
Chapter 2

Interactive Proofs

An Interactive Proof is a protocol between two parties 1 a prover P and a veryfier V where P
proves to V some assertion: that the string x belongs to some language L.

Take the problem of Graph-Isomorphism (G-ISO). Let G0 = 〈V,E0〉 and G1 = 〈V,E1〉 be two
undirected graphs, where V is a set of vertices and Ei is a set of edges between the vertices of V .
Furthermore |E0| = |E1|.
We say two graphs are isomorphic if and only if there exists a permutation Π of V such that for all
vertices u and v in V , the edge (u, v) belongs to E0 if and only if the edge (Π(u),Π(v)) belongs to
E1. We shall then write G0 ≈ G1 or G1 = Π(G0).

Let P and V be two Turing machines, then figure 2.1 is a protocol that lets the prover P prove to
the verifier V that G0 and G1 are isomorphic.

G0, G1

P V

-Π

V verifies that
G1 = Π(G0).
V accepts if so
V rejects otherwise.

Protocol 2.1: An IP protocol for Graph Isomorphism

Definition 1 (Interactive Proof) A pair of Turing machines P and V , where machine P has
no time or space limitation and machine V is probabilistic-polynomial time (PPT), constitute an
IP system for the language L if the interaction between the two machines has the two following
properties:

Completeness: for all x ∈ L

Pr[V accepts x after interacting with P ] >
2

3
(2.1)

Soundness: for all x 6∈ L and all P ′

Pr[V accepts x after interacting with P ′] 6
1

3
. (2.2)

1Normally considered to be Turing Machines
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14 CHAPTER 2. INTERACTIVE PROOFS

A protocol is complete when the prover P can convince with high probability a verifier V of the
veracity of the assertion x ∈ L if in fact x ∈ L. In other words, the protocol is actually useful at
proving to V that x ∈ L. On the other hand, a protocol is sound when it ensures that the prover
P cannot abuse V ’s gullibility. That is, if x is not in L, then with high probability, if V follows the
protocol, V will not believe the prover, whatever the prover does.

The set of languages for which there exists an Interactive Proof will be called IP. Obviously, G-ISO
is in IP. The language G-ISO being in NP, there exists a witness (the permutation Π) that P can
give to V and that V can verify all by himself. The same reasoning holds for all languages in NP,
hence NP ⊆ IP.

The problem of Graph-NonIsomorphism (GNI) is a more interesting example of an IP system as
it is not known to be in NP (it is believed that no witness can be provided to the verifier by the
prover). Two graphs, G0 and G1 are said to be non-isomorphic if no permutation exists such that
G1 = Π(G0). Figure 2.2 shows an IP protocol for Graph-nonisomophism. In that Protocol, if the
two graphs G0 and G1 are isomorphic, then the prover P will not be able to guess b every time,
hence, if V really chooses b randomly, then the probability that b′ = b is only one half.

G0, G1

P V

b ∈R {0, 1}
Π ∈R Sn
G′ = Π(Gb)

� G′

Computes b′ s.t.
G′ ≈ Gb′

-b′

V accepts iff b′ = b.

Protocol 2.2: An IP protocol for Graph non-Isomorphism

On the other hand if the two graphs are nonisomorphic, it is always possible for a powerful prover
P to find a unique b′ for which there exists a permutation such that G′ = Π′(Gb′), hence P can
always win the game.

Hence

— Completeness: if G0 6≈ G1 then Pr[(P, V )(G0, G1) = 1] = 1

— Soundness: if G0 ≈ G1 then ∀P ′,Pr[(P ′, V )(G0, G1) = 1] 6 1
2 .

Where (P, V )(x) = 1 means that after interacting with P on common input x, V accepts. As
it is, this protocol does not satisfy definition 1, but this is only a technical issue. If P and V
repeat the protocol twice (and V accept if and only if he accepts in both runs), then this is an IP
protocol. By repeating the protocol, we mean that V ’s random bit and random permutation are
chosen anew in this second round and independently from the first round. Hence, the two rounds
being independent, soundness drops to one quarter (below one third) and therefore satisfies the
definition.
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By repeating several times this two-step protocol, the verifier can be convinced up to an exponen-
tially low error probability of the validity of the proof. Note that GNI is not known to belong to
NP but is in Co-NP and yet GNI belongs to IP. In fact, it turns out as proven by Adi Shamir that
IP=PSPACE.

In general, we can always amplify the probability that V accepts or rejects by repeating a protocol.
In the case where the completeness is smaller than 1, the verifier will run a given protocol which
belongs to IP k times recording each time whether he accepted or rejected the prover’s claim. At
the end of the k rounds, the verifier takes a majority vote : he accepts the prover’s claim, if at
least bk/2c + 1 time, he accepted the IP proof and rejects otherwise. Now let’s consider the case
where x does not belong to the language but the prover is trying to prove otherwise. What is the
probability of error pe, that is the probability that V accepts x as belonging to L ?

The verifier will accept if and only if he accpeted in at least bk/2c + 1 rounds. Hence, since
the soundness probability is no larger than one third, and that all k rounds are independent, the
expected value of the number of times V accepted x over k runs is at most k/3. To err, it must be
that the number of times where V accepts is deviating by at least k/6 + 1 from its expected value
k/3. But by the Chernoff bound (Formula 3), the probability that this happens is exponentially
small for sufficiently large k.

