
1

Chapter 6 :  
Practical Constructions of

Symmetric-Key Primitives

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

Practical Constructions of 
Symmetric-Key Primitives

6.2 Block Ciphers

6.2.1 Substitution-Permutation Networks

6.2.2 Feistel Networks

6.2.3 DES – The Data Encryption Standard

6.2.6 Differential and Linear Cryptanalysis – A Brief Look

6.2.4 Increasing the Key Length of a Block Cipher

6.2.5 AES – The Advanced Encryption Standard

6.1 Stream Ciphers 

2

6.2 Practical Constructions of
Pseudorandom Permutations

(Block Ciphers)

The constructions of block ciphers that we will
explore in this chapter are heuristic, at least in the
sense that they have no known proof of security
based on any weaker assumption. 

 Nevertheless, a number of the block ciphers that are
used in practice have withstood many years of public
scrutiny and attempted cryptanalysis. 

 It is quite reasonable to assume that these block
ciphers are (strong) peudorandom permutations.

3

The requirement that a certain problem (i.e.,
factoring) be hard to solve seems “easier to satisfy”
than the requirement that a given keyed function be
indistinguishable from a random function.  

 Less important but still relevant differences
between the assumptions are that the problem of
factoring has been studied much longer than the
problem of distinguishing DES from a random
function.

6.2 Practical Constructions of
Pseudorandom Permutations

(Block Ciphers)

4

 The fact that factoring was recognized as a hard
mathematical problem well before the advent of
cryptographic schemes based on it.

 Most of the cryptanalytic effort directed at DES
and other block ciphers has focused on key-recovery
attacks, where the goal is to recover the key k given
multiple pairs (x, DESk(x)).

6.2 Practical Constructions of
Pseudorandom Permutations

(Block Ciphers)

5

Block Ciphers as Strong
Pseudorandom Perm’s

The view that block ciphers should be modelled as
pseudorandom permutations has, at least in the
recent past, served as a major influence in their
design.

As an example, the call for proposals for the recent
Advanced Encryption Standard (AES) that we will
encounter later in this chapter stated the following
evaluation criteria:

6

Block Ciphers as Strong
Pseudorandom Perm’s

The security provided by an algorithm is the most
important factor. . . . Algorithms will be judged on the
following factors. . .

The extent to which the algorithm output is
indistinguishable from a random permutation on the
input block.

7

Block Ciphers as Strong
Pseudorandom Perm’s

Essentially, this states that a block cipher should be a
pseudorandom permutation.

It is unclear to what extent submitted proposals
were eva lua ted a s s t rong p seudorandom
permutations.

Had an attack been demonstrated showing that
some proposal did not satisfy this criterion, it is
unlikely the proposal would have been adopted.

8

Attacks on Block Ciphers

Ciphertext-only attacks, where the attacker is given
only outputs {Fk(xi)} for some unknown inputs {xi}.

Known-plaintext attacks, where the attacker is given
pairs of inputs and outputs {(xi, Fk(xi))}.

Chosen-plaintext attacks, where the attacker is given  
{(xi, Fk(xi)} for inputs {xi} chosen by the attacker.

Chosen-ciphertext attacks, where the attacker is given 
{(xi, Fk(xi)} and {(Fk−

1(yi), yi)} for {xi}, {yi} chosen 
by the attacker.

9

Attacks on Block Ciphers

This is interpreted very strictly in the context of
block ciphers, and a block cipher is generally only
considered “good” if the best known attack has time
complexity roughly equivalent to a brute-force
search for the key.

If a cipher with key length n = 112 can be broken in
time 256 (we will see such an example later), the
cipher is (generally) considered insecure even though
256 is still a relatively large number.

10

6.2.1 Substitution-
Permutation Networks

The main property required of a block cipher is that
it should behave like a random permutation.

Of course, a truly random permutation would be too
big to describe.

We need to somehow construct a concise function
that behaves like a random one.

11

The confusion-diffusion
paradigm

In addition to his work on perfect secrecy,
Claude Shannon introduced a basic
paradigm for constructing concise random-
looking permutations.

12

The confusion-diffusion
paradigm

The basic idea is to construct a random-looking
permutation F with a large block length from many
smaller random-looking permutations {fi} having a small
block length.

13

The confusion-diffusion
paradigm

Say we want F to have a block length of 128 bits.
Define F as follows:  

 The key k for F will specify 16 random permutations
f1,...,f16 that each have an 8-bit block length. 
 

 Given an input x ∈ {0,1}128, we parse it as 16
consecutive 8-bit blocks x1··· x16 and then set 
 

 Fk(x) ≔ f1(x1)···f16(x16).  

 (Informally) these {f} introduce confusion into F .

14

The confusion-diffusion
paradigm

First, a diffusion step is introduced whereby the bits
of the output are permuted or “mixed”.

Second, the confusion/diffusion steps — together
called a round — are repeated multiple times.

