COMP-547B Homework set #1

Due Wednesday February, 1 2017 until 23:59

To be submitted via MyCourse.

A. **THEORY:** Consider an expression of the form

 $0 = ax^2 + bx + c \pmod{n}.$

[10%] 1. Show that the *x*'s of the following form are solutions to the above system

 $x = (-b \pm \sqrt{b^2 - 4ac}) \div (2a) \pmod{n}$

when gcd(2a,n)=1 and where \sqrt{q} returns an integer square root of an integer q which is a **Quadratic Residue** modulo n.

- *2. (BONUS) Give all the necessary and sufficient conditions for existence of solutions to the above system.
 For any tuple of parameters (*a*,*b*,*c*,*n*) how many solutions exist ?
 - B. **MATHEMATICA**: Let p be a prime such that $5 \in QR_p$.
 - [5%] 1. Give a full characterization of all such *p* (in terms of *p* mod 10).
 - [5%] 2. Choose a random (uniform) 200-bit prime p such that $5 \in QR_p$ and let r be a square root of 5 mod p. Show us your values of p and r.
 - [5%] 3. Compute $\varphi = (1+r) \div 2 \mod p$.
 - [5%] 4. Define $F(n) = (\varphi^n (-1)^n \div \varphi^n) \div r \mod p$. Calculate the first 100 values of F(0), F(1),...,F(99).
 - [5%] 5. What do you find special about this sequence of numbers ???
 - **6.** A linear recurrence **mod** *p* is a relation about a function **f** such that

where the a_i 's are integer coefficients.

Using the result of (5.) exhibit a simple linear recurrence **mod** *p* for **F**.

C. <u>THEORY</u>: from Brassard-Bratley's book

8.5.13 Let $p \equiv 1 \pmod{4}$ be a prime, and let x be in QR_p . An integer a, 0 < a < p, gives the key to \sqrt{x} if $(a^2 - x) \mod p$ is not in QR_p .

- **[10%]** I. Prove that Algorithm **rootLV** finds a square root of x if and only if it randomly chooses an integer a that gives the key to \sqrt{x} .
- [10%] II. Prove that exactly (p+3)/2 of the *p*-1 possible choices for *a give the key to* \sqrt{x} .

Consult handout for appropriate **HINT**.

D. MATHEMATICA: KALAI

- [10%] 1. Write a MATHEMATICA[™] procedure Kalai_range(e) which outputs a uniformly generated integer *r* in the range [2^e.. 2^{e+1}-1], with its prime factorization (as a list [*p*₁, *p*₂,..., *p_k*]).
- **[15%]** 2. Use your procedure to find <u>random</u> (uniform) primes

 r_{300} in the range [2³⁰⁰..2³⁰¹-1] with known factorization of r_{300} -1, r_{350} in the range [2³⁵⁰..2³⁵¹-1] with known factorization of r_{350} -1, and r_{400} in the range [2⁴⁰⁰..2⁴⁰¹-1] with known factorization of r_{400} -1.

[15%] 3. For each of r_{260} , r_{320} , and r_{380} find a <u>random</u> (uniform) primitive element g_{300} (modulo r_{300}), g_{350} (modulo r_{350}), and g_{400} (modulo r_{400}).