If x ∈ L, then if Pr[(P, V )(x) = 1] > 2
3 we can amplify to Pr[(P, V )(x) = 1] > 1−ε where ε = 1

poly(|x|)
or more precisely ε = 1

exp(|x|) .

Definition 2 (Negligible function) A function µ : N → R is said to be negligible if for every
positive polynomial p(·) there exists an n0 such that for all n > n0 we have

µ(n) <
1

p(n)
.

Interactive Proofs where Pr[V accepts x after interacting with P ] = 1 for all x ∈ L can be amplified
faster by taking advantage of this special property. If we repeat k times and accept if and only if all
executions accept then the completeness probability remains one while the soundness probability
drops to pks if ps was the soundness probability of a single run. Notice that we have used a distinct
accpeting criteria. This technique can be used whenever ps < 1, not only for ps <

1
3 .

2.1 Proof of Knowledge

A proof of knowledge is a variation on IP protocols. In this case, the goal is to convince a verifier
that the prover knows something. For example, the prover might want to convince the verifier that
he knows the two prime factors, p and q, of a given RSA number n = pq. The difference with IP
protocols is that we need to formally define a notion of knowledge to exclude the possibility that
the prover proves that n has exactly two prime factors without knowing them.

Consider a relation R constituted of pairs (x,w), where w is a witness. For example, the relation
for RSA numbers is the set {(n, (p, q))|n = pq, p and q are prime}; or a pair which constitutes a
witness to the RSA-Number language. Proving that n is composite does not require knowledge of
p and q because that’s exactly the outcome of Rabin’s primality test. Proving that n has exactly
two prime factors seems much harder to do without knowledge of the explicit factors.
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Another good example is ((G0, G1), π) where (G0, G1) forms the language of pairs of isomorphic
graphs, and π is the permutation such that G1 = π(G0). In this last case, a proof of knowledge is
kind of an IP protocol such that at the end, not only is the verifier convinced that G0 ≈ G1, but
the verifier is also convinced that indeed the prover knows the permutation π.2

The language LR associated with R is the set of all x such that there exists a witness for which
R(x,w) = 1: LR , {x|∃w s.t. R(x,w) = 1}. An explicit proof of knowledge, would be, for instance,
the interaction where P provides V with the witness w (as in protocol 2.1). However, the notion
of proof of knowledge is a lot more subtle. If w appears in the conversation between P and V in
an implicit form, say w̄ for instance, it is still a proof of knowledge. That’s because there exists
an efficient algorithm that computes w from w̄ (by flipping all the bits), and more precisely w can
efficiently be computed from the conversation between P and V . We shall call this algorithm the
Knowledge Extractor. To give a very general notion of implicit knowledge we push the definition
of Knowledge Extractor even further: we say that an efficient algorithm KP is a knowledge extractor
for a relation R if given x ∈ LR, R(x,KP (w)(x)) = 1 with non-negligeable probablity. When no
such witness exists, we don’t care what KP (w) outputs. So here is the formal definition:

Definition 3 (Proof of Knowledge) A pair of (Probabilistic Polynomial-time) Turing machines,
P and V , constitute an interactive proof of knowledge for a relation R if the following two conditions
hold

Completeness: for all (x,w) ∈ R

Pr[(P (w), V )(x) = 1] > 1− ν(|x|) (2.3)

Soundness: for all prover P ′ there exists an efficient 3 KP ′ such that for all x and all w we have

Pr[R(x,KP ′(w)(x)) = 1] > Pr[(P ′(w), V )(x) = 1]− κ(|x|), (2.4)

where κ and ν are negligeable error-functions.

Notice that when x 6∈ LR we have that Pr[R(x,KP ′(w)(x)) = 1] = 0 and therefore κ(|x|) >
Pr[(P ′(w), V )(x) = 1] which is a strong soundness condition of IP protocols. Therefore, all proofs
of knowledge are IP protocols but not the other way around... Intuitively, this definition states that
whenever a prover P ′ given a candidate-witness w manages to convince a verifier that x ∈ LR then
we can obtain a witness (not necessarily w) by running KP ′(w)(x) with similar probability in an
amount of time not too much bigger...

As mentioned before, protocol 2.1 is an explicit proof of knowledge of the isomorphism between G0

and G1. The following protocol 2.3 will be the basis for an implicit proof of knowledge for the same
witness.

2The fact that a prover can convince a verifier that two graphs are isomorphic does not imply that the prover
knows the permuatation π, even if it is hard to imagine otherwise.

3We allow KP ′(w) to run for polynomially more time than P ′(w). One simple way of enforcing this condition is to
define KP ′ as a poynomial-time algorithm that runs P ′ as a black-box.
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G0, G1

P (π) V

Π ∈R Sn
G′ = Π(G0)

-G′

b′ ∈R {0, 1}
� b′

Computes σ (using Π and π) s.t.

G′ = σ(Gb′)

-σ

accepts iff
G′ = σ(Gb′)

Protocol 2.3: Basic protocol for an implicit proof of knowledge of Isomorphism between two Graphs

First, check that protocol 2.3 is an IP protocol for GI. To convince yourself of this fact, check that
the completeness condition is perfect: Pr[(P, V )(x) = 1] = 1. Whereas the IP soundness condition
is also satisfied, when G0 and G1 are not isomorphic, Pr[(P ′(π), V )(x) = 1] ≤ 1

2 whatever P ′ does
(the last step of the protocol can be acomplished properly by P ′ for only one value of b′ because G′

cannot be isomorphic to two graphs that are not isomorphic to each other).

