Chapter 5

Divide and Conquer

CLRS 4.3
Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size \(n \) into two equal parts of size \(\frac{1}{2}n \).
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: \(n^2 \).
- Divide-and-conquer: \(n \log n \).

Divide et impera.
Veni, vidi, vici.
- Julius Caesar
5.1 Mergesort
Sorting

Sorting. Given \(n \) elements, rearrange in ascending order.

Obvious sorting applications.
- List files in a directory.
- Organize an MP3 library.
- List names in a phone book.
- Display Google PageRank results.

Problems become easier once sorted.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.

Non-obvious sorting applications.
- Data compression.
- Computer graphics.
- Interval scheduling.
- Computational biology.
- Minimum spanning tree.
- Supply chain management.
- Simulate a system of particles.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

...
Mergesort

Mergesort.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

<table>
<thead>
<tr>
<th>ALGORM</th>
<th>ITHMS</th>
<th>divide</th>
<th>O(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGOR</td>
<td>ITHMS</td>
<td>sort</td>
<td>2T(n/2)</td>
</tr>
<tr>
<td>AGLOR</td>
<td>HIMST</td>
<td>merge</td>
<td>O(n)</td>
</tr>
<tr>
<td>AGHILMORS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrod, 1969]

using only a constant amount of extra storage
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

\[
\begin{array}{cccccc}
A & G & L & O & R & \\
\end{array}
\]

\[
\begin{array}{cccccc}
H & I & M & S & T & \\
\end{array}
\]

\[
\begin{array}{cccccc}
A & G & & & & \\
\end{array}
\]

auxiliary array
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

![Diagram showing merging process with auxiliary array]
Merging

Merge.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

![Diagram showing merging process with auxiliary array](image-url)
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

first half exhausted

smallest

A G L O R H I M S T

A G H I L M O R S auxiliary array
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

![Diagram of merging process]

first half exhausted

smallest

auxiliary array
Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

```
     A  G  L  O  R
first half exhausted

     H  I  M  S  T
second half exhausted

     A  G  H  I  L  M  O  R  S  T
auxiliary array
```
A Useful Recurrence Relation

Def. \(T(n) = \) number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T(\lceil n/2 \rceil) & \text{solve left half} \\
T(\lfloor n/2 \rfloor) & \text{solve right half} \\
n & \text{merging}
\end{cases}
\]

Solution. \(T(n) \in O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\leq \) with \(= \).
Proof by Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{\text{sorting both halves}} + \frac{n}{\text{merging}} & \text{otherwise}
\end{cases} \]

\[T(n) \]

\[T(n/2) \quad \text{and} \quad T(n/2) \]

\[T(n/4) \quad \text{and} \quad T(n/4) \quad \text{and} \quad T(n/4) \quad \text{and} \quad T(n/4) \]

\[T(2) \quad \text{and} \quad T(2) \]

\[\log_2 n \]

\[n \log_2 n \]
Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

Proof by Induction

Pf. (by induction on n)

- **Base case:** $n = 1$.
- **Inductive hypothesis:** $T(n) = n \log_2 n$.
- **Goal:** show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

$$= 2n \log_2 n + 2n$$

$$= 2n \log_2 (2n) - 1 + 2n$$

$$= 2n \log_2 (2n)$$
Claim. If \(T(n) \) satisfies the following recurrence, then \(T(n) \leq n \lceil \lg n \rceil \).

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\left\lfloor n/2 \right\rfloor\right) + T\left(\left\lceil n/2 \right\rceil\right) + n & \text{otherwise}
\end{cases}
\]

\(\log_2 n \)

Pf. (by induction on \(n \))

- Base case: \(n = 1 \). \(T(1) = 0 = 1 \lceil \lg 1 \rceil \).
- Define \(n_1 = \lceil n / 2 \rceil \), \(n_2 = \lfloor n / 2 \rfloor \).
- Induction step: Let \(n \geq 2 \), assume true for 1, 2, \ldots, \(n-1 \).

