Chapter 3
Graphs
3.1 Basic Definitions and Applications
Undirected Graphs

Undirected graph. \(G = (V, E) \)
- \(V = \) nodes.
- \(E = \) edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: \(n = |V|, m = |E| \).

\[V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \} \]
\[E = \{ (1,2), (1,3), (2,3), (2,4), (2,5), \]
\[(3,5), (3,7), (3,8), (4,5), (5,6), (7,8) \} \]
\[n = 8 \]
\[m = 11 \]
Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
World Wide Web

Web graph.
- Node: web page.
- Edge: hyperlink from one page to another.
Ecological Food Web

Food web graph.

- Node = species.
- Edge = from prey to predator.

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ iff (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time. (Checking k pairs (u,v) will cost $\Theta(k)$ time.)
- Identifying all edges takes $\Theta(n^2)$ time.

\[n = \text{number of vertices} \]
Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to $m + n$.
- Checking if (u, v) is an edge takes $O(\text{deg}(u))$ time.
 (Checking k pairs (u,v) may cost up to $\Theta(kn)$ time.)
- Identifying all edges takes $\Theta(m + n)$ time.

$n = \text{number of vertices}$
Paths and Connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

![Graph Diagram]
Cycles

Def. A *cycle* is a path $v_1, v_2, \ldots, v_{k-1}, v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct.

-cycle $C = 1-2-4-5-3-1$
Trees

Def. An undirected graph is a **tree** if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has $n-1$ edges.
Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.
3.2 Graph Traversal
Connectivity

\textbf{s-t connectivity problem.} Given two nodes \(s\) and \(t\), is there a path between \(s\) and \(t\)?

\textbf{s-t shortest path problem.} Given two node \(s\) and \(t\), what is the length (number of edges) of the shortest path between \(s\) and \(t\)?

\textbf{Applications.}
- Facebook.
- Maze traversal.
- Erdos number.
- Fewest number of hops in a communication network.
Breadth First Search

BFS intuition. Explore outward from \(s \) in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.
- \(L_0 = \{ s \} \).
- \(L_1 \) = all neighbours of \(L_0 \).
- \(L_2 \) = all nodes that do not belong to \(L_0 \) or \(L_1 \), and that have an edge to a node in \(L_1 \).
- \(L_{i+1} \) = all nodes that do not belong to an earlier layer, and that have an edge to a node in \(L_i \).

Theorem. For each \(i \), \(L_i \) consists of all nodes at distance exactly \(i \) from \(s \). There is a path from \(s \) to \(t \) iff \(t \) appears in some layer.
Breadth First Search

BFS(s):

Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i = 0
Set the current BFS tree T = ∅

While L[i] is not empty
 Initialize an empty list L[i+1]
 For each node u ∈ L[i]
 Consider each edge (u, v) incident to u
 If Discovered[v] = false then
 Set Discovered[v] = true
 Add edge (u, v) to the tree T
 Add v to the list L[i+1]
 Endif
 Endfor
 Increment the layer counter i by one
Endwhile
Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.
Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency list representation.

Pf.
- Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\text{deg}(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \text{deg}(u) = 2m$

 Each edge (u, v) is counted exactly twice in sum: once in $\text{deg}(u)$ and once in $\text{deg}(v)$
Connected Component

Connected component. Find all nodes reachable from s.

![Graph Image]

Connected component containing node 1 = \{1, 2, 3, 4, 5, 6, 7, 8\}.
Connected Component

Connected component. Find all nodes reachable from \(s \).

\[R \text{ will consist of nodes to which } s \text{ has a path} \]

Initially \(R = \{s\} \)

While there is an edge \((u, v)\) where \(u \in R \) and \(v \notin R \)

Add \(v \) to \(R \)

Endwhile

Theorem. Upon termination, \(R \) is the connected component containing \(s \).

- BFS = explore in order of distance from \(s \).
- DFS = explore in a different way.
Chapter 3
Graphs

CLRS 12-13

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
3.4 Testing Bipartiteness
Bipartite Graphs

Def. An undirected graph $G = (V, E)$ is bipartite if the nodes can be coloured red or blue such that every edge has one red and one blue end.

Applications.
- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

![A diagram of a bipartite graph](attachment:image.png)
Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)

- Before attempting to design an algorithm, we need to understand the structure of bipartite graphs.