15

The confusion-diffusion
paradigm

As an example, a two-round block cipher would
operate as follows:

 First, x′ ≔ Fk(x) would be computed.  

 Then the bits of x′ would be re-ordered to give x1.  

 Then x′1 ≔ Fk(x1) would be computed, and the bits
of x′1 would be re-ordered to give the output x2 .

16

The confusion-diffusion
paradigm

Repeated use of confusion and diffusion ensures that
any small change in the input will be mixed
throughout and propagated to all the bits of the
output.

The effect is that small changes to the input have a
significant effect on the output, as one would expect
of a random permutation.

17

Substitution-
Permutation

Network

18

Substitution-Permutation
Network

A substitution-permutation network can be
viewed as a direct implementation of the
confusion-diffusion paradigm

The main difference here is that we view the
round functions {fi} as being fixed, and the key is
used for a different purpose.

We now refer to the {fi} as S-boxes.

19

Substitution-Permutation
Network

A substitution-permutation network essentially
follows the steps of the confusion-diffusion paradigm
outlined earlier.

Since the S-boxes no longer depend on the key, we
need to introduce dependence in some other way.

(In accordance with Kerckhoffs’ principle, we assume
that the exact structure of the S-boxes and the mixing
permutations are publicly-known, with the only secret
being the key.)

20

Substitution-Permutation
Network

 There are many ways this can be done.

 We will focus here on the case where this is done by
simply XORing some function of the key with the
intermediate results that are fed as input to each round
of the network.

21

Substitution-Permutation
Network

22

Substitution-Permutation
Network

 The key to the block cipher is sometimes referred
to as the master key.

 The sub-keys that are XORed with the
intermediate results in each round are derived from
the master key according to a key schedule.

 Key schedule is often very simple and may work by
just taking subsets of the bits of the key, though more
complex schedules can also be defined.

23

Design principle 1 —
invertibility of the S -boxes

In a substitution-permutation network, the 
S-boxes must be invertible; that is, they must be
one-to-one and onto functions.

The reason for this is that otherwise the block
cipher will not be a permutation.

To see that making the S-boxes one-to-one and
onto suffices, we show that when this holds it is
possible to fully determine the input given the
output and the key.

24

Invertibility of
the S -boxes

Specifically, we show that every round can be
inverted.

This implies that the entire network can be
inverted by working from the end back to the
beginning.

25

Invertibility of
the S -boxes

26

Invertibility of
the S -boxes

PROPOSITION 6.3 Let F be a keyed function defined
by a substitution-permutation network in which the S-boxes
are all one-to-one and onto. Then regardless of the key
schedule and the number of rounds, Fk is a permutation for
any choice of k.

27

Design principle 2 —
the avalanche effect
An important property in any block cipher is that
small changes to the input must result in large
changes to the output.

Otherwise, the outputs of the block cipher on two
similar inputs will not look independent

(whereas in a random permutation, the outputs of
any two unequal inputs are independently
distributed).

28

the avalanche effect

Block ciphers are designed to exhibit the avalanche
effect, meaning that changing a single bit of the
input affects every bit of the output.

(This does not mean that changing one bit of the
input changes every bit of the output, only that it
has some effect on every bit of the output.)

29

the avalanche effect
It is easy to demonstrate that the avalanche effect
holds in a substitution-permutation network
provided that the following two properties hold (and
sufficiently-many rounds are used):

1.The S-boxes are designed so that changing a single bit of
the input to an S-box changes at least two bits in the
output of the S-box.

2.The mixing permutations are designed so that the output
bits of any given S-box are spread into different S-boxes
in the next round.

30

the avalanche effect
Consider now what happens when the block cipher is
applied to two inputs that differ by only a single bit:

1. After the first round, the intermediate values differ in
exactly two bit-positions.  
 
This is because XORing the current sub-key maintains
the 1-bit difference in the intermediate values, and so
the inputs to all the S-boxes except one are identical. 
 
In the one S-box where the inputs differ, the output of
the S-box causes a 2-bit difference. The mixing
permutation applied to the results changes the positions
of these differences, but maintains a 2-bit difference.

31

the avalanche effect
2. By the second property mentioned earlier, the mixing
permutation applied at the end of the first round spreads
the two bit-positions where the intermediate results
differ into two different S-boxes in the second round. 
 
So, in the second round there are now two S-boxes that
receive inputs differing by a single bit.  
 
Following the same argument as before, we see that at
the end of the second round the intermediate values
differ in 4 bits.

32

the avalanche effect

 One might expect that the “best” way to design S-
boxes would be to choose them at random.

 Interestingly, this turns out not to be the case, at
least if we want to satisfy the above criterion.

 For example, consider the case of an S-box
operating on 4-bit inputs and let x and x′ be two
different inputs.

 Let y ≔ S(x), and now consider choosing y′ ≠ y at
random as the value of S(x′).

33

the avalanche effect
There are 4 strings that differ from y in only 1 bit,
and so with probability 4/15 we will choose y′
that does not differ from y in two or more bits.