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \lg n_1 \rceil + n_2 \lfloor \lg n_2 \rfloor + n \\
\leq n_1 \lceil \lg n_2 \rceil + n_2 \lfloor \lg n_2 \rfloor + n \\
= n \lfloor \lg n_2 \rfloor + n \\
\leq n(\lfloor \lg n \rfloor - 1) + n \\
= n \lceil \lg n \rceil
\]

\[
n_2 = \left\lfloor n/2 \right\rfloor \\
\leq \left\lfloor 2^{\lceil \lg n \rceil} / 2 \right\rfloor \\
= 2^{\lceil \lg n \rceil} / 2 \\
\Rightarrow \lg n_2 \leq \left\lfloor \lg n \right\rfloor - 1
\]
5.5 Integer Multiplication
Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a + b$.
- $\Theta(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$.
- Straightforward solution: $\Theta(n^2)$ bit operations.
Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

- Multiply four \(\frac{1}{2} n \)-digit integers.
- Add two \(\frac{1}{2} n \)-digit integers, and shift to obtain result.

\[
\begin{align*}
x &= 2^{n/2} \cdot x_1 + x_0 \\
y &= 2^{n/2} \cdot y_1 + y_0 \\
xy &= (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) = 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_1y_0 + x_0y_1) + x_0y_0
\end{align*}
\]

\[
T(n) = 4T(n/2) + \Theta(n) \quad \Rightarrow \quad T(n) \in \Theta(n^2)
\]

assumes n is a power of 2
Proof by Telescoping

Claim.

\[
T(n) = \begin{cases}
4T(n/2) & \text{recursive calls} \\
\Theta(n) & \text{add, shift}
\end{cases} \Rightarrow T(n) \in \Theta(n^2)
\]

assumes \(n \) is a power of 2

Pf. For \(n > 1 \):

\[
\frac{T(n)}{n} = \frac{4T(n/2)}{n} + C
\]

\[
= 2 \frac{T(n/2)}{(n/2)} + C
\]

\[
= 2 \left[2 \frac{T(n/4)}{(n/4)} + C \right] + C
\]

\[
= 4 \frac{T(n/4)}{(n/4)} + 2C + C
\]

\[
= 4 \left[2 \frac{T(n/8)}{(n/8)} + C \right] + 2C + C
\]

\[
= 8 \frac{T(n/8)}{(n/8)} + 4C + 2C + C
\]

\[
\vdots
\]

\[
= n \frac{T(1)}{1} + n/2 C + n/4 C + \ldots + 4C + 2C + C
\]

\[
= C \left(n/2 + n/4 + \ldots + 2 + 1 \right) = C(n-1).
\]
Karatsuba Multiplication

To multiply two n-digit integers:
- Add two \(\frac{1}{2}n \) digit integers.
- Multiply three \(\frac{1}{2}n \)-digit integers.
- Add, subtract, and shift \(\frac{1}{2}n \)-digit integers to obtain result.

\[
\begin{align*}
x &= 2^{n/2} \cdot x_1 + x_0 \\
y &= 2^{n/2} \cdot y_1 + y_0 \\
x y &= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0 \\
&= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0
\end{align*}
\]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in \(O(n^{1.585}) \) bit operations.

\[
T(n) \leq \underbrace{T([n/2]) + T([n/2]) + T(1+[n/2])}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}}
\Rightarrow T(n) \in O(n^{\log_2 3}) \in O(n^{1.585})
\]
Karatsuba: Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
3T(n/2) + n & \text{otherwise}
\end{cases} \]

\[T(n) = \sum_{k=0}^{\log_2 n} n \left(\frac{3}{2}\right)^k = n \left(\frac{3^{1+\log_2 n}}{3^2 - 1}\right) - 1 = 3n^{\log_2 3} - 2 \]

\[\sum_{k=0}^{n-1} ar^k = a \frac{1 - r^n}{1 - r} \]
Karatsuba Multiplication

Generalization: $O(n^{1+\varepsilon})$ for any $\varepsilon > 0$.

