ourselves back in the (classical)
as developed by von Neumann, measurements are taken teibeation described in the previous section: comparing two
in one-to-one correspondence with the set of all Hermitigsrobability distributions over the same outcome spateln
operators on the given Hilbert space. The eigenvalues of theseticular, letp, and p; be two density matrices, and let
operators correspond to the possible measurement results. ¥he {Fy,---, E,,} denote a POVM. Lepy(&) denote the
framework of POVM's described above can be fit withirprobability distribution obtained by performing the POV&I
the older von Neumann picture if one is willing to takepn a system in statg, according to (10); lep; (¢) be defined
into account a more detailed picture of the measuremdirewise. Then we have

3

Prob [result= z | state= p] = Tr (pE,) (10) P

IV. MEASURES OFDISTINGUISHABILITY

process, including all ancillary devices used along the way: ) ., —
The ultimate equivalence of these two pictures is captured by r= r= oo r=m
a formal. re;ult known as Neumark’s Theorem [10]. po(&) | 7o Tr(poE1) Tr(poEs) -+ Tr(poEnm)
A Projection Valued Measurement (PVM)—another name £ T E T EY ... T E
. . . pl( ) 1 r(pl 1) r(pl 2) r(pl m)
for the von Neumann measurements just described—isla

special case of a POVM: it is given by adding the requiremeAs before,mg andw; denote thea priori probabilities and are
that E,E, = 6(z,y)E, (with §(z,y) = 1if = y and0 assumed to be equal th.



1220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 4, MAY 1999

This section discusses four notions of distinguishabilitgther according t@;. She provide® with a quantum sample
for probability distributions and—by way of the connecechosen from one of the two ensembles with equal probability.
tion above—also density matrices. The unique feature kollowing a measuremenB must again guess from which
the quantum case is given by the observer's freedom ¢asemble the sample was drawn: the one upgesr the one
choose the measurement. Since, of course, one would likeutaer p; .
choose the quantum measurement to be as useful as possiblEor any fixed measurement, the Bayesian strategy of guess-
one should optimize each distinguishability measure over allg the density operator with the largest posterior probability
measurements: the values singled out by this process give its¢he optimal thing to do. However, no® should as well
to what we call the quantum distinguishability measures. make use of his extra degree of freedom: he can choose the
The reader should note that being able to distinguisheasurement he applies to his sample. He should choose the
between probability distributions—that is, between alternativeeasurement that minimizes his probability of error. So we
statistical hypotheses—is already an important and wedefine

studied pmb'.e”? with a vast I|teraFurq. !t goes under the Definition 4: The probability of error between two density
name of statistical classification, discrimination, or feature

evaluation, and has had applications as far-flung as Speg%%trlcesm andpy is defined by

recognition and radar detection. For a general overview, PE def nin PE (pa(E€ £ 16

consult [12]. The problem studied here is a special case (po: 1) (Po(&). P1(£)) (16)

of the general one, in the sense that we want to distinguigfhere the POVME ranges over the set of all possible

between two (and only two) discrete probability distribution,c3surementsii.

with equala priori probabilities. _ (More carefully, one should use “infimum” in this definition.
In the following subsections each classical measure g, yeyer—since in all the optimization problems we shall

distinguishability is discussed first, followed by a discussiofynsider here. the optima actually can be obtained—there is
of its quantum counterpart. no need for the extra rigor.)

The question of finding an explicit formula for the optimal
A. Probability of Error POVM in this definition was first studied by Helstrom [13,
Consider the following experimental situation wheBe pp. 106-108]. He shows that the POVEL that minimizes
is asked to distinguish between two stochastic variabtes.PE (po(€),p1(€)) is actually a PVM. Knowing the optimal
provides him with one sample;, with equal probability to POVM, the probability of error can be expressed explicitly.
have been secretly chosen from eith€s or X;. B's task The expression he gives is,
is to guess which of the two stochastic variables the sample 1
came from,X, or X;. Clearly, the average probability thBt PE (po, p1) = 5 + 5 SN 17)
makes the right guess serves as a measure of distinguishability A;<0
between the two probability distributions(z) and p1 ().
It is well known thatB’s optimal strategy is to look at the
1

a posteriori probabilities: given the sample, his best choice way. Consider the functiorf(z) = 1(z — |z]). It vanishes

is the ¢ for which r,(z) is maximal (see the representation . . . 2 : i
. . . whenz > 0 and is the identity function otherwise. Thus with
at the end of Section Il). This strategy is known Bayes’ enz 2 0 and is the identity function otherwise us wit

- . . _its use, we can expand the summation in (17) to be over all
strategy So the average probability of successfully |dent|fy|ngne cigenvalues oIE) (17)
the distribution equals 9

[NR

where the); denote the eigenvalues of the matiix= po—p;.
This expression can be cleaned up a little in the following

N
1 1 1
Z p(x) max{ro(x),r(z)} = 5 Z max{po(x), p1(z)}. PE (po, p1) = 5 + 5 Z fA) (18)
reX reX j=1
(14) 11 1 J
5 _ =-4+-Tel0 == ) |y (19)
Conversely, we can also express the probability Bhéails. 2 4 4 =
Definition 3: The probability of error between two proba- _1_ lTr IT). (20)
bility distributions is defined by 2 4
Hence we have the following proposition.
PE(po.p1) & L Y minfpo(e).pi()}).  (15)
o 2 OV BT Proposition 1: Given two arbitrary density matrices and

rzeX
p1, the probability of error equals

Two identical distributions haveE = % and two orthogonal
distributions havePE = 0.

