1 BC with equality

1.1 Comparing equality of two committed inputs

Example 1.1 bit commitment based on GNI.

Example 1.2 bit commitment based on QNR.

$$y \in \text{QNR}_{n}[+1]$$

$$P$$

$$ZK(y \in \text{QNR}_{n}[+1]) \xrightarrow{V}$$

$$ZK(y \in \text{QNR}_{n}[+1]) \xrightarrow{V}$$

$$z_{1} \equiv y^{b_{1}} * r^{2} \mod n,$$

$$r \in_{R} Z_{n}^{*},$$

$$z_{1} \xrightarrow{z_{1}}$$

$$commit(b_{2}),$$

$$z_{2} \equiv y^{b_{2}} * r'^{2} \mod n,$$

$$r' \in_{R} Z_{n}^{*},$$

$$if z_{1}z_{2} = v^{2} then accept b_{1} = b_{2}.$$

To prove $b_1 \neq b_2$ P sends $\sqrt{yz_1z_2}$.

1.2 Computation on boolean circuits using committed inputs

We shall use the previous two examples to do computations on boolean circuits. Prover commits to three bits: b_1 , b_2 , $b_3 \in \{0, 1\}$, s.t. B: $b_1 \wedge b_2 = b_3$. There are only four possible situations of B (see Table T), i.e. B (three bits) must belong to one of the following situation T_j (three bits).

Table T

$$T_1: 0 \land 0 = 0$$
$$T_2: 0 \land 1 = 0$$
$$T_3: 1 \land 0 = 0$$
$$T_4: 1 \land 1 = 1$$

We design the protocol by using the "Cut and Choose" technique in order to prove that $B \in T$. P permutes the Table T then commit to $(\pi(T))$ to V.

$$P \qquad V$$

$$commit(\pi(T)) \rightarrow c \in_{R} \{0, 1\},$$

$$c \in_{R} \{0, 1\},$$

$$if \ c = 0,$$

$$\frac{\pi, \ unveil(\pi(T))}{\sum}$$

$$if \ c = 1,$$

$$ZK(B=T_{i})$$

Note:

1. π is a permutation of Table T.

2. Using example 1.1, P can show to V that the three committed bits B: b_1, b_2 and b_3 are equal to the three committed bits of T_i respectly.

If $b_1 \wedge b_2 = b_3$, $\Pr[\text{accept}] = 1$, If $b_1 \wedge b_2 \neq b_3$, $\Pr[\text{accept}] \leq 1/2^k$, where k = # of rounds. We can use this method for any logical gate: $\land, \lor, -, \oplus$.

1.3 Rudich's Trick

Now we are going to talk about a general way to obtain a bit commitment where we can prove equality based on any bit commitment. Here "Rudich's Trick" is the way to show two committed bits are equal.

Suppose b = b', where $b, b' \in \{0, 1\}$, let u_i, x_i be random bits and v_i, y_i be defined according to $u_i \oplus v_i = b$, $x_i \oplus y_i = b'$, $i = 1, \dots 2n$. We shall use 4n committed bits to commit one bit.

Alice

Bob

commit(b):	commit(b'):
$\alpha_1: C(u_1), C(v_1)$	$C(x_1), C(y_1) : eta_1$
$\alpha_2: C(u_2), C(v_2)$	$C(x_2), C(y_2) : \beta_2$
:	
$\alpha_{2n}: C(u_{2n}), C(v_{2n})$	$C(x_{2n}), C(y_{2n}) : \beta_{2n}$

where α_i and β_i are two committed bits and C denotes commit.

• Bob imposes two random permutations $\pi_{\alpha}, \pi_{\beta}$ to Alice who permutes α_i using π_{α} and β_i using π_{β} .

$$\begin{array}{ccc} C(u_9), C(v_9) & & C(x_2), C(y_2) \\ C(u_n), C(v_n) & & C(x_7), C(y_7) \\ \vdots & & \vdots \\ C(u_3), C(v_3) & & C(x_6), C(y_6) \end{array}$$

Regardless of b, u_i, x_i and v_i, y_i are either identical or opposite. Alice will claim for the first half of the lines whether they are "=" or "≠".

=	$C(x_2), C(y_2)$
\neq	$C(x_7), C(y_7)$
	:
=	$C(x_{63}), C(y_{63})$
	$C(x_{n-9}), C(y_{n-9})$
	$C(x_{55}), C(y_{55})$
	:
	$C(x_6), C(y_6)$
	= ≠ =

for example:

b = b' = 0	b = b' = 1
$0\oplus 0=0\oplus 0 : u_i=x_i, v_i=y_i,$	$0 \oplus 1 = 0 \oplus 1 : \ u_i = x_i, \ v_i = y_i,$
$0 \oplus 0 = 1 \oplus 1 : u_i \neq x_i, v_i \neq y_i,$	$1 \oplus 0 = 0 \oplus 1: \ u_i \neq x_i, \ v_i \neq y_i.$

• For each line Bob randomly chooses to see the both left sides or both right sides, but not both sides, then Alice unveils them to Bob.

$, U(y_2)$
$, C(y_7)$
$(y_{63}), U(y_{63})$
$_{-9}), C(y_{n-9})$
), $C(y_{55})$
$, C(y_6)$

where U denotes unveil.

If Alice wants to cheat, suppose b=1, b'=0 and Alice cliams that $\alpha_i = \beta_i$, for example:

$$b = 1 \qquad b' = 0$$

$$\alpha_i: 0 \oplus 1 = 1 \oplus 1 : \beta_i$$

With 1/2 probability, Bob will request to see the left sides and Alice unveils to him that $(u_i = 0) \neq (x_i = 1)$, then Bob rejects.

With 1/2 probability, Bob will request to see the right sides and Alice unveils to him that $v_i = 1 = y_i$, then Bob accepts. So if $b \neq b'$, 1/2 probability Bob will be cheated.

Therefore,

If b=b', Pr[accept]=1,

If $b \neq b'$, $\Pr[\text{accept}] \leq (1/2)^n$, at each line, if $b \neq b'$, regardless of Alice's answer, the probability Bob finds out that Alice is cheating is 1/2.

After a test is conclusive, Alice can construct a new valid commitment to represent both b and b' using the untouched commitments:

$$commit(b, b') :$$

$$C(u_{99}), C(v_{99})$$

$$C(u_{2n}), C(v_{2n})$$

$$\vdots$$

$$C(u_{3}), C(v_{3})$$

$$C(x_{n-9}), C(y_{n-9})$$

$$C(x_{55}), C(y_{55})$$

$$\vdots$$

$$C(x_{6}), C(y_{6})$$