Best known: $(n \log n) 2^{O(\log^* n)}$

where $\log^*(x) = \begin{cases} 0 & \text{if } x \leq 1 \\ 1 + \log^*(\log x) & \text{if } x > 1 \end{cases}$

Conjecture: $\Omega(n \log n)$ but not proven.
CLRS 4.3 Master Theorem
Master Theorem from CLRS 4.3

Used for many divide-and-conquer recurrences

\[T(n) = aT(n/b) + f(n) \]

where \(a \geq 1, b > 1, \) and \(f(n) > 0. \)

\[a = \text{(constant) number of sub-instances}, \]
\[b = \text{(constant) size ratio of sub-instances}, \]
\[f(n) = \text{time used for dividing and recombining.} \]

Based on the \textbf{master theorem} (Theorem 4.1).

Compare \(n^{\log_b a} \) vs. \(f(n) \):
Proof by Recursion Tree

Used for many divide-and-conquer recurrences

\[T(n) = aT(n/b) + f(n) \]

where \(a \geq 1, b > 1, \) and \(f(n) > 0. \)
\[T(n) = aT(n/b) + f(n) \]

Case 1: \(f(n) \in O(n^L) \) for some constant \(L < \log_b a \).

Solution: \(T(n) \in \Theta(n^{\log_b a}) \)

Case 2: \(f(n) \in \Theta(n^{\log_b a \log^k n}) \), for some \(k \geq 0 \).

Solution: \(T(n) \in \Theta(n^{\log_b a \log^{k+1} n}) \)

Case 3: \(f(n) \in \Omega(n^L) \) for some constant \(L > \log_b a \)
and \(f(n) \) satisfies the regularity condition \(af(n/b) \leq cf(n) \) for some \(c<1 \) and all large \(n \).

Solution: \(T(n) \in \Theta(f(n)) \)
Master Theorem

\[T(n) = aT(n/b) + f(n) \]
where \(a \geq 1, b > 1, \) and \(f(n) > 0. \)

Case 1: \(f(n) \in O(n^L) \) for some constant \(L < \log_b a. \) (\(f(n) \) is polynomially smaller than \(n^{\log_b a}. \))

Solution: \(T(n) \in \Theta(n^{\log_b a}) \)
(Intuitively: cost is dominated by leaves.)
Master Theorem

Case 1: \(f(n) \in O(n^L) \) for some constant \(L < \log_b a \).

Solution: \(T(n) \in \Theta(n^{\log_b a}) \)

\[
T(n) = 5T(n/2) + \Theta(n^2)
\]

Compare \(n^{\log_2 5} \) vs. \(n^2 \).

Since \(2 < \log_2 5 \) use Case 1

Solution: \(T(n) \in \Theta(n^{\log_2 5}) \)
Master Theorem

\[T(n) = aT(n/b) + f(n) \]

where \(a \geq 1, b > 1, \) and \(f(n) > 0. \)

Simple Case 2: \(f(n) \in \Theta(n^{\log_b a}). \)

Solution: \(T(n) \in \Theta(n^{\log_b a \log n}) \)
Master Theorem

\[T(n) = aT(n/b) + f(n) \]

where \(a \geq 1\), \(b > 1\), and \(f(n) > 0\).

Case 2: \(f(n) \in \Theta(n^{\log_b a \log^k n})\), for some \(k \geq 0\).

Solution: \(T(n) \in \Theta(n^{\log_b a \log^{k+1} n})\)

(Intuitively: cost is \(n^{\log_b a \log^k n}\) at each level, and there are \(\Theta(\log n)\) levels.)
Case 2: \(f(n) \in \Theta(n^{\log_b a} \log^k n) \), for some \(k \geq 0 \).