Warning: PE is not a distance function: for example, when
two distributions are close to one anotheg is not close to
0, but close to%. where the); are the eigenvalues gfy — p;.

In the quantum-mechanical case, the experimental setup i®E (pg, p1) is, therefore, just a simple function of the dis-
almost identicalA has two ensembles, one according¢othe tance betweem, and p;, when measured as the trace norm

N

1 1 1 1

PE(P07P1)=§—Z§ Al =5 = Trleo —pu]  (21)
j=1
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of their difference. (An alternative derivation of this can berobability distributions can be read off from the diagonals,

found in [14].) and (25) trivially reduces to (22).
Observe thaflr |po — p1| is simply thetrace-norm distance
B. Kolmogorov Distance on operators [18], [19]. Henck has the additional property

. of satisfying a triangle inequality. The trace-norm distance
Among (computational) cryptographers, another measure g A .
ppears to be of unique significance within the class of all

of distinguishability between probability distributions is used . . .
. ) . . operator-norms because of its connection to probability of
fairly often: the standard notions of exponential and computar

tional indistinguishability [15], [16], [2] are based onit. ~ © O

Definition 5: The Kolmogorov distance between two probC. Bhattacharyya Coefficient

ability distributionsis defined by Another distinguishability measure that has met widespread

der 1 use—mostly because it is sometimes easier to evaluate than
K(po,p1) = 3 Z [po(x) = pr(2)|- (22)  the others—is the Bhattacharyya coefficient. See [20], [21],
zeX and [17].

Two identical distributions hav& = 0, and two orthogonal
distributions havek = 1.
In some references the factor éf plays no role, and the

Definition 7: The Bhattacharyya coefficient between two
probability distributionspy and p; is defined by

“Kolmogorov distance” is defined without it. Here we have B(po,p1) = Y Vpolw)pi(w). (26)
included it because we wanted to take values betweet r€X
and 1. Two identical distributions havé = 1, and two orthogonal
Probability of error and Kolmogorov distance are closelyistributions haves = 0.
related.
- Warning: B is also not a distance function: for instance,
Proposition 2: when two distributions are close to one anotlieis not close
1 1 to 0. It can, however, be easily related to a distance function
PE (po,p1) = 5~ 5K (po, p1)- (23) by taking its arccosine.

The Bhattacharyya coefficient’s greatest appeal is its sim-

This is not very difficult to prove. The most important StGFplic.ity: it is a sort Qf overlap.measure between the two di.stri—
is to split the sum ove# into two disjoint subsums, one for butions. When their overlap is zero, they are completely distin-

which po(z) < p1 (), and one for whichpy(z) > p1 (). See guishable; when their overlap is one, the distributions are iden-
[17]. ’ - tical and hence indistinguishable. Moreover, the Bhattcharyya
In the quantum case, we must again optimize over gpefficient can be thought of geometrically as an inner product

possible measurements. But here this means that we hav@§§V€€rpo andp, interpreted as vectors in an-dimensional

find the POVM that maximizes the Kolmogorov distance. VECIOr space. However, it does not appear to bear a simple
relation to the probability of error in any type of statistical
Definition 6: TheKolmogorov distance between two densitihference problem.

matricespp and p; is defined by In the quantum case, we define a distinguishability measure
def by minimizing over all possible measurements.
K(po, p1) = max K(po(£), p1(£)) (24)

Definition 8: The Bhattacharyya coefficient between two
where the POVME ranges over the set of all possibld€NSity matrices andp, is defined by

measurements\1. del .
B (po, pr) < min B (po(E),p1 (€ 27
The relation between probability of error and Kol- (po, p1) = min, B (po(&),p1(€)) 27)

mogorov distance (23) shows that the two measuremepffere the POVME ranges over the set of all possible
that optimize PE and K are identical: £* minimizes the measurements\.

function PE (po(€),p1(£)) if and only if it also maximizes _ " i

K (po(€), p1(€)). See also [14, Appendix]. Combining (21) The following proposition provides a closed-form expres-

and (23) we get sion for this distinguishability measure.
Proposition 3: The Kolmogorov distance between two den- Proposition 4. (Fuchs and Caves [22]Jhe quantum Bhat-
sity matricesp, and p1 equals tacharyya coefficient can be expressed as
x 5 00, p1) =T (Vo 28)
1 1 0, 0 0
K (po, p1) = > Z A1 = §Tr|p0 - ol (25)
j=1 where the square root of a matrix denotes any positive

semidefinite matrix> such thato? = p.
When p, andp; diagonalize in the same basis we are back
In the special case that and p; diagonalize in the sameto the classical case, and (28) reduces to (26), because the
basis we are essentially back to the classical case. The weality \/pop1./po = pop1 NOW holds.