As is, the above protocol does not constitute a proof of knowledge according to our above definition.
That’s because the soundness success probability of a prover P ′ that knows no witness can be as
much as 1

2 . This would imply that the knowledge extractor KP should have Pr[R(x,KP ′(x)) = 1] >
1
2 − κ(|x|) > 0 which is impossible when x 6∈ L.

Consider instead, executing k independant copies of protocol 2.3 for the same input graphs G0, G1

as follows:

G0, G1

P (π) V

Π1,Π2, ...,Πk,∈R Sn
G′i = Πi(G0), 1 ≤ i ≤ k

-G′1, G
′
2, ..., G

′
k

b′1, b
′
2, ..., b

′
k ∈R {0, 1}

� b′1, b
′
2, ..., b

′
k

Computes σi (using Πi and π) s.t.

G′i = σi(Gb′i), 1 ≤ i ≤ k
-

σ1, σ2, ..., σk

accepts iff
G′i = σi(Gb′i), 1 ≤ i ≤ k

Protocol 2.4: Implicit proof of knowledge of Isomorphism between two Graphs

The resulting protocol still has completeness probability Pr[(P (π), V )(x) = 1] = 1. Whereas
the strong IP soundness condition is also satisfied, when G0 and G1 are not isomorphic,
Pr[(P ′(π), V )(x) = 1] ≤ 1

2k
whatever P ′ does. Moreover, the stronger proof of knowledge soundness

condition with κ(|x|) = 1
2k

is also satisfied:

Pr[R(x,KP ′(x)) = 1] > Pr[(P ′(π), V )(x) = 1]− κ(|x|).

When x 6∈ L, we get Pr[R(x,KP ′(x)) = 1] = 0 which yields Pr[(P ′(π), V )(x) = 1] ≤ 1
2k

. When
x ∈ L, we get Pr[R(x,KP ′(x)) = 1] > ε(x) − κ(|x|) where ε(x) = Pr[(P ′(π), V )(x) = 1]. If P ′ is
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so dum that ε(x) is negligeable, then ε(x)− κ(|x|) is negligeable (or even negative!!) and therefore
Pr[(P ′(π), V )(x) = 1] may also be negligeable. In this case, there is no requirements on KP ′ to
succeed at all. If however, P ′ is such that ε(x) is not negligeable then we expect that KP ′ will
succeed with probability at least ε(x). We now present a polynomial time KP ′ that succeeds in
producing a witness with probability nearly 1 under the condition that ε(x) is not negligeable.

The purpose of the knowledge extractor KP ′ is to obtain two executions of P ′ such that the graph
G′ submitted in both runs are identical but the choice bit b′ of the extractor are distinct. Here is
the knowledge extractor for the Protocol 2.4

1. Initialize P ′: copy fresh random bits to the prover’s random tape and fill up

the Auxiliary-Input tape with a witness π if any.

2. Run P ′ until it sends G′1, G
′
2, ..., G

′
k

3. Send random b′1, b
′
2, ..., b

′
k to P ′ and wait for σ1, σ2, ..., σk

4. Store d′1, d
′
2, ..., d

′
k ← b′1, b

′
2, ..., b

′
k and γ1, γ2, ..., γk ← σ1, σ2, ..., σk

5. Restart P ′ as in step 2 and run it until it sends G′1, G
′
2, ..., G

′
k again

6. Send random b′1, b
′
2, ..., b

′
k to P ′ and wait for σ1, σ2, ..., σk

7. Let i be such that b′i 6= d′i. Compute and output π = σ−1b
′
i

i γ−1d
′
i

i . STOP

8. Go to step 5.

Extractor 2.1: Sketch of the Knowledge Extractor for Graph Isomorphism

The Extractor above is just a sketch because many subtleties have to be considered. As written, we
assume that P ′ is always answering valid σ1, σ2, ..., σk for arbitrary G′1, G

′
2, ..., G

′
k and b′1, b

′
2, ..., b

′
k.

Let p be the probability that P ′ actually answers valid σ1, σ2, ..., σk at step 3. If the first time the
extractor tries this Step, P ′ answers with invalid σ1, σ2, ..., σk then the extractor aborts. The running
time of this possibility is independent of p. If the first time the extractor tries this Step, P ′ answers
with valid σ1, σ2, ..., σk then the extractor should extract a withness. It will do that by finding
another set of b′1, b

′
2, ..., b

′
k for the same G′1, G

′
2, ..., G

′
k that produces valid σ1, σ2, ..., σk. If p was the

probability of hitting a situation that lead P ′ to issue valid σ1, σ2, ..., σk then the probability that
this happens again is still p. Therefore, the expected number of tries until this situation happens
again is 1/p. Therefore the expected running time to produce a witness is p× 1/p× t where t is the
time to run one test at Steps 5–6. This expected running time is again independent of p.