Solution: \(T(n) \in \Theta(n^{\log_b a} \log^{k+1} n) \)

\[
T(n) = 27T(n/3) + \Theta(n^3 \log n)
\]

Compare \(n^{\log_3 27} \) vs. \(n^3 \).

Since \(3 = \log_3 27 \) use Case 2

Solution: \(T(n) \in \Theta(n^3 \log^2 n) \)
Master Theorem

\[T(n) = aT(n/b) + f(n) \]

where \(a \geq 1, b > 1, \) and \(f(n) > 0. \)

Case 3: \(f(n) \in \Omega(n^L) \) for some constant \(L > \log_b a \)
and \(f(n) \) satisfies the regularity condition \(af(n/b) \leq cf(n) \) for some \(c<1 \) and all large \(n. \)

(\(f(n) \) is polynomially greater than \(n^{\log_b a}. \))

Solution: \(T(n) \in \Theta(f(n)) \)

(Intuitively: cost is dominated by root.)
Master Theorem

Case 3: \(f(n) \in \Omega(n^L) \) for some constant \(L > \log_b a \)
and \(f(n) \) satisfies the regularity condition \(af(n/b) \leq cf(n) \) for some \(c<1 \) and all large \(n \).

Solution: \(T(n) \in \Theta(f(n)) \)

What’s with the Case 3 regularity condition?

- Generally not a problem.
- It always holds whenever \(f(n) = n^k \) and \(f(n) \in \Omega(n^{\log_b a+\varepsilon}) \) for constant \(\varepsilon > 0 \).
Master Theorem

Case 3: $f(n) \in \Omega(n^L)$ for some constant $L > \log_b a$ and $f(n)$ satisfies the regularity condition $af(n/b) \leq cf(n)$ for some $c<1$ and all large n.

Solution: $T(n) \in \Theta(f(n))$

\[
T(n) = 5T(n/2) + \Theta(n^3)
\]

Compare $n^\log_2 5$ vs. n^3.

Since $3 > \log_2 5$ use **Case 3**

\[
a f(n/b) = 5(n/2)^3 = 5/8 \ n^3 \leq \ c n^3, \text{ for } c = 5/8
\]

Solution: $T(n) \in \Theta(n^3)$
Master Theorem

\[T(n) = 27T(n/3) + \Theta(n^{3}/\log n) \]

Compare \(n^{\log_{3} 27} \) vs. \(n^{3} \).

Since \(3 = \log_{3} 27 \) use Case 2

but \(n^{3}/\log n \in \textbf{not} \ \Theta(n^{3} \log^{k} n) \) for \(k \geq 0 \)

Cannot use Master Method.
Matrix Multiplication
Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute $C = AB$.

Brute force. $\Theta(n^3)$ arithmetic operations.

Fundamental question. Can we improve upon brute force?
Matrix Multiplication: Warmup

Divide-and-conquer.

- Divide: partition A and B into $\frac{1}{2}n$-by-$\frac{1}{2}n$ blocks.
- Conquer: multiply $8\frac{1}{2}n$-by-$\frac{1}{2}n$ recursively.
- Combine: add appropriate products using 4 matrix additions.

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \times \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
\begin{align*}
C_{11} &= (A_{11} \times B_{11}) + (A_{12} \times B_{21}) \\
C_{12} &= (A_{11} \times B_{12}) + (A_{12} \times B_{22}) \\
C_{21} &= (A_{21} \times B_{11}) + (A_{22} \times B_{21}) \\
C_{22} &= (A_{21} \times B_{12}) + (A_{22} \times B_{22})
\end{align*}
\]

\[
T(n) = 8T\left(n/2\right) + \Theta(n^2) \implies T(n) \in \Theta(n^3)
\]
Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \times \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
P_1 = A_{11} \times (B_{12} - B_{22})
\]
\[
P_2 = (A_{11} + A_{12}) \times B_{22}
\]
\[
P_3 = (A_{21} + A_{22}) \times B_{11}
\]
\[
P_4 = A_{22} \times (B_{21} - B_{11})
\]
\[
P_5 = (A_{11} + A_{22}) \times (B_{11} + B_{22})
\]
\[
P_6 = (A_{12} - A_{22}) \times (B_{21} + B_{22})
\]
\[
P_7 = (A_{11} - A_{21}) \times (B_{11} + B_{12})
\]

