A. **LONG DIVISION:**

1. Provide pseudo-code for the Long Division algorithm of a dividend \(E \) by a divisor \(D > 0 \) represented as arrays of digits (base ten) similar to algorithm 1 (grade school addition) and algorithm 2 (grade school multiplication). Your algorithm may terminate when the remainder gets smaller than \(D \). At this point, it should output both the quotient \(Q \) and the remainder \(R \) of division. **Example:**

```
<table>
<thead>
<tr>
<th>E</th>
<th>1</th>
<th>7</th>
<th>2</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Q</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
```

2. Provide pseudo-code for the Long Division algorithm of a remainder \(R \) by a divisor \(D > R \) represented as arrays of digits (base ten). Your algorithm should output both the tail \(T \) and loop \(L \) as described above.

If you consider the sequence of remainders \(R_1=R, R_2,... \) occurring during the division of \(R \) by \(D \), the loop part extends between the first and second appearances of the earliest repeating remainder, while the tail part is before the loop. More precisely, if \(i \) is the least index for which there exists an index \(j < i \) such that \(R_i=R_j \), then \(T = T_1,...,T_{j-1} \) is produced while handling \(R_1,...,R_{j-1} \) and \(L = L_1,...,L_{i-j} \) is produced while handling \(R_j,...,R_{i-1} \). **Example:**

```
<table>
<thead>
<tr>
<th>R</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
</tr>
</tbody>
</table>
```
3. Assess the running time of the algorithm you provided in part 2 as a function of the size of the input R,D (measured in digits). For that purpose establish the maximum size of T and L as a function of the input-size. Argue that this representation is not a very good idea if you wish to represent rational numbers with absolute precision.

4. Consider the problem you encountered in part 2: your algorithm receives a list of integers, one at a time, R_1, R_2, \ldots and it should find the first time an R_i comes up that has occurred previously, i.e. find the least i such that all the $R_1, R_2, \ldots, R_{i-1}$ are distinct but $R_i = R_j$ for some $1 \leq j < i$.

Describe an $O(i \log i)$ time algorithm to find the least such i. (The Master Theorem may come handy in establishing the running-time of your algorithm.)

Note — running time is not a function of the global number of elements but only a function of the position of the first repetition. Your algorithm does not need to stop at the i^{th} integer but total time is limited to $O(i \log i)$.

Hint: Combine mergesort, and binary search…

5. The exact situation in part 4 is slightly better than the general case: in the calculation of the remainders, not only will $R_i = R_j$ for some $1 \leq j < i$, but from that point on $R_{i+k} = R_{j+k}$ for all $k \geq 0$. Floyd defined a linear-time algorithm to find, in this context, the least i such that all the $R_1, R_2, \ldots, R_{i-1}$ are distinct but $R_i = R_j$ for some $1 \leq j < i$. Let $R_1 = R$ be the initial remainder.

$$T=H=1 \quad (T \text{ stands for tortoise and } H \text{ for hare})$$

REPEAT
 $T = T+1; \ H = H+2$
UNTIL $R_T = R_H$

$T=1$
REPEAT
 $T = T+1; \ H = H+1$
UNTIL $R_T = R_H$
REPEAT
 $T = T+1$
UNTIL $R_T = R_H$
RETURN T

Prove that this algorithm will return the correct value of i and that it does so in linear time (with respect to i).