COMP547B Homework set #5

Due Friday April 13th, 2018, 23:59:59

Exercises (from Katz and Lindell’s book)

11.6 Consider the following public-key encryption scheme. The public key is \((G, q, g, h)\) and the private key is \(x\), generated exactly as in the El Gamal encryption scheme. In order to encrypt a bit \(b\), the sender does the following:

(a) If \(b = 0\) then choose a uniform \(y \in \mathbb{Z}_q\) and compute \(c_1 := g^y\) and \(c_2 := h^y\). The ciphertext is \(\langle c_1, c_2 \rangle\).

(b) If \(b = 1\) then choose independent uniform \(y, z \in \mathbb{Z}_q\), compute \(c_1 := g^y\) and \(c_2 := g^z\), and set the ciphertext equal to \(\langle c_1, c_2 \rangle\).

Show that it is possible to decrypt efficiently given knowledge of \(x\). Prove that this encryption scheme is CPA-secure if the decisional Diffie–Hellman problem is hard relative to \(G\).

11.7 Consider the following variant of El Gamal encryption. Let \(p = 2q + 1\), let \(G\) be the group of squares modulo \(p\) (so \(G\) is a subgroup of \(\mathbb{Z}_p^*\) of order \(q\)), and let \(g\) be a generator of \(G\). The private key is \((G, g, q, x)\) and the public key is \((G, g, q, h)\), where \(h = g^x\) and \(x \in \mathbb{Z}_q\) is chosen uniformly. To encrypt a message \(m \in \mathbb{Z}_q\), choose a uniform \(r \in \mathbb{Z}_q\), compute \(c_1 := g^r \mod p\) and \(c_2 := h^r + m \mod p\), and let the ciphertext be \(\langle c_1, c_2 \rangle\). Is this scheme CPA-secure? Prove your answer.

Hint for 11.6: Prove that if "not CPA-secure" then "DDH problem is efficiently solved ».

11.13 One of the attacks on plain RSA discussed in Section 11.5.1 involves a sender who encrypts the same message to three different receivers. Formulate an appropriate definition of security ruling out such attacks, and show that any CPA-secure public-key encryption scheme satisfies your definition.
12.1 Show that Construction 4.7 for constructing a variable-length MAC from any fixed-length MAC can also be used (with appropriate modifications) to construct a signature scheme for arbitrary-length messages from any signature scheme for messages of fixed length $\ell(n) \geq n$.

12.5 Another approach (besides hashing) that has been tried to construct secure RSA-based signatures is to \emph{encode} the message before applying the RSA permutation. Here the signer fixes a public encoding function $\text{enc} : \{0,1\}^\ell \rightarrow \mathbb{Z}_N^*$ as part of its public key, and the signature on a message m is $\sigma := [\text{enc}(m)^d \mod N]$.

(a) How is verification performed in encoded RSA?

(b) Discuss why appropriate choice of encoding function for $\ell \ll \|N\|$ prevents the “no-message attack” described in Section 12.4.1.

(c) Show that encoded RSA is insecure if $\text{enc}(m) = 0x00||m||0^{\kappa/10}$ (where $\kappa \overset{\text{def}}{=} \|N\|$, $\ell = |m| \overset{\text{def}}{=} 4\kappa/5$, and m is not the all-0 message). Assume $e = 3$.

(d) Show that encoded RSA is insecure for $\text{enc}(m) = 0||m||0||m$ (where $\ell = |m| \overset{\text{def}}{=} (\|N\| - 1)/2$ and m is not the all-0 message). Assume $e = 3$.

(e) Solve parts (c) and (d) for arbitrary e.

12.11 The Lamport scheme uses 2ℓ values in the public key to sign messages of length ℓ. Consider the variant in which the private key contains 2ℓ values $x_1, \ldots, x_{2\ell}$ and the public key contains the values $y_1, \ldots, y_{2\ell}$ with $y_i := f(x_i)$. A message $m \in \{0,1\}^{\ell'}$ is mapped in a one-to-one fashion to a subset $S_m \subset \{1, \ldots, 2\ell\}$ of size ℓ. To sign m, the signer reveals $\{x_i\}_{i \in S_m}$. Prove that this gives a one-time-secure signature scheme. What is the maximum message length ℓ' that this scheme supports?
MATHEMATICA QUESTIONS

Let \(N = 1280188921986598694387442678917283771992957539817913990334601022593224943887566067283731210431548097902496634726772066225492472049090344014040948783013844255405121563940725271958261549105689512732123401970340184655821416714383833567438594837829393436445708175846840391647287652219983832401360628720836954408208209 \) be an RSA public modulus (\(e = N \) as in Cocks' variation).

1) Without factoring \(N \), provide a message \(m \) that ends with “2018” in base 10 together with its RSA signature \(\sigma \). Show that \(\sigma \) is a valid signature.

2) Without factoring \(N \), check that the exponent \(e' = 999858280201913599008802868696830357098395840037288384624455770410649259059950052168890075728986181159451333440929176287686491104489407462355371113514648093 \) is also valid to verify signed messages. Show at least 5 examples.

3) Given \(e \) and \(e' \), factor \(N \). What is special about the factors of \(N \)?

More on back…