1 BC with equality

1.1 Comparing equality of two committed inputs

Example 1.1 bit commitment based on GNI.

Example 1.2 bit commitment based on QNR.

$$
P \xrightarrow{y \in \mathrm{QNR}_{n}[+1]} \xrightarrow{Z K\left(y \in \mathrm{QNR}_{n}[+1]\right)} V
$$

$$
\begin{array}{r}
\operatorname{commit}\left(b_{1}\right), \\
z_{1} \equiv y^{b_{1}} * r^{2} \bmod n, \\
r \in_{R} Z_{n}^{*},
\end{array}
$$

$$
\begin{array}{r}
\operatorname{commit}\left(b_{2}\right), \\
z_{2} \equiv y^{b_{2}} * r^{\prime 2} \bmod n, \\
r^{\prime} \in_{R} Z_{n}^{*},
\end{array}
$$

$$
\text { if } z_{1} z_{2}=v^{2} \text { then accept } b_{1}=b_{2} .
$$

To prove $b_{1} \neq b_{2} \mathrm{P}$ sends $\sqrt{y z_{1} z_{2}}$.

1.2 Computation on boolean circuits using committed inputs

We shall use the previous two examples to do computations on boolean circuits. Prover commits to three bits: $b_{1}, b_{2}, b_{3} \in\{0,1\}$, s.t. B: $b_{1} \wedge b_{2}=b_{3}$. There are only four possible situations of B (see Table T), i.e. B (three bits) must belong to one of the following situation T_{j} (three bits).

Table T

$$
\begin{aligned}
& T_{1}: 0 \wedge 0=0 \\
& T_{2}: 0 \wedge 1=0 \\
& T_{3}: 1 \wedge 0=0 \\
& T_{4}: 1 \wedge 1=1
\end{aligned}
$$

We design the protocol by using the "Cut and Choose" technique in order to prove that $B \in T$. P permutes the Table T then commit to $(\pi(T))$ to V .

Note:

1. π is a permutation of Table T.
2. Using example 1.1, P can show to V that the three committed bits B : b_{1}, b_{2} and b_{3} are equal to the three committed bits of T_{i} respectly.

If $b_{1} \wedge b_{2}=b_{3}, \operatorname{Pr}[$ accept $]=1$,
If $b_{1} \wedge b_{2} \neq b_{3}, \operatorname{Pr}[$ accept $] \leq 1 / 2^{k}$, where $\mathrm{k}=\#$ of rounds.
We can use this method for any logical gate: $\wedge, \vee,-, \oplus$.

1.3 Rudich's Trick

Now we are going to talk about a general way to obtain a bit commitment where we can prove equality based on any bit commitment. Here "Rudich's Trick" is the way to show two committed bits are equal.

Suppose $b=b^{\prime}$, where $b, b^{\prime} \in\{0,1\}$, let u_{i}, x_{i} be random bits and v_{i}, y_{i} be defined according to $u_{i} \oplus v_{i}=b, x_{i} \oplus y_{i}=b^{\prime}, i=1, \cdots 2 n$. We shall use 4 n committed bits to commit one bit.

> Alice

Bob

$$
\begin{aligned}
\text { commit }(b): & \operatorname{commit}\left(b^{\prime}\right): \\
\alpha_{1}: C\left(u_{1}\right), C\left(v_{1}\right) & C\left(x_{1}\right), C\left(y_{1}\right): \beta_{1} \\
\alpha_{2}: C\left(u_{2}\right), C\left(v_{2}\right) & C\left(x_{2}\right), C\left(y_{2}\right): \beta_{2} \\
\vdots & \vdots \\
\alpha_{2 n}: C\left(u_{2 n}\right), C\left(v_{2 n}\right) & C\left(x_{2 n}\right), C\left(y_{2 n}\right): \beta_{2 n}
\end{aligned}
$$

where α_{i} and β_{i} are two committed bits and C denotes commit.

- Bob imposes two random permutations $\pi_{\alpha}, \pi_{\beta}$ to Alice who permutes α_{i} using π_{α} and β_{i} using π_{β}.

$$
\begin{aligned}
C\left(u_{9}\right), C\left(v_{9}\right) & C\left(x_{2}\right), C\left(y_{2}\right) \\
C\left(u_{n}\right), C\left(v_{n}\right) & C\left(x_{7}\right), C\left(y_{7}\right) \\
\vdots & \vdots \\
C\left(u_{3}\right), C\left(v_{3}\right) & C\left(x_{6}\right), C\left(y_{6}\right)
\end{aligned}
$$

- Regardless of b, u_{i}, x_{i} and v_{i}, y_{i} are either identical or opposite. Alice will claim for the first half of the lines whether they are " $=$ " or " \neq ".