where the); are the eigenvalues g — p;.
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Surprisingly, it turns out thaB is equivalent to another Consider the following elementary example. Suppose we
nonmeasurement orient@dtion of distinguishability. Suppose have two boxes, each containing colored balls. tet7 =
[1o) and |1 ) are pure states. When we think these two sta{®, 1} denote the identity of the boxes; and let us think of
vectors geometrically, a natural notion of distinguishability i as a stochastic variable. Théhob [T = ¢] is just thea
the angle betweenyq) and |¢1), or any simple function of priori probability =, of Section Il. Recall that in our case
this angle like the inner product or overlap. In particular, weq = m; = % so H (T') = 1. Let X denote the stochastic
can defineoverlap (|#0o), |#1)) := |{+0|t)1)| @s a measure of variable corresponding to the color of a ball upon being drawn
distinguishability. The question is: what to do for mixed statesfom a box, taking into account that the identity of the box
The answer was given by Uhlmann [Z3F. p, is the density is itself a stochastic variable. Recall thatob [X = x| was
matrix of a mixed state in the Hilbert spagé , then we can written asp(x).
always extend the Hilbert space such thatbecomes a pure  Consider the same experiment as in Section IV-A, in which
state in the combined Hilbert spagé © H,. More precisely, A picks a ball from one of the two boxes and gives itBo
we can always find an extensidi, of 7; and a pure state One can ask now: How much information da&s(the color
|0y € Hi ® Ha, such thatTra(]9o)){2bo|) = po. Here the of a picked ball) convey abouf (the identity of the box it
operatorTr, means to perform a partial-trace operation overame from)?
the ancillary Hilbert spacé{,. When this condition holds, Information is defined as the reduction of uncertainty, where
|10} is said to be gurification of po. Similarly, if |41} is the uncertainty is quantified using the Shannon entropy. Consider
purification of p;, we are back to a situation with two puretwo quantities: 1) the average uncertainty Bf about 7’
states, and we can apply the formula above, leading to thefore he was handed a sample (or ball), denatedand
following generalized definition. 2) his average uncertainty abodt after he was handed
a sample, denoted! (T'|.X). This difference expresses the
amount of information gained through the experiment, and
can also be used as a measure of distinguishability between
(29) two distributions. Thus we obtain

Definition 9: The (generalized) overlagpetween two den-
sity matrices is defined by

def
overlap (po, p1) = max |{o|¢1)]

where the maximum is taken over all purificatiops) and average information

1) of po and py, respectively. = H(T) - H(T|X) (34)
It can be demonstrated that [22] = HQ(%) - Z p(z) H(T|X = x) (35)
rzEX
Overlap (p07p1) = B(p07pl)' (30)
=1— Y plx) H(ro(x)) (36)
Despite the rather Barogue appearaBde@o, p1) takes in TEX
(28), it is endowed with several very nice properties. For = I(T; X). (37)

instance B (po, is multiplicative over tensor products ] ) o
(po-1) P P This leads to the following definition.

B(po @ pr,p2 @ ps) =B(po, p2)B(p1,p3)- B1)  pafinition 10: The Shannon distinguishability between two
B's square is concave over one of its arguments; i.e., Rfobability distributionsp, andp, is defined by

0 < po,pr < 1,0+ p1 =1 then e
S Mo, M1 1o H1 sD (p07p1) d:f I(T7X) (38)

B 2> (B 2 B 2. (32
(B(p: popotpip1))” 2 Ho(B(pspo))"+ i (B (s 1)) (32) In the same fashion as all the other distinguishability

Moreover, B itself is doubly concavk measures, the Shannon distinguishability can be applied to the
quantum case. We must find the measurement that optimizes
B(popo + f1101, pop2 + p1p3) 2 poB(po, p2) + aB(p1, p3). it when tabulated for probability distributions obtained by
(33) applying a quantum measurement.

Definition 11: The Shannon distinguishability between two

D. Shannon Distinguishability density matrice, and p; is defined as
Now we come to the last, and maybe most important, def
notion of distinguishability. Mutual information, as defined 8D (po, p1) = max SD (po(£),p1(€)) (39)

by Shannon [25], can be used as a distinguishability measure _
between probability distributions [26], [12]. We assume thithere the POVME ranges over the set of all possible
the reader is familiar with the (Shannon) entropy functign Measurements\1.

the argument of which can be either a stochastical variable or ahere is an unfortunate prob|em for this measure of dis-

probability distribution.H»(p) = —plogp—(1-p)log(1—p) tinguishabity: calculating the valu&, (po, p1) is generally a

is the entropy of the distributiofp, 1 — p). difficult problem. Apart from a few special cases, no explicit
3A nice review of this theorem in terms of finite-dimensional Hilbert spacfeormUIa for sD solely in terms ofpo and P1L |s.known. Even
methods can be found in [24]. stronger than that: no such formula can exist in the general case

4The authors thank C. M. Caves for pointing this out to them. [27]. This follows from the fact that optimizing the Shannon
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TABLE | The importance of this theorem is that, while the quantum
OVERVIEW OF THE FOUR DISTINGUISHABILITY Shannon distinguishability is impossible to calculate in a
MEASURES DISCUSSED IN THIS PAPER . " . .