Nevertheless, this argument is slightly wrong: the probability p is computed as an expected value
over the choices of b′1, b

′
2, ..., b

′
k. The Extractor fails if the Prover completes the protocol consistently

on the same sequence b′1, b
′
2, ..., b

′
k. The extreme example is if the Prover solely completes on a

single sequence b′1, b
′
2, ..., b

′
k. In this case, the Extractor would not succeed because he never finds

a second sequence of b′1, b
′
2, ..., b

′
k’s. To escape this undesired situation, the extractor always runs

in parallel to Step 5 a complete enumeration of all possible permutations until he finds one that
maps G0 to G1. If by any chance, it runs long enough that this enumeration completes then the
Extractor output the computer permutation. This case will arise with probability no greater than
2−k, when no other sequence succeeds. All in all, this will double the expected running time of
any situation where ultimately a second sequence is found, while it will force termination of any
situation where no other sequence is actually found. This will only increase the expected running
time of the Extractor by a factor of two as long as 2k is larger than the number of permutations.
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Problems

2.1 Formalize the argument for majority amplification using the Chernoff bound. Do this for both Sound-
ness and completeness.

2.2 Let n be a composite number chosen by the Prover. Let y be a quadratic non-residu modulo n (with
Jacobi symbol +1) also chosen by the Prover. Give an interactive proof for the language

N -QNR = {(n, y)|n is composite and y is a quadratic non-residu mod n (with Jacobi symbol +1)}.

2.3 Let n be a composite number and y be a quadratic non-residu modulo n (with Jacobi symbol +1)
chosen by the Prover. Let z ∈ QRn

⋃
yQRn where we define yQRn = {z ∈ QNRn|z/y ∈ QRn}. Give

a proof of knowledge for the residuosity of z where the prover convinces the verifier that he knows
whether z is a quadratic residue or non-residue but does not tell the verifier which it is...

2.4 Let p be a public prime number with publicly known factorization of p− 1 and g be a public primitive
element. Let (a, b, c) be a triple of elements from Z∗p chosen by the Prover as a = gx mod p, b = gy mod p
and c = gxy+z mod p for some x, y, z. Give a proof of knowledge for the Decisional Diffie-Hellman set
such that (a, b, c) ∈ DDH if and only if there exists x, y such that a = gx mod p, b = gy mod p and
c = gxy mod p. The prover convinces the verifier that he knows whether (a, b, c) is a valid DDH triple
or not but does not tell the verifier which it is...

Hint: Give a proof of knowledge of z without disclosing it.

2.5 Let p be a public prime number with publicly known factorization of p− 1 and g be a public primitive
element. Suppose the Prover has free access to an oracle to decide the DDH. Show how to use the
protocol of 2.4 in order to convince the verifier that he is able to decide DDH. Make sure that the
verifier never learns whether a triple (a, b, c) is a valid DDH-triple or not, unless he already knows...
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Chapter 3

Zero-Knowledge

The proofs seen in the last chapter are interesting, but not so much cryptographically as the verifier
may learn everything. Once the verifier learns the witness to an NP assertion, then he can himself
prove the assertion to anyone else. In this chapter we shall develop another property for protocols.
We shall require that not only do they convince the verifier of the validity of the assertion but that
the verifier learns nothing else from the interaction with the prover. After the proof, the verifier
is really convinced of the validity of the assertion that the prover was in fact proving. Ideally,
the verifier should learn nothing; so little that the verifier cannot even convince his verifier-friends
that he indeed talked to the Prover (or anyone who knew a witness). We shall do that via a very
profound technique which is known as simulation. The result of this definition will be a powerful
new tool.

We shall simulate the interaction of V ′, for any V ′, even a potentially dishonest V ′, with P without
having access to P or his knowledge. Let V IEW [(P, V ′)(x)] be the random variable associated with
all the possible transcripts of all the messages exchanged between P and V ′ and all of V ′’s random
coins and x (basically, anything that V ′ knows and sees). We shall call the transcript the list of
all messages exchanged between P and V . Clearly, the View contains more information than the
transcript.

Definition 4 An IP protocol is Zero-Knowledge (ZK) if for all verifiers V ′ there exits a probabilistic
polynomial-time machine SV ′ such that for all x ∈ L

V IEW [(P, V ′)(x)] =0 SV ′(x). (3.1)

In this definition, SV ′(x) is the random variable that represents the output of the simulator S
that has access to V ′ (as a black-box or an oracle) and the notation X =0 Y means that the two
random variables X and Y have the exact same distribution. In layman words, an IP protocol is
Zero-Knowledge if there exists a PPT machine that can simulate the interaction between P and V ′

without knowing anything specific about x or L (a witness for example).

Let us look at factorization as a first (bad) example. Here, in Protocol 3.1, n = pq, or the language
L is the set of all numbers with exactly two prime factors.

21
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n

P V

-
p, q

V verifies that n = pq and
that p and q are primes.
V accepts if so
V rejects otherwise.