The problem is compounded when we consider all
inputs, and becomes even worse when we
consider that multiple S-boxes are needed.

We conclude based on this example that, as a
general rule, it is best to carefully design S-boxed
with certain desired properties (in addition to the
one discussed above) rather than choosing them
blindly at random.

34

Security of Substitution-
Permutation Networks

Experience, along with many years of cryptanalytic
effort, indicate that substitution-permutation
networks are a good choice for constructing pseudo-
random permutations as long as great care is taken in
the choice of the S-boxes, the mixing permutations,
and the key schedule.

 The Advanced Encryption Standard (AES),
described in Section 5.5, is similar in structure to
the substitution-permutation network described
above, and is widely believed to be a very strong
pseudorandom permutation.

35

Security of Substitution-
Permutation Networks

It is important to understand, however, that the
strength of a cipher constructed in this way depends
heavily on the number of rounds used.

36

Attacks on reduced-
round Subs-Per Network

Attack on a single-round substitution-permutation network:  
Let F be a single-round substitution-permutation
network.

We demonstrate an attack where the adversary is
given only a single input/output pair (x,y) for a
randomly-chosen input value x, and easily learns the
secret key k for which y = Fk(x).

37

Attacks on reduced-
round Subs-Per Network

The adversary begins with the output value y and
then inverts the mixing permutation and the S-boxes.
It can do this because the specification of the
permutation and the S-boxes is public.

38

Attacks on reduced-
round Subs-Per Network

The intermediate value that the adversary computes
from these inversions is exactly x ⊕ k (assuming,
without loss of generality, that the master key is used
as the sub-key in the only round of the network).

39

Attack on a single-round
Subs-Per Network

Since the adversary also has the input x, it 
immediately derives the secret key k.

This is therefore a complete break.

40

41

Chapter 6 :  
Practical Constructions of

Symmetric-Key Primitives

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

6.2.2 Feistel Networks

Horst Feistel

42

Feistel Networks

 A Feistel network is an alternative approach for
constructing a block cipher.

 The low-level building blocks (S-boxes, mixing
permutations, and a key schedule) are the same.

 The difference is in the high-level design.

43

Feistel Networks

A Feistel network is a way of constructing an invertible
function from non-invertible components.

44

Feistel Networks

The advantage of Feistel networks over
substitution-permutation networks is that a Feistel
network eliminates the requirement that S-boxes
be invertible.

This is important because a good block cipher
should have “unstructured” behavior.

however, requiring that all the components of the
construction be invertible inherently introduces
structure.

45

Feistel Networks

 In a Feistel network, round functions need not be
invertible.

 Round functions typically contain components like
S-boxes and mixing permutations.

 But a Feistel network can deal with any round
functions irrespective of their design. When the
round functions are constructed from S-boxes.

46

Feistel Networks

 The ith round of a Feistel network operates as
follows.

 The input to the round is divided into two halves
denoted Li-1 and Ri-1.

 If the block length of the cipher is n bits, then Li-1
and Ri-1 each have length n/2.

 The ith round function fi will take an n/2-bit input
and produce an n/2-bit output.

47

Feistel Networks

The output (Li,Ri) of the round is given by

Li ≔ Ri-1 and Ri ≔ Li-1 ⊕ fi (Ri-1).

In a t-round Feistel network, the n-bit
input to the network is parsed as (L0,R0),
and the output is the n-bit value (Lt,Rt)
obtained after applying all t rounds.

48

Feistel Networks

The master key k is used to derive sub-keys that
are used in each round.

The ith round function fi depends on the ith sub-
key, denoted ki .

49

Feistel Networks

Formally, the design of a Feistel network specifies a
publicly-known mangler function fi′ associated with
each round i.

This function fi ′ takes as input a sub-key ki and an
n/2-bit string and outputs an n/2-bit string.

When the master key is fixed the ith round
function fi is defined via fi(R) def= fi ′(ki, R).

50

Inverting a Feistel
network

 A Feistel network is invertible regardless of the round
functions {fi} (and of the mangler functions {fi ′}).

 Given the output (Li, Ri) of the ith round, we can
compute (Li-1, Ri-1) as follows:

 First set Ri-1 ≔ Li .

 Then compute Li-1 ≔ Ri ⊕ fi (Ri-1).

51

Inverting a Feistel
network

PROPOSITION 5.2 Let F be a keyed function defined
by a Feistel network.  
Then regardless of the mangler functions { f′i } and the
number of rounds, Fk is a permutation for any choice of k.

52

6.2.3 DES – The Data
Encryption Standard

53

The Data Encryption
Standard

 The Data Encryption Standard, or DES, was developed in the
1970s at IBM (with help from the National Security Agency)

 Adopted in 1977 as a Federal Information Processing Standard
(FIPS) for the US.

 In its basic form, DES is no longer considered secure due to
its short key length of 56 bits.

 Nevertheless, it remains in wide use today in its strengthened
form of triple-DES.