_ closed form, the inequalities provide a useful way to bound it.
classical when  when optimality quantum We will use these bounds in an application in the next section.
definition po=pr polpr criterion expression

PE | L S min{po(z),p(z)} 1/2 0 min L 1Tr|pg — pu Proof of Proposition 5: We start by proving (41). To get
. , the left-hand inequality, note
K | 32 |po(2) — pa(2)| 0 1 max 3Tr|po — p1l
1
B | Y Vr@ne) S Tey/o o103 1-B(po,pr) =5 | D pol@)+ D p(w)
xzxCX zCX
SD | via I(X;T) 0 1 max no simple form
oy Wx)pl(x)) @
distinguishability requires the solution of a transcendental 1 TeX
equation. (See also [10] and [28] for a discussion of other =3 |Vpolz) — Vpu(@)]?  (48)
aspects ofsD.) 2 zEX
1
E. Overview <3 > Ipo(@) — pa()] (49)
The material presented in the previous four subsections is wer
=K (po,p1)- (50)

summarized in Table I.
The inequality in the penultimate step holds for each term

V. INEQUALITIES individually. To get the right-hand inequality, we simply use
We have seen already (23) that probability of error artie Schwarz inequality

Kolmogorov distance are related through the equality: 1 2
1 1 K (po,p1)? == - 51
PE (po,p1) = 573 K (po, p1). (40) (po. 1) 4 <; Ipo() pl(x)|> D)
The other pairs of distinguishability measures are related 1
through inequalities, some of which can be found in the =1 > Wpo(z) = Vpu (@)l
literature [20], [29], [21], [17], [12]. xCX ,
Proposition 5: Let py and p; be probability distributions. |Vpo(@) + V11(@)| (52)
The following relations hold:
_ _ 2 1
1 =B (po,p1) <K(po,p1) < V1—-B(po,p1)* (41) <7 3 (Vrolz) — Vi (@)
1 — Ha(PE(po,p1)) <SD(po,p1) < 1—2PE(po,p1) (42) zCX
1 —B(po,p1) <SD (po,p1) > (Vpo(@) + Vpi())? (53)
1 1 zCA
Sl—H2<§—§\/1—B(P07P1)>- 1
43) =1 (2—2B(po,p1))(2+2B(po,p1)) (54)
=1-B(po,p1)* (55)

Before giving the proof of this proposition, we state its

quantum equivalent. This is the main result of the paper. ~ In order to prove the left inequality of (42), we observe that

. . this is a special case of the Fano inequality (see, for instance,
Theorem 1: Proposition 5 can be generalized to the quarrgo])

tum scenario: one can substitubE, X,B, and SD and use

density matricepy and p; as operands. Alternatively, using H(T|X) € Ha(PE (po, p1))+PE (po, p1) log(#T—1) (56)
the quantum expressions, (41)—(43) can be expressed in the -

following, equivalent form: where#7 = 2 is the cardinality of the sef .

For the right-hand inequality of (42) we expadd.X;T’)

1
1=B(po, p1) < 5 Tr |po—p1] : ) _
2 asH(T) — H(T|X) to obtain an inequality betweesD and

< V1-B(po, p1)? (44) PE. (See also [29].) Recall the definitions af(x) and p(x),
11 observing that;(z) = 1 — ro(x) and that2min{r,1 — r} <
1—Hy| =—=Tr|po— <SD : ’ -
2<2 4" lPo p1|> = 5D (po, 1) H,(r) for all » betweerD and1 (see Fig. 1). Hence, we obtain
1
<-T — 45
=5 r |p0 p1| (45) sD (pO,p1) —1_ Z p(aﬁ)HQ(To(aZ)) (57)
1—B(po, p1) < 8D (po, p1) zeX
1 1 _ . indp .
Sl—H2<§—§ 1—B(p0,p1)>. <1 ;p(x) 2min{ro(x),1 —ro(x)} (58)
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1 Proof of Theorem 1:First we prove (44). We start with the
ad N first inequality. Let€}, denote a POVM that optimizes and
0 8 define &}, likewise

1 —B(po, 1) =1 —B(po(€p),p1(€R)) (70)
v.-e <K(po(€R),p1(ER)) (71)
/ \ <K (po(&5). pa(ER)) (72)
By \\ =K (po, p1). (73)