Protocol 3.1: A first attemp at Zero-knowledge

Of course, Protocol 3.1 cannot be Zero-Knowledge as no simulator that does not know p and q,
which for large n could be hard to obtain, can simulate the interaction between any V ′ and P
efficiently. But even worse, V learns the factorization of n. As we shall see, a protocol is Zero-
Knowledge if the verifier learns nothing but the validity of the assertion even if the verifier does
not behave honestly. This is proven by exhibiting a simulator whose outputs is distributed as the
View of V ′. But how can this be simulated without knowing p and q? In fact, Protocol 3.1 has the
intent of giving p and q to V . In this case obviously V learns more than just the fact that n has
two factors. We can try a second approach where the factors of n do not appear explicitely on the
transcript, see protocol 3.2.

n

P V

r ∈R Z∗n
x = r2 mod n

� x

Computes y =
√
x mod n

-
y

if y 6= ±r mod n then
V factors n and accepts
if p and q are primes

Protocol 3.2: A second attemp at Zero-knowledge

But alas, even if p and q are per say not on the transcript, V still learns the factorization and no
polynomial-time S should be able to simulate this protocol as extracting square roots is as hard
as factoring (if P can reliably accomplish the expected task then V can use him to find p and q
efficiently).

Take a look at the representation of the Verifier of Figure 3.3.
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V
Communication

Communication

w

r 

random

Work

Input

r/w

r

r

r

Auxiliary Input

Figure 3.3: Schematization of the Verifier Turing Machine

This Turing machine has 6 tapes: two of which are used to communicate with the prover, one
contains the input, one is prefllled with unbiased random bits, one is a work tape and the last one
contains the auxiliary input. The auxiliary input represents some prior knowledge that the verifier
might posess: For example, the verifier might know that p in Protocol 3.1 is congruent to 3 mod 4
with probability one quarter. The definition of Zero-Knowledge should hold even if V ′ already
knows something, that is V ′ should not know more after the protocol than before the protocol and
whatever (computational) uncertainty he had about the world has not changed. Look at protocol
2.2 for Graph-Non-Isomorphism. Imagine that V ′ in this protocol knows a third graph G2 and
is trying to know to which graph, G0 or G1, G2 is isomorphic. Then, by cheating and sending
graph G2 instead of choosing between G0 and G1 randomly and permuting it, then V ′ could learn
something it is not suppose to learn that is G2 ≈ Gb for b ∈ {0, 1}. Note that we never claimed
that Protocol 2.2 was safe in that respect.

We can revisit the definition of Zero-Knowledge to protect the prover against such bad behaviors
from V ′.

Definition 5 An IP protocol is Zero-Knowledge (ZK) if for all verifiers V ′ there exits a probabilistic
polynomial-time machine SV ′ such that for every x ∈ L and for all auxiliary input ℵ we have

V IEW [(P, V ′(ℵ))(x)] =0 SV ′(ℵ)(x). (3.2)

Let us revisit Protocol 2.3 that we used in the context of Proof of Knowledge previously:
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G0, G1

P V

Repeat for i = 1 to k

Πi ∈R Sn
G′i = Πi(G0)

-G′i

b′ ∈R {0, 1}
� b′i

Computes σi s.t.
G′i = σi(Gb′i)

-
σi

accepts iff
G′i = σi(Gb′i)

Protocol 3.4: A successful attempt at Zero-Knowledge: Graph-Isomorphism

Note that in this protocol, σ is easy to compute for the prover: if b′ = 0, then σ = Π and if b′ = 1
then σ = Π ◦ ρ where ρ is a permutation such that G1 = ρ(G0).

This protocol obiously belongs to IP if it is repeated k times:

— Completeness: If G0 ≈ G1, then Pr[(P, V )(x) = 1] = 1,

— Soundness: If G0 6≈ G1, then ∀P ′Pr[(P ′, V )(x) = 1] 6 1
2k

.

But contrary to what we did in the proof of knowledge of Protocol 2.4, to obtain Zero-Knowledge
the repetitions in Protocol 3.4 are sequential instead of in parallel.

To prove that this protocol is Zero-Knowledge, we only have to present a simulator, see Figure 3.5.

1. Copy fresh random bits to the verifier’s random tape and fill up the

Auxiliary-Input tape.

2. Pick a bit c ∈R {0, 1} and permutation ρ ∈R Sn.

3. Compute G′ = ρ(Gc)

4. Run the verifier V on input (G0, G1) and G′ and wait for his reply b′.

5. (a) If b′ = c, then send ρ and finish simulation

(b) if b′ 6= c, then rewind V as if nothing had happened and go back to step 2

Simulator 3.5: Simulator for Graph-Isomorphism

Here are a few comments on the simulator for Graph-Isomorphism:

1. As long as V runs in polynomial time, the simulator runs in expected polynomial time.

2. The simulator has access to all the tapes of V in read-write mode but does not have access
to the internal logic of V .

3. The verifier has a reset switch to which S has access, using this button the simulator can
rewind V to its initial state (right after step 1 in Simulator 3.5).
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4. The distribution of G′ does not depend on c.

5. Since G0 ≈ G1, V ′ cannot know if G′ was generated applying a permutation to G0 or G1.

6. The two distributions V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) are identical.

7. The bit c never appears on the transcript.

To enlighten some of these comments, let us prove that V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) are
identically distributed. A View is the following tuple (G0, G1, r,ℵ, (G′1, b′1, σ1), . . . , (G′k, b

′
k, σk)),

where r is the content of V ′’s random tape which is constituted of uniform random bits and ℵ, the
auxiliary input, is the same in both cases:

We shall write, for j 6 k,

(G0, G1, r,ℵ, (G′1, b′1, σ1), . . . , (G′j , b
′
j , σj))

S

for a partial View generated by the simulator and

(G0, G1, r,ℵ, (G′1, b′1, σ1), . . . , (G′j , b
′
j , σj))

P

for a partial View generated by a real interaction between P and V ′. Note that these Views are
really random variables. What we shall prove is that for any j the distribution of the real and of
the simulated Views are the same.