- 7 multiplications.
- 18 = 10 + 8 additions (or subtractions).
Strassen: Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
7T(n/2) + n^2 & \text{otherwise}
\end{cases} \]

\[T(n) = \sum_{k=0}^{\log_2 n} n^2 \left(\frac{7}{4} \right)^k = n^2 \frac{\left(\frac{7}{4} \right)^{1+\log_2 n} - 1}{\frac{7}{4} - 1} \approx \frac{7}{3} n^{\log_2 7}. \]
Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)
- **Divide:** partition A and B into $\frac{1}{2}n$-by-$\frac{1}{2}n$ blocks.
- **Compute:** 14 $\frac{1}{2}n$-by-$\frac{1}{2}n$ matrices via 10 matrix additions.
- **Conquer:** multiply 7 $\frac{1}{2}n$-by-$\frac{1}{2}n$ matrices recursively.
- **Combine:** 7 products into 4 terms using 18 matrix additions.

Analysis.
- Assume n is a power of 2.
- $T(n) = \#$ arithmetic operations.

$$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2) \quad \Rightarrow \quad T(n) \in \Theta(n^{\log_2 7}) \in O(n^{2.81})$$
Fast Matrix Multiplication in Practice

Implementation issues.
- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n = 128$.

Common misperception: "Strassen is only a theoretical curiosity."
- Advanced Computation Group at Apple Computer reports 8x speedup on G4 Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $Ax=b$, determinant, eigenvalues, and other matrix ops.
Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969] \(\Theta(n^\log_2 7) \in O(n^{2.81}) \)

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971] \(\Theta(n^\log_2 6) \in O(n^{2.59}) \)

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible. \(\Theta(n^\log_3 21) \in O(n^{2.77}) \)

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980] \(\Theta(n^\log_{70} 143640) \in O(n^{2.80}) \)

Decimal wars.
- December, 1979: \(O(n^{2.521813}) \).
- January, 1980: \(O(n^{2.521801}) \).
Fast Matrix Multiplication in Theory

Best known. $O(n^{2.376})$ [Coppersmith-Winograd, 1987-2010.]

In 2010, Andrew Stothers gave an improvement to the algorithm $O(n^{2.374})$. In 2011, Virginia Williams combined a mathematical short-cut from Stothers' paper with her own insights and automated optimization on computers, improving the bound $O(n^{2.3728642})$. In 2014, François Le Gall simplified the methods of Williams and obtained an improved bound of $O(n^{2.3728639})$.

Conjecture. $O(n^{2+\varepsilon})$ for any $\varepsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical (hidden constant gets worse).
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.

- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer**: find closest pair in each side recursively.
Closest Pair of Points

Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. — seems like $\Theta(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.

δ = min(12, 21)
Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < \(\delta\).

- Observation: only need to consider points within \(\delta\) of line \(L\).
- Sort points in \(2\delta\)-strip by their \(y\) coordinate.
- Only check distances of those within 11 positions in sorted list!

\[\delta = \min(12, 21)\]
Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta) = \delta$.

Fact. Still true if we replace 12 with 7.

Scan points in y-order and compare distance between each point and next 11 neighbours. If any of these distances is less than δ, update δ.

Closest Pair of Points
Closest Pair of Points

Smallest-Dist(p₁, ..., pₙ) {

 if n=2 then return dist(p₁,p₂)

 Compute separation line L such that half the points are on one side and half on the other side.