54

The Data Encryption
Standard

DES is of great historical significance, and has
undergone intensive scrutiny within the
cryptographic community, arguably more than any
other cryptographic algorithm in history.

The common consensus is that, relative to its key
length, DES is extremely secure.

Indeed, even after so many years, the best known
attack on DES in practice is a brute-force search
over all 256 possible keys.

55

The Design of DES

The DES block cipher is a 16-round Feistel network
with a block length of 64 bits and a key length of 56
bits.

The input/output length of a DES round function is 32
bits.

The round functions used in each of the 16 rounds of
DES are all derived from the same mangler function  
f′i = f′ .

56

The Design of DES

The key schedule of DES is used to derive a 48-bit sub-
key ki for each round from the 56-bit master key k.

The ith round function fi is defined as
 
 fi(R) def= f′(ki,R).

The round functions are non-invertible.

57

The Design of DES

The key schedule of DES is relatively simple, with
each sub-key ki being a permuted subset of 48 bits
from the master key.

 We will not describe the key schedule exactly. 

 It suffices for us to note that the 56 bits of the
master key are divided into two halves -- a “left half ”
and a “right half ” -- each containing 28 bits.

58

The Design of DES

 In each round, the left-most 24
bits of the sub-key are taken as
some subset of the 28 bits in the
left half of the master key, and the
right-most 24 bits of the sub-key are
taken as some subset of the 28 bits
in the right half of the master key.

59

The DES mangler
function f’

The mangler function in DES is constructed using a
paradigm we have previously analyzed:

It is (essentially) just a 1-round substitution-
permutation network!

60

The DES mangler
function f’

In more detail, computation of  
f ′(ki,R) with ki ∈ {0,1}48 and  
R ∈ {0,1}32 proceeds as follows:

 First, R is expanded to a 48-bit
value R′. This is done by simply
duplicating half the bits of R; we
denote this by R′ ≔ E(R) where
E represents the expansion
function.

R: ki:

61

The DES mangler
function f’

 Following this step, the
expanded va lue R′ i s
XORed with ki , and the
resulting value is divided
into 8 blocks, each of which
is 6 bits long.

R: ki:

62

The DES mangler
function f’

 Each block is passed through
a (different) S-box that takes a
6-bit input and yields a 4-bit
output; concatenating the
output from the 8 S-boxes gives
a 32-bit result.

 As the final step, a mixing
permutation is applied to the
bits of this result to obtain the
final output of f′.

R: ki:

63

The S-boxes
The eight S-boxes that form the “core” of f ′ are a
crucial element of the DES construction, and were
very carefully designed (reportedly, with the help of the
National Security Agency).

Studies of DES have shown that if small changes to the
S-boxes had been introduced, or if the S-boxes had
been chosen at random, DES would have been much
more vulnerable to attack.

Warning: seemingly arbitrary choices are not arbitrary
at all, and if not made correctly may render the entire
construction insecure.

64

The S-boxes

Recall that each S-box maps 6-bit strings to 4-bit strings.

Each S-box can be viewed as a table with 4 rows and 16
columns, where each cell of the table contains a 4-bit entry. 

A 6-bit input can be viewed as indexing one of the 26 = 64
cells of the table in the following way:

65

The S-boxes

 The first and last input bits are used to choose the table
row, and bits 2–5 are used to choose the column. 

 The 4-bit entry at a particular cell represents the output
value for the input associated with that position.

66

The S-boxes

1. Each S-box is a 4-to-1 function.

2. Each row in the table contains each of the 16
possible 4-bit strings exactly once. (That is, each row is
a permutation of the 16 possible 4-bit strings.)

3. Changing one bit of the input always changes at least
two bits of the output.

67

The DES avalanche
effect

The third property of the DES S-boxes described
above, along with the mixing permutation that is used in
the mangler function, ensure that DES exhibits a
strong avalanche effect.

68

The DES avalanche
effect

DES has 16 rounds, and so the avalanche effect is
completed early (8th round) in the computation.

This ensures that the computation of DES on similar
inputs yields completely independent-looking outputs.

We remark that the avalanche effect in DES is also due
to a careful choice of the mixing permutation, and in
fact it has been shown that a random mixing
permutation would yield weaker effect.

69

70

Chapter 6 :  
Practical Constructions of

Symmetric-Key Primitives

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

Attacks on Reduced-
Round Variants

Clearly DES with three rounds or fewer cannot be a
pseudorandom function because the avalanche effect is
not yet complete after only three rounds.

Thus, we will be interested in demonstrating more
difficult (and more damaging) key-recovery attacks which
compute the key k using only a relatively small number
of input/output pairs computed using that key.

71

Attacks on Reduced-
Round Variants of DES

 All the attacks below will be known-plaintext attacks
whereby the adversary has plaintext/ciphertext pairs
{(xi,yi)} with yi = DESk(xi) for some secret key k.

 When we describe the attacks, we will focus on a
particular input/output pair (x, y) and will describe
the information about the key that an adversary can
derive from this pair.