0.2 // \\\ The second inequality of (44) follows from
K (po, p1) =K (po(€x ), p1(€x)) (74)
0.2 0.4 0.6 0.8 ] <\1-BWoE)m(E))?  (75)

Fig. 1. 2min{z,1 — 2} < Hao(z) < 2(2(1 — 2))1/2. (Formally this is N N
proven bynllgcl)kizng at tile first aan seconzl derifezt)ives.) < \/1 -B (po(gB)vpl (SB))2 (76)

=V/1—B(po, p1)*. (77)

quations (45) and (46) are proven in an identical way. In
particular, in (44) the functions on the extreme leffz) =
1 — z, and on the extreme righf;(z) = v/1 — 22, are both

The left-hand inequality of (43) is obtained in a similar waye
Using the fact that>(r) < 24/7(1 — ) (see Fig. 1), we get

SD (po,p1) =1~ Z p(e)Ha(ro(2)) (60) monotonically decreasing. In additioB, must be minimized
Ty whereasK must be maximized. The same is true for (45)
>1- Z p(x) - 2v/ro(x)(1 —7ro(x))  (61) and (46). O
zeX
—1_ Z o ()pr (2) (62) VI. EXPOI\-IENTI,.AL |ND|.STING%JISHABILITY. |
wCX As already described in Section I, in the solution of various
=1—B(po,p1). (63) cryptographic tasks, one often actually designs a wfantgly

of protocols. These are parameterized tgeaurity parameter
For the right-hand side of (43) we define the function ~7: a number that might denote the length of some string,
the number of rounds, or the number of photons transmitted,
\/ﬁ- (64) for instance. Typically the design of a good protocol requires
that the probability of cheating for each participant vanishes
exponentially fast, i.e., is of the ordéxr(¢~"), with £ between
If we let i(r) = 2y/r(1—r) for 0 < < 1, then we get  anq 1. As an example, one techr(1ique) is to compare the
thath(r) = A(1 — ), that gh(r) = min{r,1 -}, and that nro000] implementation (the family of protocols) with the
hg(r) = r. So ideal protocol specificatioand to prove that these two become
exponentially indistinguishable [3].

| =

Hy(ro(w)) = Ho(min{ro(z), 1 — ro(2)}) = Ha(gh(ro(x)))
Definition 12: Let{X,} = (Xél),XSQ),Xé?’), ---y denote a

and family of stochastic variables with corresponding distributions
(pél),pg),pé?’), ---). Let {X1} be defined similarly. Then
SD (po,p1) =1— Y p(a)Ha(ro(x)) (65) {X,} and {X;} are exponentially indistinguishablé there
rCX exists anng and ane between0 and1 such that
Z p(2)Ha(g(h(ro(2))))  (66) Yn > motK (a7 p™) < e 78)

Examples of exponentially indistinguishable stochastic-
sl—Halyg Z p(@)h(ro(z)) (67) variable families can be constructed easily. For instance,

let X7 be uniformly distributed over{0,1}", the set of
=1— Ha(9(B (po, p1))) (68) strings of lengthn. That is, for eachx € {0,1}", we
=1—H, <1 1 1—-(B (p07p1))2>. (69) have pé’f)(x) = 27". This defines the family of uniform
distributions over{Xo}. Let {X;} be defined identically,
exceptthat p{™ (0") = 0, while p{™(17) = 2=+, So for
«?9(1}, 0", the word with all zeroes, has zero probability; while
™, the word with all ones, has double the probability it had
in the uniform distribution. Clearly, the two familiegXo}
The main tool in proving the quantum versions of thesend {X;} are exponentially indistinguishable.
inequalities is in noting that all the bounds are appropriately The reader should be aware that édomputationalcryp-
monotonic in their arguments. tography more refined notions of distinguishability have been

rEX

Here we used Jensen’s inequality on the (composite) functi
Hs(g(r)); this function is convex. This concludes the proof o
Proposition 5.
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defined [2]. Forpolynomial indistinguishability it is only The obvious next step is to define exponential indistin-

required that the families converge as fastlga”, for any guishability for density matrices, and to show that the choice

k>0. Though we will not argue it formally here, it is notof the distinguishability measure is immaterial.

hard to see that the proof of Lemma 1 generalizes to apply to_ .. .. ] (n) L (2 (3

polynomially indistinguishable families. ¢ D_Ellfm";m; 13: Let {py "} :d <pr (,jpo *Po h,--i_)”(genote a
Yet another refinement momputational indistinguishability a?l])'y ?2) e?gs)lty matnces(n)e ine oyer t e, ,' ert spaces

For it, a sample is given to a Turing machine which outputd (n)vH H o Let {p }_ be _def_'n?d s.|m|larl'y. Then

a0 or 1, and we look at the Kolmogorov distance of thdro ~} and{p;’} areexponentially indistinguishablié there

possible outputs. After maximizing over all Turing machine€Xists amn, and ans between0 and1 such that

we say the stochastic-variable families are computationally > e (n) (W)Y o _n

indistinguishable if the distance between them converges as ¥n 2 no:K(pg ", p17) < €7 (82)