 δ’ = Smallest-Dist(left half)
 δ’’ = Smallest-Dist(right half)
 δ = min(δ’,δ’’)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbours. If any of these distances is less than δ, update δ.

 return δ.
}
Closest-Pair\((p_1, ..., p_n)\) {

 if \(n=2\) then return \(dist(p_1, p_2), p_1, p_2\)

 Compute separation line \(L\) such that half the points
 are on one side and half on the other side.

 \(\delta', p', q' = \text{Closest-Pair(left half)}\)
 \(\delta'', p'', q'' = \text{Closest-Pair(right half)}\)
 \(\delta, p, q = \min(\delta', \delta'') (p', q', p'', q'')\)

 Delete all points further than \(\delta\) from separation line \(L\)

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between
 each point and next 11 neighbours. If any of these
 distances is less than \(\delta\), update \(\delta, p, q\).

 return \(\delta, p, q\).
}
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq 2T\left(\frac{n}{2}\right) + O(n \log n) \implies T(n) \in O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. First sort all points according to \(x \) coordinate before algo. Don’t sort points in strip from scratch each time.
 - Each recursion returns a list: all points sorted by \(y \) coordinate.
 - Sort by merging two pre-sorted lists.

\[T(n) \leq 2T\left(\frac{n}{2}\right) + O(n) \implies T(n) \in O(n \log n) \]
Beyond the Master Theorem
Median Finding
Median Finding

Median Finding. Given \(n \) distinct numbers \(a_1, \ldots, a_n \), find \(i \) such that

\[
|\{ j : a_j < a_i \}| = \lfloor n-1 / 2 \rfloor \quad \text{and} \quad |\{ j : a_j > a_i \}| = \lceil n-1 / 2 \rceil.
\]

<table>
<thead>
<tr>
<th>22</th>
<th>31</th>
<th>44</th>
<th>7</th>
<th>12</th>
<th>19</th>
<th>20</th>
<th>35</th>
<th>3</th>
<th>40</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>27</td>
<td>31</td>
<td>35</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Selection

Given n distinct numbers a_1, \ldots, a_n, and index k, find i such that

$$\left|\{ j : a_j < a_i \}\right| = k-1 \text{ and } \left|\{ j : a_j > a_i \}\right| = n-k.$$

$k=4$

<table>
<thead>
<tr>
<th>22</th>
<th>31</th>
<th>44</th>
<th>7</th>
<th>12</th>
<th>19</th>
<th>20</th>
<th>35</th>
<th>3</th>
<th>40</th>
<th>27</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>7</th>
<th>12</th>
<th>19</th>
<th>20</th>
<th>22</th>
<th>27</th>
<th>31</th>
<th>35</th>
<th>40</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Algorithm partition(A, start, stop)

Input: An array A, indices start and stop.

pivot ← A[stop]
left ← start
right ← stop - 1

while left ≤ right do
 while (left ≤ right and A[left] < pivot) do left ← left + 1
 while (left ≤ right and A[right] ≥ pivot) do right ← right - 1
 if (left < right) then exchange A[left] ↔ A[right]

return left
Example of execution of partition

\[A = [6 \ 3 \ 7 \ 3 \ 2 \ 5 \ 7 \ 5] \quad \text{pivot} = 5 \]

\[A = [6 \ 3 \ 7 \ 3 \ 2 \ 5 \ 7 \ 5] \quad \text{swap 6, 2} \]

\[A = [2 \ 3 \ 7 \ 3 \ 6 \ 5 \ 7 \ 5] \]

\[A = [2 \ 3 \ 7 \ 3 \ 6 \ 5 \ 7 \ 5] \quad \text{swap 7,3} \]

\[A = [2 \ 3 \ 3 \ 7 \ 6 \ 5 \ 7 \ 5] \]

\[A = [2 \ 3 \ 3 \ 7 \ 6 \ 5 \ 7 \ 5] \quad \text{swap 7, pivot} \]

\[A = [2 \ 3 \ 3 \ 5 \ 6 \ 5 \ 7 \ 7] \]
Selection from Median

Selection. Given \(n \) distinct numbers \(a_1, \ldots, a_n \), and index \(k \), find \(i \) such that:

\[
\left| \{ j : a_j < a_i \} \right| = k-1 \quad \text{and} \quad \left| \{ j : a_j > a_i \} \right| = n-k.
\]

\[
\text{Selection}(A, \text{start}, \text{stop}, k) \quad (\text{where start} \leq k \leq \text{stop})
\]

\[\begin{align*}
\text{Partition} & \quad \small{a_j < a_i} & \quad m & \quad i & \quad a_j > a_i \\
\text{if } k = m \text{ return } m
\end{align*}\]

\[\begin{align*}
\text{Selection}(A, \text{start}, m-1, k) & \quad \text{if } k < m \\
\text{Selection}(A, m+1, \text{stop}, k) & \quad \text{if } k > m
\end{align*}\]

\[\star\text{Median}(A, \text{start}, \text{stop}) = \text{Selection}(A, \text{start}, \text{stop}, \left\lceil \frac{\text{stop}-\text{start}}{2} \right\rceil)\]
Selection from Median

Selection. Given n distinct numbers a_1, \ldots, a_n, and index k, find i such that $|\{ j : a_j < a_i \}| = k-1$ and $|\{ j : a_j > a_i \}| = n-k$.

\[\text{Selection}(A, \text{start}, \text{stop}, k) \quad \text{(where } \text{start} \leq k \leq \text{stop}) \]

Median($A, \text{start}, \text{stop}$) $= \text{Selection}(A, \text{start}, \text{stop}, \lceil \text{stop}-\text{start} / 2 \rceil)$
Selection from Median

Selection. Given \(n \) distinct numbers \(a_1, \ldots, a_n \), and index \(k \), find \(i \) such that
\[
|\{ j : a_j < a_i \}| = k-1 \quad \text{and} \quad |\{ j : a_j > a_i \}| = n-k.
\]

\[
\text{Selection}(A, \text{start}, \text{stop}, k) \quad (\text{where} \, \text{start} \leq k \leq \text{stop})
\]

if \(k = m \) return \(m \)

\[
\text{Selection}(A, \text{start}, m-1, k) \quad \text{Selection}(A, m+1, \text{stop}, k)
\]

\[
* \text{Median}(A, \text{start}, \text{stop}) = \text{Selection}(A, \text{start}, \text{stop}, \lceil \text{stop-start} / 2 \rceil)
\]
Selection from Median

Select\((a_1, \ldots, a_n, k) \) \{

 copy \(a_1, \ldots, a_n \) into \(A[1] \ldots A[n] \)
 \textbf{return} \ SelectREC(A,1,n,k)
\}

SelectREC(A,start,stop,k) \{

 if start=stop then \textbf{return} \ stop

 i = \text{Median}(A,start,stop)
 \textbf{\{\textit{* = Selection}(A,start,stop,\lceil stop-start / 2 \rceil)\}}

 exchange \(A[i] \) with \(A[stop] \)
 m = \text{partition}(A,start,stop)

 if k=m then \textbf{return} \ m
 if k<m then \textbf{return} \ SelectREC(A,start,m-1,k)
 \textbf{else return} \ SelectREC(A,m+1,stop,k).
\}
Selection

Selection. Given n distinct numbers \(a_1, \ldots, a_n \), and index \(k \), find \(i \) such that \(|\{ j : a_j < a_i \}| = k-1 \) and \(|\{ j : a_j > a_i \}| = n-k\).