72

Single-round DES

In single-round DES, we have that y = (L1,R1) where
 L1 = R0 and R1 = L0 ⊕ f1(R0).
We therefore know an input/output pair for f1;
specifically, we know that f1(R0) = R1 ⊕ L0 (all these
values are known).

73

Single-round DES

By applying the inverse of the
mixing permutation to the output
R1 ⊕ L0 , we obtain the
intermediate value that contains
the outputs from all the S-boxes,
where the first 4 bits are the
output from the first S-box, the
next 4 bits are the output from
the second S-box, and so on.

This means that we have the
exact output of each S-box.

74

Single-round DES

Consider the (known) 4-bit output of the first S-box.

Recalling that each S-box is a 4-to-1 function, this
means that there are exactly four possible inputs to this
S-box that would result in the given output, and similarly
for all the other S-boxes; each such input is 6 bits long.

75

Single-round DES

The input to the S-boxes is
simply the XOR of E(R0) with
the key k1 used in this round.
(Actually, for single-round DES,
k1 is the only key.)

Since R0 is known, we conclude
that for each 6-bit portion of k1
there are four possible values
(and compute them).

76

Single-round DES

This means we have reduced the number of
possible keys k₁ from 248 to 448/6 = 48 = 216
(since there are four possibilities for each of the
eight 6-bit portions of k₁).

This is already a small number and so we can
just try all the possibilities on a different input/
output pair (x′, y′) to find the right one.

Recover full key using two known plaintexts in
time 216 .

77

Two-round DES

 In two-round DES, the output y is equal to (L2,R2) 
where
 L1 = R0 R1 = L2 = L0 ⊕ f1(R0)
 L2 = R1 = L0 ⊕ f1(R0) R2 = L1 ⊕ f2(R1).  

Note that L0, R0, L2, R2 are known from the input/
output pair and thus we also know

 L0 ⊕ L2 = f1(R0) and R0 ⊕ R2 = f2(L2).
78

Two-round DES

This means that we know the input/output of f1 and
f2 , and so the same method used in the attack on
single-round DES can be used here to determine both
k1 and k2 in time roughly 2 · 216.

This attack works even if k1 and k2 are completely
independent keys.

In fact, the key schedule of DES ensures that many of
the bits of k1 and k2 are equal, which can be used to
further speed up the attack.

79

Three-round DES

The time complexity of the attack is roughly 2· 228+224 < 230,
and its space complexity is 2· 212. An attack of this complexity
could be carried out on a standard personal computer.

80

The Security of DES

 After almost 30 years of intensive study, the best
known practical attack on DES is still just an
exhaustive search through its key space.

 Unfortunately, the 56-bit key length of DES is short
enough that an exhaustive search through all 256
possible keys is now feasible (though still non-trivial).

81

The Security of DES

 Already in the late ’70s there were strong objections
to the choice of such a short key for DES.

 Back then, the objection was theoretical as the
computational power needed to search through that
many keys was generally unavailable.

 The practicality of a brute force attack on DES
nowadays, however, was demonstrated in 1997 when a
number of DES challenges set up by RSA Security
were solved.

82

The Security of DES

 The first challenge was broken in 1997 by the
DESCHALL project using thousands of computers
coordinated across the Internet; the computation
took 96 days.

 A second challenge was broken the following year in
just 41 days by the distributed.net project.

 A significant breakthrough came later in 1998 when
the third challenge was solved in just 56 hours.

83

The Security of DES

 This impressive feat was achieved via a special-
purpose DES-breaking machine called Deep Crack that
was built by the Electronic Frontier Foundation at a
cost of $250,000.

 The latest challenge was solved in just over 22 hours  
.(a combined effort of Deep Crack and distributed.net).

 The bottom line is that DES has a key that is far too
short and cannot be considered secure for any
application today.

84

The Security of DES

 Looking ahead a bit, we note that the Advanced
Encryption Standard (AES) — the replacement for
DES — was explicitly designed to address concerns
regarding the short key length and block length of
DES.

 AES supports keys of length 128 bits (and more),
and a block length of 128 bits.

85

6.2.6 Advanced Cryptanalytic
Attacks on DES

 The successful brute-force attacks described above
do not utilize any internal weaknesses of DES.

 Indeed, for many years no such weaknesses were
known.

 The first breakthrough on this front was by Biham
and Shamir in the late ’80s who developed a
technique called differential cryptanalysis and used it to
design an attack on DES using less time than a
brute-force search.

86

Advanced Cryptanalytic
Attacks on DES

 Their specific attack takes time 237 (and uses
negligible memory) but requires the attacker to analyze
236 ciphertexts obtained from a pool of 247 chosen
plaintexts.

 While the existence of this attack was a breakthrough
result from a theoretical standpoint, it does not appear
to be of much practical concern since it is hard to
imagine any realistic scenario where an adversary can
obtain this many values in a chosen-plaintext attack.