| $C\left(u_{9}\right), C\left(v_{9}\right)$ | $=$ | $C\left(x_{2}\right), C\left(y_{2}\right)$ |
| ---: | :--- | :--- | :--- |
| $C\left(u_{n}\right), C\left(v_{n}\right)$ | \neq | $C\left(x_{7}\right), C\left(y_{7}\right)$ |
| \vdots | | \vdots |
| $C\left(u_{41}\right), C\left(v_{41}\right)$ | $=$ | $C\left(x_{63}\right), C\left(y_{63}\right)$ |
| $C\left(u_{99}\right), C\left(v_{99}\right)$ | | $C\left(x_{n-9}\right), C\left(y_{n-9}\right)$ |
| $C\left(u_{2 n}\right), C\left(v_{2 n}\right)$ | | $C\left(x_{55}\right), C\left(y_{55}\right)$ |
| \vdots | | \vdots |
| $C\left(u_{3}\right), C\left(v_{3}\right)$ | | $C\left(x_{6}\right), C\left(y_{6}\right)$ |

for example:

$$
\begin{array}{rl}
b=b^{\prime}=0 & b=b^{\prime}=1 \\
0 \oplus 0=0 \oplus 0: u_{i}=x_{i}, v_{i}=y_{i}, & 0 \oplus 1=0 \oplus 1: u_{i}=x_{i}, v_{i}=y_{i}, \\
0 \oplus 0=1 \oplus 1: u_{i} \neq x_{i}, v_{i} \neq y_{i}, & 1 \oplus 0=0 \oplus 1: u_{i} \neq x_{i}, v_{i} \neq y_{i} .
\end{array}
$$

- For each line Bob randomly chooses to see the both left sides or both right sides, but not both sides, then Alice unveils them to Bob.

$C\left(u_{9}\right), U\left(v_{9}\right)$	$=$	$C\left(x_{2}\right), U\left(y_{2}\right)$
$U\left(u_{n}\right), C\left(v_{n}\right)$	\neq	$U\left(x_{7}\right), C\left(y_{7}\right)$
\vdots		\vdots
$C\left(u_{41}\right), U\left(v_{41}\right)$	$=$	$C\left(x_{63}\right), U\left(y_{63}\right)$
$C\left(u_{99}\right), C\left(v_{99}\right)$		$C\left(x_{n-9}\right), C\left(y_{n-9}\right)$
$C\left(u_{2 n}\right), C\left(v_{2 n}\right)$		$C\left(x_{55}\right), C\left(y_{55}\right)$
\vdots		\vdots
$C\left(u_{3}\right), C\left(v_{3}\right)$		$C\left(x_{6}\right), C\left(y_{6}\right)$

where U denotes unveil.

If Alice wants to cheat, suppose $\mathrm{b}=1, \mathrm{~b}^{\prime}=0$ and Alice cliams that $\alpha_{i}=\beta_{i}$, for example:

$$
\begin{aligned}
& b=1 \\
\alpha_{i}: & b^{\prime}=0 \\
& 0 \oplus 1=1 \oplus 1: \beta_{i}
\end{aligned}
$$

With $1 / 2$ probability, Bob will request to see the left sides and Alice unveils to him that $\left(u_{i}=0\right) \neq\left(x_{i}=1\right)$, then Bob rejects.

With $1 / 2$ probability, Bob will request to see the right sides and Alice unveils to him that $v_{i}=1=y_{i}$, then Bob accepts. So if $b \neq b^{\prime}, 1 / 2$ probability Bob will be cheated.

Therefore,
If $\mathrm{b}=\mathrm{b}^{\prime}, \operatorname{Pr}[$ accept $]=1$,
If $b \neq b^{\prime}, \operatorname{Pr}[$ accept $] \leq(1 / 2)^{n}$, at each line, if $b \neq b^{\prime}$, regardless of Alice's answer, the probability Bob finds out that Alice is cheating is $1 / 2$.

After a test is conclusive, Alice can construct a new valid commitment to represent both b and b^{\prime} using the untouched commitments:

$$
\begin{array}{r}
\operatorname{commit}\left(b, b^{\prime}\right): \\
C\left(u_{99}\right), C\left(v_{99}\right) \\
C\left(u_{2 n}\right), C\left(v_{2 n}\right) \\
\vdots \\
C\left(u_{3}\right), C\left(v_{3}\right) \\
C\left(x_{n-9}\right), C\left(y_{n-9}\right) \\
C\left(x_{55}\right), C\left(y_{55}\right) \\
\vdots \\
C\left(x_{6}\right), C\left(y_{6}\right)
\end{array}
$$