Selection(\(A, \text{start}, \text{stop}, k \)) (where \(\text{start} \leq k \leq \text{stop} \))

Partition

if \(k = m \) return \(m \)

if \(k < m \) Selection(\(A, \text{start}, m-1, k \))

if \(k > m \) Selection(\(A, m+1, \text{stop}, k \))
Selection from Pseudo-Median

Select\((a_1, \ldots, a_n, k)\)

\[
\text{copy } a_1, \ldots, a_n \text{ into } A[1] \ldots A[n]
\]

\[
\text{return } \text{SelectREC}(A,1,n,k)
\]

SelectREC\((A,\text{start},\text{stop},k)\)

\[
\text{if start}=\text{stop} \text{ then return stop}
\]

\[
i = \text{PseudoMedian}(A,\text{start},\text{stop})
\]

\[
\text{exchange } A[i] \text{ with } A[\text{stop}]
\]

\[
m = \text{partition}(A,\text{start},\text{stop})
\]

\[
\text{if } k=m \text{ then return } m
\]

\[
\text{if } k<m \text{ then return } \text{SelectREC}(A,\text{start},m-1,k)
\]

\[
\text{else return } \text{SelectREC}(A,m+1,\text{stop},k).
\]
PseudoMedian(A,start,stop) {

 for i=0 to ⌈(stop-start / 5)⌉-1
 A[start+5*i+1],
 A[start+5*i+2],
 A[start+5*i+3],
 A[start+5*i+4])]

 m = SelectREC(B,1, ⌈(stop-start / 5)⌉, ⌈(stop-start / 10)⌉)

 find j such that A[j]=B[m]
 return j
}

Selection from Pseudo-Median
Selection. Given \(n \) distinct numbers \(a_1, \ldots, a_n \), and index \(k \), find \(i \) such that
\[
|\{ j : a_j < a_i \}| = k-1 \quad \text{and} \quad |\{ j : a_j > a_i \}| = n-k.
\]
Selection

Given \(n \) distinct numbers \(a_1, \ldots, a_n \), and index \(k \), find \(i \) such that

\[
\left| \{ j : a_j < a_i \} \right| = k-1 \quad \text{and} \quad \left| \{ j : a_j > a_i \} \right| = n-k.
\]

\[
T(n) \leq T\left(\left\lfloor \frac{n}{5} \right\rfloor \right) + \max \{ T\left(\left\lfloor \frac{3n}{10} \right\rfloor \right) \ldots T\left(\left\lfloor \frac{7n}{10} \right\rfloor \right) \} + \Theta(n)
\]

Solution: \(T(n) \in \Theta(n) \)
Selection

Given n distinct numbers a_1, \ldots, a_n, and index k, find i such that

$$\left| \{ j : a_j < a_i \} \right| = k-1 \text{ and } \left| \{ j : a_j > a_i \} \right| = n-k.$$

Solution: $T(n) \in \Theta(n)$

Assuming $T(i) \leq d$ for $1 \leq i \leq n$, $\Theta(n) \leq cn$

$$T(n+1) \leq T(\frac{n+1}{5}) + T(\frac{7(n+1)}{10}) + c(n+1)$$

$$\leq d(n+1)/5 + 7d(n+1)/10 + c(n+1)$$

$$= (2d+7d+10c)/10 (n+1)$$

$$= (9d+10c)/10 (n+1)$$

$$\leq d (n+1) \text{ as long as } (9d+10c)/10 \leq d, \text{ or equivalently } 10c \leq d.$$
Selection

Selection. Given n distinct numbers $a_1, ..., a_n$, and index k, find i such that

$$|\{ j : a_j < a_i \}| = k-1 \text{ and } |\{ j : a_j > a_i \}| = n-k.$$

$$T(n) \leq T\left(\frac{n}{5} \right) + T\left(\frac{7n}{10} \right) + \Theta(n)$$

Solution: $T(n) \in \Theta(n)$

example: $d=10c,$

Assuming $T(i) \leq 10c$ i for $1 \leq i \leq n$, $\Theta(n) \leq cn$

$T(n+1) \leq T(n+1 /5) + T(7/10 (n+1)) + c(n+1)$

$\leq 10c/5 (n+1) + 7\cdot 10c/10 (n+1) + c(n+1)$

$= (2c+7c+c)(n+1)$

$= 10c (n+1)$
Chapter 5

Divide and Conquer

CLRS 4.3