87

Advanced Cryptanalytic
Attacks on DES

Eli Biham and Adi Shamir
88

Differential Cryptanalysis

Let ∆x, ∆y ∈ {0, 1}n. We say that the differential
(∆x, ∆y) appears with probability p if for random
inputs x1 and x2= x1 ⊕ ∆x and random choice of
key k, the probability that Fk(x1) ⊕ Fk(x2) = ∆y is p.

It is clear that for a random function, no
differential should appear with probability p much
higher than 2−n.

89

Advanced Cryptanalytic
Attacks on DES

1.Interestingly, the work of Biham and Shamir indicated
that the DES S-boxes had been specifically designed
to be resistant to differential cryptanalysis (to some
extent), suggesting that the technique of differential
cryptanalysis was known (but not publicly revealed) by
the designers of DES.

90

Advanced Cryptanalytic
Attacks on DES

2.After Biham and Shamir announced their
r e s u l t , t h e d e s i g n e r s o f D E S
(represented by Don Coppersmith)
claimed that they were indeed aware of
differential cryptanalysis and had
designed DES to thwart this type of
attack (but were asked by the NSA to
keep it quiet in the interests of national
security). Don Coppersmith

91

6.2.4 Increasing the Key
Length of a Block Cipher

The only known practical weakness of DES is its
relatively short key.

It thus makes sense to try to design a block cipher
with a larger key length using “basic” DES as a
building block.

Some approaches to doing so are discussed in this
section.

92

Internal tampering vs.
black-box constructions.

Although we refer to DES throughout the discussion,
and DES is the most prominent instance where these
techniques have been applied, everything we say here
applies generically to any block cipher.

The first approach would be to somehow modify the
internal structure of DES, while increasing the key length.

93

Internal tampering vs.
black-box constructions
For example, one could leave the mangler function
untouched and simply use a 128-bit master key with
a different key schedule (still choosing a 48-bit sub-
key in each round).

Or, one could change the S-boxes themselves and use
a larger sub-key in each round.

The disadvantage of this approach is that by modifying
DES — in even the smallest way — we lose the
confidence we have gained in DES by virtue of the
fact that it has remained secure for so many years.

94

Internal tampering vs.
black-box constructions

More to the point, cryptographic constructions are
very sensitive and thus even mild, seemingly-
insignificant changes can render the original
construction completely insecure.

Changing the internals of a block cipher is therefore
not recommended.

95

Internal tampering vs.
black-box constructions

 An alternative approach that does not suffer from the
above problem is to use DES as a “black box”.

 That is, in this approach we completely ignore the
internal structure of DES and treat it as a black box that
implements a “perfect” block cipher with a 56-bit key.

96

Internal tampering vs.
black-box constructions

 Then, a new cipher is constructed that uses only
invocations of the original unmodified DES.

 Since DES itself is not changed at all, this approach
is much more likely to lead to a secure cipher (though
it may also lead to a less efficient one).

97

Double Encryption

 Let F be a block cipher. Then a new block cipher F′
with a key that is twice the length of the original one is
defined by  
 F′k₁, k₂(x) def= Fk₂(F k₁(x)),  

where k₁ and k₂ are independent keys.

If F is DES then F′ is a block cipher taking a 112-bit key.

 If exhaustive search were the best available attack on F′,
a key length of 112 bits would be sufficient.

98

Double Encryption

Unfortunately, we now show an attack on F′ that
runs in time roughly 2n when the original keys k₁
and k₂ are each of length n (and the block length is
at least n);

 This is significantly less than the 22n time one would
hope would be necessary to carry out an exhaustive
search for a 2n-bit key.

 This means that the new block cipher is essentially
no better than the old one, even though it has a key
that is twice as long.

99

meet-in-the-middle
attack

100

meet-in-the-middle
attack

Say the adversary is given a single input/output pair
(x, y) where y = F′k₁,k₂(x) = Fk₂(Fk₁(x)). The adversary
will narrow down the set of possible keys in the
following way:

1. Set S ≔ ∅.

2. For each k₁ ∈ {0,1}n, compute z ≔ Fk₁(x) and store
(z,k₁) in a list L.

3. For each k₂ ∈ {0,1}n, compute z ≔ Fk−₂1(y) and store
(z,k₂) in a list L′.

101

meet-in-the-middle
attack

4. Sort L and L′, respectively, by their first components.

5. Say that an entry (z1,k1) in L and another entry
(z2,k₂) in L′ are a match if z1 = z2 . For each match of
this sort, add (k1,k₂) to S.

102

meet-in-the-middle
attack

103

meet-in-the-middle
attack

 The set S output by this algorithm contains exactly
those values (k₁,k2) for which y = F′k₁,k₂(x).

 This holds because it outputs exactly those values
(k₁,k₂) satisfying
 
 Fk₁(x) = F−k

1₂(y), 
 
which holds if and only if y = F′k₁,k₂(x).