1/nk for any k>0. Computational indistinguishability has an example that makes use of this definition will be

turned out to be extremely powerful for defining notions asresented in the next section. However, first let us conclude
pseudorandom number generators [15] and zero knowledggh the quantum analog of Lemma 1.

protocols [2]. All these notions of protocol indistinguishability

have in common that if a distinguisher is given a sample andTheorem 2: Let {05} and{p{"'} be two families of den-

restricted to polynomial-time calculations, then he will not b&ity matrices which are exponentially indistinguishable with

able to identify the source of the sample. respect toone of the distinguishability measurég PE, B, SD.
Above, in Definition 12 we have followed the comput-Then {5} and {p"™'} are exponentially indistinguishable

ational-cryptographic tradition in defining exponential indiswith respect toeachof K, PE, B, SD.

tinguishability via the Kolmogorov distance. However, this ~ Proof: This follows now immediately from the proof of

choice is in no way crucial: the next lemma shows that weemma 1 using Theorem 1. U
could have taken any of the four distinguishability measures.
In other words,K, PE, B, and SD turn out to be equivalent VII. A PPLICATIONS

when we require exponentially fast convergepce. Let us now look at an application of the quantum-

Lemma 1:Let {X,} and {X;} be two families of sto- exponential indistinguishability idea. In particular, we look
chastic variables that are exponentially indistinguishable wi#i the problem of the parity bit in quantum key distribution as
respect tooneof the distinguishability measurés PE, B, SD.  studied in [5]. Let|ty) = (€°2) and 1) = (%2 ), and let
Then{X,} and{X,} are exponentially indistinguishable withpy and p; be the corresponding density matrices. That is, the
respect toeachof K, PE, B, SD. bits 0 and1 that contribute to constructing a cryptographic key

Proof: The equivalence between exponential indistirare encoded into a physical system—a photon, say-pyia
guishability for PE and K follows from (23). The other andp;. Likewise, the bit stringz = z 2 - - - z,, iS represented
equivalences follow from (41)—(43). For instance, the prodiy » different photons, théth photon being in statg;. Thus
that exponential indistinguishability fa¢ implies exponential the combined state for the stringis given by

indistinguishability forB goes as follows. Suppose
pZ:pZ1®pZ2®“.®pZn (83)

Jng, £][vn > ngl: K (n), (m)y < gn, 79
(3o, €llvn 2 nol: Kipo ™21 ) < (79) where ® stands for the tensor product.

Using the left-hand side of (41), it follows at once that Now let Zé") denote all the strings of length with even
B, p{”) > 1 — . It then follows from the fact that parity (i.e., with overall exclusive—or equal &) and z{™ all
B (pg">,p§">) is bounded above by unity, that we obtain thstrings of lengthn with odd parity. Then define
desired exponential convergence. 1

For the reverse direction: if— B (p{",p\™) < " then pj(»n) = 51 Z P= (84)
zer(.”)

1- (B, o) <"1 +B (i, p") < 2¢" (80)
() __ ) _ for 5 = 0,1. In [5] these two density matrices are explicitly
soK(py ", pi’”) < V24/€" using the right-hand side of (41).calculated in order to compute their Shannon distinguishability
If we chooses < /& andmy > no such thaty'2 < (£/v/€)™,  as a function o, and . This is extremely important because
then K(pé"),pgn)) <egtforn > the parity bit appears in the proof of security [1] of the BB84
The other implications are proven in a similar way. As fakey exchange protocol [31].

as expressions involvingl>(z) are concerned, it is sufficient Here we compute the distinguishability betwe@éﬁ‘) and

to recall (see Fig. 1) that o™ in terms of Kolmogorov distance and Bhattacharyya
2min{z,1 — 2} < Ho(x) < 2\/z(1 — ). (81) _coefficigr)t. For 'Fhe special case = 2 we _also st_udy the

inequalities obtained in Theorem 5, as an illustration of how

This concludes the proof. O tight the bounds are. Observe that, at this point in time,

the problem of the parity bit is one of the few nontrivial
5There is a small technicality here: indistinguishable distributions Ir&ve . P ltidli . ? '|)k/) les f hi
= L andB = 1, so exponential indistinguishability means convergence tG'e" multidimensional Hi ert'Space) examples tor w ich the

those values, instead of convergencé®!as is the case witk andSD. Shannon distinguishability, Kolmogorov distance (and related
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probability of error), and Bhattacharyya coeffecient can be 1
computed. For the next few paragraphs the reader is advised
to consult [5], or to take (85), (97), and (98) below as given., g

First let us calculate the Kolmogorov distaricg(™, p{™)
as a function of» and «. In [5] it is shown that

a0 =10 )

: . 0.4
has nonzero entries only on the secondary diagonal. Moreover,
it is not difficult to see that all these entries eqdal™, where

¢ = cosa, s = sin . Therefore,A(™ has2"~! eigenvalues ¢
equal to—c"s™, and2”~! eigenvalues equal tg-c"s", so e