Diagram:

- A bipartite graph G
- Another drawing of G
Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-colour the odd cycle, let alone G.

![Bipartite Graph](image1.png)
bipartite
(2-colorable)

![Not Bipartite Graph](image2.png)
not bipartite
(not 2-colorable)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Case (i)

Case (ii)
Bipartite Graphs

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in the same layer.
- By above property, this implies all edges join nodes on adjacent layers.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = \text{lca}(x, y) = \text{lowest common ancestor}^*.$
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path* from y to z, then path* from z to x.
- Its length is $1 + (j-i) + (j-i)$, which is odd.

Consider only edges of the BFS tree.
Corollary. A graph G is bipartite iff it contains no odd length cycle.
3.5 Connectivity in Directed Graphs
Directed Graphs

Directed graph. $G = (V, E)$
- Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
Graph Search

Directed reachability. Given a node \(s \), find all nodes reachable from \(s \).

Directed \(s \)-\(t \) shortest path problem. Given two node \(s \) and \(t \), what is the length of the shortest path between \(s \) and \(t \)?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page \(s \). Find all web pages linked from \(s \), either directly or indirectly.
Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.
Pf. ⇐ Path from u to v: concatenate u-s path with s-v path.
 Path from v to u: concatenate v-s path with s-u path. □
 ok if paths overlap
Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

![Strong Connectivity Diagram](image-url)
3.6 DAGs and Topological Ordering
3.6 DAGs and Topological Ordering

What is the connection between computer science and algorithms?

I study CS and I hear a lot if you want to be a good programmer you must be good at algorithm, why? and if it’s true what algorithm should I read or study?

Thomas Cormen, The C in CLRS.

Written Sep 12 · Upvoted by Siddarth Sampangi, UCSD B.S. in CS ’14; UMass Amherst M.S. in CS ’16, Bill Poucher, Baylor CS prof, ICPC Exec Director, Software: energy, synthetic genetics, etc., and Rohit RK

I’ll tell you a little story. A true story.
In the late 1970s and early 1980s, I worked at a startup that made systems for computer-aided design. Users could define parts and store them in a library of parts. Each part could include another part by reference, so that if you changed the definition of a part, then all of its uses would update automatically. Part A could include a reference to part B, which could include a reference to part C, and so on. Circular references were not allowed, as a part could not include itself.

We had a customer that wanted the library of parts written out to tape so that each part appeared on the tape before any other part that used it. I was the only person at the company who knew that what this customer wanted was a topological sort of a directed acyclic graph. I knew that there was an efficient algorithm for this problem, and I knew where I’d seen it (in Knuth). I didn’t remember the details of the algorithm, and so I went to the library, got a copy of Knuth, and implemented the algorithm.

People at the company thought I was a god for knowing how to solve the problem, and how to solve it efficiently.

That’s why you want to know about algorithms.
Directed Acyclic Graphs

Def. A DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A topological order of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, ..., v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).
Precedence Constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.
- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\).
- Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i in C; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. ▪

![Diagram of directed acyclic graph with nodes $v_1, v_i, \ldots, v_j, v_n$ and edges indicating the directed cycle C. The supposed topological order is v_1, \ldots, v_n.](image-url)
Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.
Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no incoming edges.
- $G - \{ v \}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G - \{ v \}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G - \{ v \}$ in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{v\}$ and append this order after v
Topological Ordering Algorithm: Example

Topological order:
Topological Ordering Algorithm: Example

Topological order: \(v_1 \)
Topological Ordering Algorithm: Example

Topological order: v_1, v_2
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4 \)
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3, v_4, v_5
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4, v_5, v_6 \)
Topological Ordering Algorithm: Example

Topological order: $v_1, v_2, v_3, v_4, v_5, v_6, v_7$.

Diagram representation with nodes $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ and directed edges showing the topological order.
Topological Sorting Algorithm: Running Time

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{v\}$
and append this order after v

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.
- Maintain the following information:
 - for each node w, $count[w] = \text{number of remaining incoming edges}$
 - $S = \text{set of remaining nodes with no incoming edges}$
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $count[w]$ for all edges from v to w, and
 add w to S if $count[w]$ hits 0
 - this is $O(1)$ per edge ■
Chapter 3
Graphs