The first thing to notice is that at any given step j, V ′ is really just a deterministic function of the
prefix of the partial View up to that step. So before that first step we have

(G0, G1, r,ℵ)S = (G0, G1, r,ℵ)P (3.3)

The next item on the View is G′1. But the honest prover and the simulator create that graph
according to the same distribution: that is they use the graph G0 (or G1 at random for the simulator)
and compute a random isomorphism of it (by choosing uniformly a random permutation). But since
G0 and G1 are isomorphic, a random permutation of either is the same. Hence

(G0, G1, r,ℵ, (G′1))S =0 (G0, G1, r,ℵ, (G′1))P . (3.4)

The next element, which is V ′’s challenge to G′1 is a deterministic function of the View up to that
point, as V ′ uses the bits in r as randomness. Hence Equation (3.4) means that

V ′((G0, G1, r,ℵ, (G′1))P ) =0 V
′((G0, G1, r,ℵ, (G′1))S),

hence
(G0, G1, r,ℵ, (G′1, b′1))S =0 (G0, G1, r,ℵ, (G′1, b′1))P . (3.5)

And finally as both the prover and the simulator chose their permutation to create G′1 at random
uniformly, and that for a fixed permutation γ, {Π ◦ γ}Π = Sn the probability to see a given
permutation is the same in both Views

(G0, G1, r,ℵ, (G′1, b′1, ρ1))S =0 (G0, G1, r,ℵ, (G′1, b′1, σ1))P . (3.6)

However, the Simulator is only able to complete this part of the View when b′1 = c. On the
contrary, the Prover can always complete it because he knows an isomorphism between G0 and G1.
Nevertheless, the choice of b′1 by V ′ is completely independent of c since the distribution of G′1 is
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the same for both values of c. This observation is absolutely crucial. This is the reason why the
Simulator may fail and that doing so will not skew the distribution of the simulated View. If the
Simulator “forgets” that he tried and fails (rewinds) and try again, the distribution will be exactly
the same again next time... Notice that if we ran the proof in parallel, the success probability of
the simulator at Step 5a would be 2−k which would lead its running time to be exponential. That
is why we favor runing the protocol sequentially.

This reasoning is for the first triple of the View. But the same argument will hold for all steps j
larger than 1 as well (as long as the rewinding used by the simulator loops back to the most recent
execution of Step 2. Once an iteration is successfully simulated, the simulator never tries to undo
it.). Hence

V IEW [(P, V ′(ℵ))(x)] = SV ′(ℵ)(x),

that the simulator outputs can be the View of the verifier and this happens with the exact same
probability.

3.1 Graph Non-Isomorphism

Let us discuss a more elaborate example : a Zero-Knowledge Interactive Proof for Graph-Non-
Isormophism.

Take a look back at Protocol 2.2. As we have already discussed, this protocol cannot be Zero-
Knowledge as V ′ might not compute G′ honestly. In fact, a clever V ′ could feed a third graph G2

and learn whether G2 is isomorphic to G0 or G1. One solution would be to force V ′ to compute G′

honestly. Fortunately we can use a variation on the Proof of Knowledge for Graph-Isomorphism that
we already know (Protocol 2.4) in order to achieve this. The following Protocol is an improvement
of Protocol 2.2 by introducing an extra Step represented by the internal box.

G0, G1

P V

b ∈R {0, 1}, Π0,Π1 ∈R Sn
G′0 = Π0(Gb), G

′
1 = Π1(Gb̄)�

(G′0, G
′
1)

G0, G1, G
′
0, G

′
1

VP PV (b,Π0,Π1)

�
Protocol 3.7 : PofK(b,Π0,Π1)

IF the inner Protocol aborted
THEN aborts
ELSE computes b′ s.t. G′0 ≈ Gb′ -b′

accepts iff b = b′

Protocol 3.6: Zero-Knowledge proof for Graph-Non-Isomorphism
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G0, G1, G
′
0, G

′
1

VP PV (b,Π0,Π1)

b1, ..., bk ∈R {0, 1}
π1

0, π
1
1, ..., π

k
0 , π

k
1 ∈R Sn

FOR i = 1 to i = k
Gi0 = πi0(Gbi), G

i
1 = πi1(G

bi
)�

(G1
0, G

1
1), ..., (Gk0, G

k
1)

c1, ..., ck ∈R {0, 1}
-c1, ..., ck

FOR i = 1 to i = k
IF ci = 0
THEN di = bi, σi0 = πi0, σ

i
1 = πi1

ELSE computes ei = bi ⊕ b
ρi0 s.t. Gi0 = ρi0(G′

ei
)

ρi1 s.t. Gi1 = ρi1(G′
ei

)

di = ei, σi0 = ρi0, σ
i
1 = ρi1.�

d1, σ1
0, σ

1
1, ..., d

k, σk0 , σ
k
1

Accepts if
FOR i = 1 to i = k
WHEN ci = 0
THEN Gi0 = σi0(Gdi), G

i
1 = σi1(G

di
)

ELSE Gi0 = σi0(G′
di

), Gi1 = σi1(G′
di

).

else aborts the entire protocol

Protocol 3.7: Proof of Knowledge of (b,Π0,Π1)