0.6

.2

/
K(pé"),pgn))zzI)\jl=|2CS|"=|Sin204|"=|5|" (85) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

" " Fig. 2. Equation (45) for th ity bit with = 2 and witha € [0, 7/4
where S = sin2a. Clearly, {p((J )} and {p§ )} are exponen- ol]gthe ho?.ﬁf;‘n'?;} (ax.i or fhe parly bit Wi and witha: € [0. /4]
tially indistinguishable for all values of # /2. (Note that

in [5] exponential indistinguishability is proven only for the

case thate ~ 0.)
Computing the Bhattacharrya coefficient betweaé’h) and
p&") is a more elaborate calculation. In [5, egs. (19) and (20)]
it is shown that, with a minor change of bas,i%’f) and pﬁ") 0
can be taken to be block-diagonal withx 2 blocks. These
blocks are of the form
2(n—k) 2k n N 0.4
(n,k) _ [c S c's .
gy = < rgn CQkSQ(n_k)> for even parity (86)
and 0.2 A
2(n—k) 2k _.n.n B
(nd) — (€ ; s for odd parity (87 —|
70 < =" 62'“82("—'“)> parity  (87) 01 0.2 0.3 0.4 0.5 0.6 0.9 0.5

where k ranges betweefi andn. For each0 < k < |n/2], Fig. 3. Equation (46) for the parity bit with = 2 and witha € [0, 7/4]
the blockso ™ and 05" * each make an appearance §" the horizontal axis.
total of £(}) times.
With this as a starting point, let us develop a conveniehich we can write in a shorthand notatiorf as
notation. If & is ann x n positive semidefinite matrix of the

form B(Uo,O'l) IB(O’g,o’f)—i—B(O’(I),OJ). (94)
Thus we can evaluatb(pé"), p&")) by evaluating each block
ot 0 individually and summing the results. In particular, we find
< n ) (88) that
Op o

B (O_(()n,k)7 O_gn,k)) -B (O_(()n,n—k)7 a£n,n—k))

— Q(n—k) 2k 2k Q(n—k) 95
wheres™ is ap x p matrix, o' is a ¢ x ¢ matrix, 0,,, is a e (‘j €3 - (99)
p X g matrix, andn = p + ¢, then we shall write this as Summing up over all blocks of;"’ we get

o = o" & ol. In this fashion, we have

Ln/2]
™ ™ B(p” o)=Y <Z> | R g2 — 2R R (96)
oo = @ P(0,k) (89) k=0

k=1

For the casen = 2 this expression reduces to

for the appropriat€ x 2 matricesp x). Similarly for o,
ol ) B(o”, o) = I¢* = ' = (¢ = )(& + )| = ] (97)

It is not difficult to see that the following three equalities

hold: where C = cos 2.
Tr (0" @ al) =Tr(o") + Tt (al) (90) For the Shan_non distinguishability in the special case 2,
(h @ oot Bol) = (o) @ ogor) (1) o4 DT OVES e
Vord ol =vor @ Vol (©2) Py = S0+ 02>H2<1 - H—C) + 5 (98)
From this it follows that We are now in a position to substitute (85), (97), and (98)

into (44), (45), and (46). Observe that (44) holds automatically,
Tr\/ /700100 = Try//odol\Joi + Try/+/abaty/ ol (44). (49) (46) (44) y

6Note that the expressions in this shorthand version are not proper Bhat-
(93) tacharyya coefficients: they are not normalized properly.
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in fact with equality on the right-hand side. Equations (45) and
(46) are illustrated in Figs. 2 and 3, respectively. The horizon-
tal axis represents the anglebetweenjs;) and (;), meaning 13,
that forw /4 (= 0.785) the state$uy) and|,) are orthogonal.

The fact that the bounds based on the Bhattacharyya coeffici
are fairly tight can be explained by the fact that the functio
x(1 — x) resemblesH,(z) quite well.

2

[15]

ACKNOWLEDGMENT [16]

We are grateful to T. Mor for helping us realize thg17]
usefulness of these results. Special thanks are also due M.

Boyer and C. Cgpeau.

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]
[10]

(11]

[12]

(18]

REFERENCES [19]
E. Biham, M. Boyer, G. Brassard, J. van de Graaf, and T. Mor, “Secu-
rity of quantum key distribution against all collective attacks,” Tech[20]
Rep. 9801022, LANL Quant-ph archives, 1998. [Online]. Available:
http://xxx.lanl.gov/ps/quant-ph/9801022.

S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexit{ﬂl]
of interactive proof-systems,SIAM. J. Comput.vol. 18, no. 1, pp.
186-208, 1989.

D. Beaver, “Secure multiparty protocols and zero-knowledge proof
systems tolerating a faulty minority,J. Cryptol, vol. 4, no. 2, pp.
75-122, 1991.

C. A. Fuchs, “Distinguishability and accessible information in quantum
theory,” Ph.D. dissertation, University of New Mexico, Albuquerque[23]
1995.

