COMP-647B Advanced Cryptography

Problem set \#1

due on Tuesday January 30, 2007

1. MA vs AM

Prove that $\mathbf{M A} \subseteq \mathbf{A M}$.

2. Code equivalence in ZK.

We say that two binary matrices G, G ' generate two equivalent linear codes $C=\operatorname{span}(G)$ and $C^{\prime}=\operatorname{span}\left(G^{\prime}\right)$ if there exists a permutation matrix P (each row and column contain all " 0 " except for one " 1 ") and a base change matrix S (full rank) such that

$$
\mathrm{G}^{\prime}=\mathrm{SGP} .
$$

Give a perfect zero-knowledge interactive proof for the language

$$
\mathrm{L}_{\mathrm{eqv}}=\left\{\left(\mathrm{G}, \mathrm{G}^{\prime}\right) \mid \mathrm{G}, \mathrm{G}^{\prime} \text { generate equivalent linear codes }\right\} .
$$

3. Hamiltonian in ZK.

Give a computational zero-knowledge interactive proof for the Hamiltonian circuit problem under suitable computational assumption. (A directed graph G is Hamiltonian if its edges contain a circuit visiting each vertex exactly once.)

4. RSA integers in ZK.

4.A Let RSA be integers with exactly two distinct prime factors. Give a Zero-Knowledge interactive proof for the RSA numbers.

HINT:

We define RSA $=\{n \mid n=p q$ where p, q are distinct primes $\}$. You may use without proof the following two results:

Theorem 1. If $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{k}{ }^{\alpha_{\kappa}}$ (which is not a square) has exactly k distinct prime factors then exactly 2^{1-k} of the x in $\mathrm{Z}_{n}{ }^{*}$ with Jacobi symbol +1 are quadratic residues $\bmod n$.

Theorem 2. Let n be a composite number. If $n=p_{1} p_{2} \ldots p_{k}$ is a product of distinct primes then every x in $\mathrm{Z}_{n}{ }^{*}$ has an $n^{\text {th }}$ root \bmod n, i.e. a y such that $x \equiv y^{n} \bmod n$. On the contrary, if $p_{i}=p_{j}$ for some $1 \leq i<j \leq n$, then at most half the x in $\mathrm{Z}_{n}{ }^{*}$ has an $n^{\text {th }}$ root $\bmod n$.

Construct two zero-knowledge proofs for the languages WRSA of Weak-RSA numbers and SF of square-free numbers:
$\mathbf{W R S A}=\left\{n \mid n=p^{\alpha} q^{\beta}\right.$ where p, q are distinct primes and $\left.\alpha, \beta>0\right\}$ $\mathbf{S F}=\left\{n \mid n=p_{1} p_{2} \ldots p_{k}\right.$ is a product of distinct primes $\}$

Notice that RSA $=\mathbf{W R S A} \cap \mathbf{S F}$.
4.B Finally, if we define
$\mathbf{B L U M}=\{n \mid n=p q$ where $p \equiv q \equiv 3 \bmod 4$, are distinct primes $\}$
then prove that BLUM has a statistical $\mathbf{Z K}$ interactive proof.

HINT:

Define the Weak-BLUM integers as

$$
\mathbf{W B L U M}=\left\{\mathrm{n} \mid-1 \text { is in } \mathrm{QNR}_{\mathrm{n}}[+1]\right\}
$$

Notice that $\mathbf{B L U M}=$ RSA $\cap \mathbf{W B L U M}$.