The Internal box is really a Proof of Knowledge going backwards : the Verifier PV (b,Π0,Π1) proves
to the prover VP that he knows b such that (G′b, G

′
b̄
) = (Π0(G0),Π1(G1)). First, let’s check that the

modified Protocol is still an Interactive Proof for Graph Non-Isomorphism. It should be obvious
that the completeness of the outer Protocol still holds : the sub-Protocol does not change that. We
have to work harder to prove that the soundness of the outer Protocol still holds. Soundness could
be lost if somehow b was communicated to VP during the sub-protocol. If we prove that everything
that happens inside the internal box is statistically independent from the bit b, we demonstrate
that this issue is not a problem. If that is the case, then the internal protocol carries no information
about b and hence, cannot help P ′ cheat soundness if the two graphs are in fact isomorphic.

It is interesting to notice that we do not need to guarantee that the internal protocol carries no
information about b if the two graphs are in fact non-isomorphic. Moreover, in the case where the
graphs are isomorphic, we do not require the sub-protocol to be zero-knowledge, but simply carries
no information about b. If P is infinitely powerful, as we often assume in Interactive Proofs, the
zero-knowledge property (efficiency of a simulator) of the sub-Protocol would be totally irrelevant.

For the sake of argument, let us assume that G0 and G1 are isomorphic to start with. Then,
for honest PV , all graphs in the sub-Protocol will be isomorphic to each other. Hence, even for
an infinitely powerful prover VP ′ it is impossible to compute b nor any of the bi’s from (G0, G1),
(G′0, G

′
1) and all the (Gi0, G

i
1) because they are all isomorphic to G0 (and to G1). Then answer to

ci is also totally independent from b as bi, πi0 and πi1 are all chosen at random independently from
b. The same holds for ei, ρi0 and ρi1, as ei is really a one-time-pad encryption of b using bi as a key.
But since nothing was learned about the bi’s from (G0, G1), (G′0, G

′
1) and all the (Gi0, G

i
1)’s, b is

perfectly encrypted. Hence we conclude that when the time comes to compute b′ even an infinitely
P ′ cannot have better probability of guessing b than one half (that is if G0 ≈ G1).

After checking that the modified Protocol is still an Interactive Proof, let’s consider its Zero-
Knowledge aspect. Here is the simulator for the Protocol 3.6
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1. Initialize V : copy fresh random bits to the verifier’s random tape and fill

up the Auxiliary-Input tape.

2. Run V until it sends (G1
0, G

1
1)

3. Run the Knowledge-Extractor on PV (b,Π0,Π1) to obtain (b,Π0,Π1).

4. Run the full protocol as honest P would until V waits for b′ and give b′ as
extracted in Step 3.

Simulator 3.8: Simulator for Graph Non-Isomorphism

This simulator is written with honest V in mind, but something could go wrong with this simulator
if V ′ is cheating. What if there is no bit b such that (G0, G1) ≈ (G′b, G

′
b̄
), or PV ′ does not know it.

The simulator will most likely discover this at step 3 because the knowledge extractor will fail to
obtain such values. There is, however, a small probability that VP accepts and then tells V ′ what
he wants to know. Although that probability is low, it is not zero. Hence, with very low probability,
V could abuse P and learn something which he is not supposed to.

How is the simulator suppose to deal with this? Well, after discovering that V ′ is trying to cheat,
S should simply try to finish the protocol (step 4) and hope to catch V ′ in the cheating. If V ′ is
lucky, that is, if V ′ successfully cheats every round, S will be forced to output ⊥ (that is S does
not output a View) or S should go ahead and compute b′ such that (G0, G1) ≈ (Gb′ , Gb′).

In the latter case, the simulator will run in expected polynomial time since for all runs where V ′

gets caught cheating the simulator runs in polynomial time (as long as V ′ runs in polynomial time),
but for the case in which V ′ can cheat without being caught by S, which happens with negligible
probability (that is lower than 2−k), then S will run in exponential time. If k ∈ ω(log t(n)), where n
is the number of vertices of G0 and G1 and computing the isomorphism between G0 and G′b belongs
to O(t(n)), then on average, S would still run in expected polynomial time because 2−kt(n) can be
made less than 1 for an appropriate choice of k (see the analysis of Protocol 2.1).

In the former case, were S outputs ⊥, the transcript where V ′ can cheat and P answers anyway
will never be produced, hence V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) will not be distributed identically.
Although the distance between the two distributions is negligible, this protocol would not qualify
as Zero-Knowledge according to Definition 5. But it is very close to satisfying it. In fact we say
that if the statistical distance between the two random variables is negligible, then the protocol is
called statistical Zero-Knowledge. Let us define this new concept more formally.

3.2 Flavours of Zero-Knowledge

Definition 6 (Ensemble) Let I be a countable set of indices. An Ensemble indexed by I is a
sequence of random variables indexed by elements of I.

Namely, if X = {Xi}i∈I , where each Xi is a random variable, then X is an ensemble.

Definition 7 (Absolute (Perfect) Indistinguishability) Let X and Y be two ensembles, then
X and Y are perfectly indistinguishable if and only if

∀h, ∀n,Pr[h(Xn) = 1] = Pr[h(Xn) = 1], (3.7)

where h is a predicate.
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Definition 8 (Statistical Indistinguishability) Let X and Y be two ensembles, then X and Y
are statistically indistinguishable if and only if for all predicate h we have that

|Pr[h(Xn) = 1]− Pr[h(Yn) = 1]| 6 µ(n) (3.8)

where µ(n) is a negligible function.

