Exercises (from Katz and Lindell’s book)

11.6 Consider the following public-key encryption scheme. The public key is \((G, q, g, h)\) and the private key is \(x\), generated exactly as in the ElGamal encryption scheme. In order to encrypt a bit \(b\), the sender does the following:

(a) If \(b = 0\) then choose a uniform \(y \in \mathbb{Z}_q\) and compute \(c_1 := g^y\) and \(c_2 := h^y\). The ciphertext is \((c_1, c_2)\).

(b) If \(b = 1\) then choose independent uniform \(y, z \in \mathbb{Z}_q\), compute \(c_1 := g^y\) and \(c_2 := g^z\), and set the ciphertext equal to \((c_1, c_2)\).

Show that it is possible to decrypt efficiently given knowledge of \(x\). Prove that this encryption scheme is CPA-secure if the decisional Diffie-Hellman problem is hard relative to \(G\).

11.7 Consider the following variant of El Gamal encryption. Let \(p = 2q + 1\), let \(G\) be the group of squares modulo \(p\) (so \(G\) is a subgroup of \(\mathbb{Z}_p^*\) of order \(q\)), and let \(g\) be a generator of \(G\). The private key is \((G, g, q, x)\) and the public key is \((G, g, q, h)\), where \(h = g^x\) and \(x \in \mathbb{Z}_q\) is chosen uniformly. To encrypt a message \(m \in \mathbb{Z}_q\), choose a uniform \(r \in \mathbb{Z}_q\), compute \(c_1 := g^r \mod p\) and \(c_2 := h^r + m \mod p\), and let the ciphertext be \((c_1, c_2)\). Is this scheme CPA-secure? Prove your answer.

Hint for 11.6: Prove that if "not CPA-secure" then "DDH problem is efficiently solved".

12.1 Show that Construction 4.7 for constructing a variable-length MAC from any fixed-length MAC can also be used (with appropriate modifications) to construct a signature scheme for arbitrary-length messages from any signature scheme for messages of fixed length \(\ell(n) \geq n\).

More on back…
12.5 Another approach (besides hashing) that has been tried to construct secure RSA-based signatures is to \textit{encode} the message before applying the RSA permutation. Here the signer fixes a public encoding function $\text{enc} : \{0,1\}^\ell \rightarrow \mathbb{Z}_N^*$ as part of its public key, and the signature on a message m is $\sigma := [\text{enc}(m)^d \mod N]$.

(a) How is verification performed in encoded RSA?

(b) Discuss why appropriate choice of encoding function for $\ell \ll \|N\|$ prevents the “no-message attack” described in Section 12.4.1.

(c) Show that encoded RSA is insecure if $\text{enc}(m) = 0x00m/0^\kappa/10$ (where $\kappa \overset{\text{def}}{=} \|N\|$, $\ell = |m| \overset{\text{def}}{=} 4\kappa/5$, and m is not the all-0 message). Assume $e = 3$.

(d) Show that encoded RSA is insecure for $\text{enc}(m) = 0|m|0|m$ (where $\ell = |m| \overset{\text{def}}{=} (\|N\| - 1)/2$ and m is not the all-0 message). Assume $e = 3$.

(e) Solve parts (c) and (d) for arbitrary e.

12.11 The Lamport scheme uses 2ℓ values in the public key to sign messages of length ℓ. Consider the variant in which the private key contains 2ℓ values $x_1, \ldots, x_{2\ell}$ and the public key contains the values $y_1, \ldots, y_{2\ell}$ with $y_i := f(x_i)$. A message $m \in \{0,1\}^{\ell'}$ is mapped in a one-to-one fashion to a subset $S_m \subset \{1, \ldots, 2\ell\}$ of size ℓ. To sign m, the signer reveals $\{x_i\}_{i \in S_m}$. Prove that this gives a one-time-secure signature scheme. What is the maximum message length ℓ' that this scheme supports?

4.7 Let F be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticate fixed-length messages. (In each case Gen outputs a uniform $k \in \{0,1\}^n$. Let $\langle i \rangle$ denote an $n/2$-bit encoding of the integer i.)

(a) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0,1\}^n$, compute $t := F_k(m_1) \oplus \cdots \oplus F_k(m_\ell)$.

(b) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0,1\}^{n/2}$, compute $t := F_k(\langle 1 \rangle m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle m_\ell)$.

(c) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0,1\}^{n/2}$, choose uniform $r \leftarrow \{0,1\}^n$, compute $$t := F_k(r) \oplus F_k(\langle 1 \rangle m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle m_\ell),$$ and let the tag be $\langle r, t \rangle$.
4.13 We explore what happens when the basic CBC-MAC construction is used with messages of different lengths.

(a) Say the sender and receiver do not agree on the message length in advance (and so Vrfy\textsubscript{k}(m, t) = 1 iff t \equiv \text{Mac}_{k}(m), regardless of the length of m), but the sender is careful to only authenticate messages of length 2n. Show that an adversary can forge a valid tag on a message of length 4n.

(b) Say the receiver only accepts 3-block messages (so Vrfy\textsubscript{k}(m, t) = 1 only if m has length 3n and t \equiv \text{Mac}_{k}(m)), but the sender authenticates messages of any length a multiple of n. Show that an adversary can forge a valid tag on a new message.

4.14 Prove that the following modifications of basic CBC-MAC do not yield a secure MAC (even for fixed-length messages):

(a) Mac outputs all blocks t\textsubscript{1}, \ldots, t\textsubscript{\ell}, rather than just t\textsubscript{\ell}. (Verification only checks whether t\textsubscript{\ell} is correct.)

(b) A random initial block is used each time a message is authenticated. That is, choose uniform t\textsubscript{0} \in \{0, 1\}n, run basic CBC-MAC over the “message” t\textsubscript{0}, m\textsubscript{1}, \ldots, m\textsubscript{\ell}, and output the tag \langle t\textsubscript{0}, t\textsubscript{\ell} \rangle. Verification is done in the natural way.

MATH E M A T I C A Q U E S T I O N S

Let \(N = 12801889219865986943874426789172837719929575398179139903346010225932249438875660672837312104315480979024966347267720662254924720490903440140409487830138442554051215639407252719582615491056895127372123401970340184655821416714383833567438594837829393436445708175846840391647287652219983832401360628720836954408208209 \) be an RSA public modulus (\(e = N \) as in Cocks' variation.).

1) Without factoring \(N \), provide a message \(m \) that ends with “2017” in base 10 together with its RSA signature \(\sigma \). Show that \(\sigma \) is a valid signature.

2) Without factoring \(N \), check that the exponent \(e' = 999858280201913599008802868696830357098395840037288384624455770410649259059950052168890075728986418115945133344092917628768649110448940746235437111354648093 \) is also valid to verify signed messages. Show at least 5 examples.

3) Given \(e \) and \(e' \), factor \(N \). What is special about the factors of \(N \) ?

More on back…