C. H. Bennett, T. Mor, and J. Smolin, “The parity bit in quantum cryp{24]
tography,” Phys. Rev. Avol. 54, no. 3, p. 2675, 1996. [Online].
Available: http://xxx.lanl.gov/ps/quant-ph/9604040. [25
R. I. G. Hughes;The Structure and Interpretation of Quantum Mechan-
ics. Boston, MA: Harvard Univ. Press, 1989. [
C. Isham,Lectures on Quantum TheoryLondon, U.K.: Imperial Col-
lege Press, 1995. [27]
G. Brassard, C. Gpeau, R. Jozsa, and D. Langlois, “A quantum bit
commitment scheme provably unbreakable by both partiesProc.

34th IEEE Symp. Foundations of Computer Scied€83, pp. 362-371. [28]
Sudbery,Quantum Mechanics and the Particles of Nature—An Outline
for Mathematicians Cambridge, U.K.: Cambridge Univ. Press, 1986.[29]
A. Peres,Quantum Theory: Concepts and Method®ordrecht, The
Netherlands: Kluwer, 1993.

N. D. Mermin, “The Ithaca interpretation of quantum mechanics,” Tect30]
Rep. 9609013, LANL Quant-ph Archives, 1996 [Online]. Available:
http://xxx.lanl.gov/ps/quant-ph/9609013. [31]
M. Ben-Bassat, “Use of distance measures, information measures and
error bounds in feature evaluation,” iHandbook of Statistics, Vol.

o

1227

2—Classification, Pattern Recognition and Reduction of Dimensionality
P. R. Krishnaiah and L. N. Kanal, Eds. Amsterdam, The Netherlands:
North-Holland, 1982, pp. 773-791.

C. W. Helstrom,Quantum Detection and Estimation Thediyathe-
matics in Science and Engineering), vol. 123. New York: Academic,
1976.

C. A. Fuchs, “Information Gain vs. State Disturbance in Quantum
Theory,” Fort. Phys, vol. 46, pp. 535-565, 1998.

A. C.-C. Yao, “Protocols for secure computations,” Rroc. 23rd
IEEE Symp. Foundations of Computer Scief€hicago, IL, 1982), pp.
160-164.

S. Goldwasser and S. Micali, “Probabilistic encryptioh,Comput. Syst.
Sci, vol. 28, no. 2, pp. 270-299, 1984.

G. T. Toussaint, “Comments on ‘The divergence and Bhattacharyya
distance measures in signal selectiofEEE Trans. Commun. Technol.
vol. COM-20, p. 485, 1972.

M. Reed and B. Simoriethods of Modern Mathematical Physics—Part
I: Functional Analysis New York: Academic, 1972.

A. Orlowski, “Measures of distance between quantum statesPrat.

4th Workshop Physics and Computation—PhysComgR&&v England
Complex Systems Institute, Boston, MA, 1996), pp. 239-242.

T. Kailath, “The divergence and Bhattacharyya distance measures in
signal selection,IEEE Trans. Commun. Technoliol. COM-15, no. 1,

pp. 52-60, 1967.

G. T. Toussaint, “Some functional lower bounds on the expected
divergence for multihypothesis pattern recognition, communication, and
radar systems,lEEE Trans. Syst., Man, Cybernvol. SMC-1, pp.
384-385, 1971.

C. A. Fuchs and C. M. Caves, “Mathematical techniques for quantum
communication theory,Open Syst. Inform. Dynamiceol. 3, no. 3, pp.
345-356, 1995.

A. Uhlmann, “The ‘transition probability’ in the state space of a
x-algebra,”Reps. Math. Physvol. 9, pp. 273-279, 1976.

R. Jozsa, “Fidelity for mixed quantum stated,”Modern Opt. vol. 41,

no. 12, pp. 2315-2323, 1994.

] C. E. Shannon, “A mathematical theory of communicatidBéell Syst.

Tech. J, vol. 27, pp. 379-423 and 623-656, 1948.

26] D. V. Lindley, “On a measure of the information provided by an

experiment,”Ann. Math. Statist.vol. 27, pp. 986—1005, 1956.

C. A. Fuchs and C. M. Caves, “Ensemble-dependent bounds for acces-
sible information in quantum mechanic$hys. Rev. Lettvol. 73, no.

23, pp. 3047-3050, 1994.

T. Mor, “Quantum memory in quantum cryptography,” Ph.D. disserta-
tion, Technion—Israel Inst. Technol., Haifa, Israel, 1997.

M. E. Hellman and J. Raviv, “Probability of error, equivocation, and the
Chernoff bound,1EEE Trans. Inform. Theorwol. IT-16, pp. 368-372,
July 1970.

T. M. Cover and J. A. Thomaglements of Information Theoiiley
Series in Telecommunications). New York: Wiley, 1991.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” irProc. IEEE Int. Conf. Computers,
Systems and Signal ProcessifBangalore, India, 1984), pp. 175-179.