Definition 9 (Computational Indistinguishability) Let X and Y be two ensembles, then X
and Y are computationally indistinguishable if and only if for all probabilistic polynomial time
algorithm A we have that

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| 6 µ(n) (3.9)

where µ(n) is a negligible function.

To each of these notions of indistinguishability corresponds a notion of Zero-knowledge: Perfect
Zero-Knowledge, Statistical Zero-Knowledge and Computational Zero-Knowledge.

Going back to the Simulator for GNI, Simulator 3.8, we can conclude that Protocol 3.6 is a Statis-
tical Zero-Knowledge protocol as the two random variables V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) are
identical but on points were S outputs ⊥ which happens with negligible probability (see Problem
3.6).

If we consider n to be the number of vertices in G0 or G1, then if we fix k in protocol 3.6 to be in
Θ(n), then the probability of failure of S is no more than 2−k 6 1/poly(n) for all poly(n). And as
was already argued, if S computes the isomorphism, then the protocol is a Perfect Zero-Knowledge
protocol. The next Chapter will introduce Computational Zero-Knowledge protocols.

Problems

3.1 Prove formally that the simulator for Graph-Isomorphism is only expected-poly-time. Then fix the
simulator so that it always runs in polynomial time. What can you conclude from your new simulator?

3.2 Prove formally that protocol 3.6 is a statistical-Zero-Knowledge protocol.

3.3 1. Prove that the proof of knowledge of Protocol 3.6, which we revisit at the end of this chapter,
can be done in parallel. That is, if all pairs (Gi0, G

i
1), all the challenges and all replies are each

sent in one message so that the full proof of knowledge consists of three messages.

2. Is the Proof of knowledge still Zero-knowledge if done in parallel?

3. Prove that Protocol 3.6 is still zero-knowledge if the proof of knowledge is done in parallel.

3.4 Prove that for two ensemble Xn and Yn that have negligible distance for all n, Theorem ?? implies
that Xn and yn are statistically indistinguishable (Definition 8).

3.5 quadratic residu.

1.

3.6 Prove that D(V IEW [(P, V ′(ℵ))(x)], SV ′(ℵ)(x)) negligeable in the case were the Simulator outputs ⊥.
That is use convexity and the fact that the two random variables V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x)
are the same with very high probability and very different with very low probability.
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3.7 Let n be a product of two primes, and y be a quadratic non-residu modn. Provide a protocol which is
a Zero-Knowledge proof of Knowledge that a number x is a quadratic residu or a quadratic non-residu
modn. As your protocol is a proof of knowledge, it should not disclose whether x is or is not a residu,
but only prove that the prover knows a witness to one or the other (it should also be simulatable).

Note that this is proving something trivial and is yet a very powerful tool. Can you find a situation
where this could be used ?

3.8 We define COCKS as all the numbers n with two distinct prime factors p, q such that gcd(n, φ(n)) = 1,
where φ(·) is the euler totient function (so that n is invertible modulo φ(n) as required in Cocks’
variation of the RSA cryptosystem using the public exponent e = n).

COCKS = {n| gcd(n, φ(n)) = 1, n = pq, p 6= q, p and q are primes}.

Provide a Zero-Knowledge proof, with its simulator, to prove that a given integer n is a COCKS
number, under the assumption that the verifier already knows an arbitrary y ∈ QNRn[+1]1.

Hint:

Let WRSA (Weak-RSA) be the following language:

WRSA = {n|n = pαqβ , p 6= q, p and q are primes and α, β > 0}.

A**) Construct a zero-knowledge proof for the language WRSA, under the assumption
that the verifier already knows an arbitrary y ∈ QNRn[+1].

Sub-Hint: use Protocol 5.1. You may use the following theorem without proof:

Theorem 1 If n = pα1
1 pα2

2 . . . pαk

k (which is not a square) has exactly k distinct prime fac-
tors then exactly 2−k+1 of the elements in Z∗n with Jacobi symbol +1 are quadratic residues

mod n.

Let NphiN be the following language:

NphiN = {n|gcd(n, φ(n)) = 1}.

B) Construct a zero-knowledge proof for the language NphiN.

Sub-Hint: You may use the following theorem without proof:

Theorem 2 Let n be a composite odd number. If n belongs to NphiN, then every element
x ∈ Z∗n has an nth root mod n, i.e. there exists an element y such that x ≡ yn mod n. On
the contrary, if n is not in NphiN, then at most half the elements in Z∗n have an nth root

mod n.

C) Prove that we have
COCKS = WRSA ∩NphiN.

D) Combine your two zero-knowledge proofs for languages WRSA, and NphiN to prove
membership to COCKS in zero-knowledge, under the assumption that the verifier already
knows an arbitrary y ∈ QNRn[+1].

3.9 Following on the previous question, define the following set of numbers

BLUM = {n|n = pq, p ≡ q ≡ 3 mod 4, p 6= q are primes}.

Prove that the language BLUM has a statistical zero-knowledge proof.

Hint:

1This technicality is necessary because we currently do not know an efficient algorithm to find such a y from n
only.