104

meet-in-the-middle
attack

 If n is also the block length of F then a random pair
(k1, k2) is expected to satisfy Equation (5.3) with
probability roughly 2−n , and so the number of
elements in S will be approximately 22n /2n = 2n.

 Given another two input/output pairs and trying all
2n elements of S with respect to these pairs is
expected to identify the correct (k1, k2) with very
high probability.

105

Triple Encryption

The obvious generalization of the preceding approach is
to apply the block cipher three times in succession.

Two variants of this approach are common:

1. Variant 1 — three independent keys:
Choose 3 independent keys k1,k2,k3 and define

 F′k₁,k₂,k₃(x) def= Fk₃(Fk−₂1(Fk₁(x))).

106

Triple Encryption

The obvious generalization of the preceding
approach is to apply the block cipher three times in
succession.

Two variants of this approach are common:

2. Variant 2 — two independent keys:
Choose 2 independent keys k1,k2 and define

 F′k₁,k₂(x) def= Fk₁(Fk−₂1(Fk₁(x))).

107

Triple Encryption

 Before comparing the security of the two
alternatives we note that the middle invocation of
the original cipher is actually in the reverse direction.

 If F is a sufficiently good cipher this makes no
difference to the security, since if F is a strong
pseudorandom permutation then F−1 must be too.

108

Triple Encryption

The reason for this strange alternation between F,
F−1 , and F is so that if one chooses k1=k2=k3 ,the
result is a single invocation of F with k1.

This ensures backward compatibility (i.e., in order
to switch back to a single invocation of F , it
suffices to just set the keys to all be equal).

109

Security of the first
variant

 The key length of this variant is 3n (where, as
before, the key length of the original cipher F is n)
and so we might hope that the best attack on this
cipher would require time 23n.

 However, the cipher is susceptible to a meet-in-the-
middle attack just as in the case of double
encryption, though the attack now takes time 22n.

 This is the best known attack.

 Thus, although this variant is not as secure as we
might have hoped, it obtains sufficient security for all
practical purposes if n = 56.

110

Security of the second
variant

 The key length of this variant is 2n and so the best we
can hope for is security against attacks running in time
22n.

 There is no known attack with better time complexity
when the adversary is given only a single input/output pair.

 However, there is a known chosen-plaintext attack that
finds the key in time 2n using 2n chosen input/output
pairs. Despite this, it is still a reasonable choice in practice.

111

Triple-DES (3DES)

 Triple-DES is based on a triple invocation of DES
using two or three keys, as described above.

 It is widely believed to be highly secure and in 1999
officially replaced DES as a standard.

 Triple-DES is still widely used today and is
considered a very strong block cipher.

 Its only drawbacks are its relatively small block
length and the fact that it is quite slow since it
requires 3 full block cipher operations.

112

113

Chapter 6 :  
Practical Constructions of

Symmetric-Key Primitives

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

6.2.5 AES – The
Advanced Encryption

In January 1997, the United States National Institute of
Standards and Technology (NIST) announced that it
would hold a competition to select a new block cipher
— to be called the Advanced Encryption Standard, or
AES — to replace DES.

114

The Advanced Encryption
Standard

 The competition began with an open call for teams
to submit candidate block ciphers for evaluation.

 A total of 15 different algorithms were submitted
from all over the world, and these submissions
included the work of many of the very best
cryptographers and cryptanalysts today.

 Each team’s candidate cipher was intensively
analyzed by NIST, the public, the other teams.

115

The Advanced Encryption
Standard

 Two workshops were held, one in 1998 and one in
1999, at which cryptanalytic attacks of the various
submissions were shown.

 Following the second workshop, NIST narrowed
the field down to 5 “finalists” and the second round
of the competition began.

 A third AES workshop was held, inviting additional
scrutiny on the five finalists.

116

The Advanced Encryption
Standard

Joan Daemen and Vincent Rijmen 117

The Advanced Encryption
Standard

 In October 2000, NIST announced that the
winning algorithm was Rijndael (a block cipher
designed by Joan Daemen and Vincent Rijmen from
Belgium), though it conceded that any of the 5
finalists would have made an excellent choice.

 In particular, no serious security vulnerabilities were
found in any of the 5 finalists, and the selection of a
“winner” was based in part on properties such as
efficiency, flexibility, etc.

118

The AES construction

 The AES block cipher has a 128-bit block length
and can use 128-bit, 192-bit, or 256-bit keys.

 The length of the key affects the key schedule (i.e.,
the sub-key that is used in each round) as well as the
number of rounds, but does not affect the high-level
structure of each round.

119

The AES construction

 In contrast to DES that uses a Feistel structure,
AES is essentially a substitution-permutation
network.

 During computation of the AES algorithm, a 4-by-4
array of bytes called the state is modified in a series
of rounds.

 The state is initially set equal to the input to the
cipher (note that the input is 128 bits which is
exactly 16 bytes).

120

The AES construction
AddRoundKey

121

The AES construction

Stage 1 — AddRoundKey:

In every round of AES, a 128-bit sub-key is derived
from the master key, and is interpreted as a 4-by-4
array of bytes.

The state array is updated by XORing it with this sub-
key.

122

The AES construction

123

The AES construction

Stage 2 — SubBytes:

In this step, each byte of the state array is
replaced by another byte according to a single
fixed lookup table S .

This S-box is a bijection over {0,1}8.
We stress that there is only one S-box and it
is used for substituting all the bytes in the
state array, in every round.

124

a7

a6

a5

a4

a3

a2

a1

a0

0

1

1

0

0

0

1

1

1 1 1 1 0 0 0 1

1 1 1 0 0 0 1 1

1 1 0 0 0 1 1 1

1 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 0

0 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

b7

b6

b5

b4

b3

b2

b1

b0

⊕ =
-1*

 x-1 if x≠0

x-1*= .

 0 if x=0
{

125

⎛⎛ ⎛⎛⎛⎛ ⎛⎛ ⎛⎛ ⎛⎛ ⎛⎛ ⎛⎛

The AES construction

126

The AES construction

Stage 3 — ShiftRows:

In this step, the bytes in each row of the state
array are cyclically shifted to the left as follows:

 the first row of the array is untouched,
 the second row is shifted one place to the left,
 the third row is shifted two places to the left, and
 the fourth row is shifted three places to the left. 
 (All shifts are cyclic.)

127

The AES construction

128

The AES construction

Stage 4 — MixColumns:

In this step, an invertible linear transformation is applied
to each column.

One can think of this as matrix multiplication
(over the appropriate field).

129

(()) ()a0,c

a1,c

a2,c

a3,c

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02 =

b0,c

b1,c

b2,c

b3,c

ai,c

bi,c

0316 = 000000112 = 0x7+0x6+0x5+0x4+0x3+0x2+1x+1 = x+1

0216 = 000000102 = 0x7+0x6+0x5+0x4+0x3+0x2+1x+0 = x

0116 = 00000012 = 0x7+0x6+0x5+0x4+0x3+0x2+0x+1 = 1

130

The AES construction

By viewing stages 3 and 4 together as a “mixing”
step, we see that each round of AES has the
structure of a substitution-permutation network:

The round sub-key is first XORed with the input
to the current round;

Next, a small, invertible function is applied to
“chunks” of the resulting value;

Finally, the bits of the result are mixed in order to
obtain diffusion.

131

The AES construction

The only difference is that, unlike our general
description of substitution-permutation networks,
here the mixing step does not consist of a simple
permutation of the bits but is instead carried out
using an invertible linear transformation of the bits.

Simplifying things a bit and looking at a trivial 3-bit
example, an invertible linear transformation might
map x to ⟨ x1 ⊕ x2 ∥ x2 ⊕ x3 ∥ x1 ⊕ x2 ⊕ x3 ⟩.

132

The AES construction

The number of rounds in AES depends on the
length of the key.

There are 10 rounds for a 128-bit key, 12 rounds
for a 192-bit key, and 14 rounds for a 256-bit key.

In the final round of AES the MixColumns stage
is replaced with an additional AddRoundKey
step.

133

Security of AES

 As we have mentioned, the AES cipher was subject
to intensive scrutiny during the selection process and
this has continued ever since.

 To date, the only non-trivial cryptanalytic attacks that
have been found are for reduced-round variants of
AES.

 It is often hard to compare cryptanalytic attacks
because each tends to perform better with regard to
some parameter; we describe the complexity of one
set of attacks merely to give a flavor of what is known.

134

Security of AES

 Known attacks on 6-round AES for 128-bit keys
(using on the order of 272 encryptions), 8-round
AES for 192-bit keys (using on the order of 2188
encryptions), and 8-round AES for 256-bit keys
(using on the order of 2204 encryptions).

 We stress that the above attacks are for reduced-
round variants of AES, and as of today no attack
better than exhaustive key search is known for the
full AES construction.

135

Security of AES

136

There are a number of practical constructions of stream
ciphers available, and these are typically extraordinarily fast.

Linear feedback shift registers (LFSRs) have, historically,
been popular as stream ciphers. However, they have been
shown to be horribly insecure (to the extent that the key
can be completely recovered given sufficiently-many bytes
of the output) and so should never be used today.

6.1 Practical Constructions of  
Stream Ciphers

137

Stream Ciphers
in Practice: RC4

A popular example is the stream cipher RC4 which is widely
considered to be secure when used appropriately (see below).

The security of practical stream ciphers is not yet very well
understood, particularly in comparison to block ciphers.

138

Stream ciphers in
practice : RC4

For example, “plain” RC4 (still widely deployed) is
now known to have some significant weaknesses.

For one, the first few bytes of the output stream
generated by RC4 have been shown to be biased.

It was also shown that this weakness can be used
to feasibly break the WEP encryption protocol
used in 802.11 wireless networks.

If RC4 is to be used, the first 1024 bits or so of
the output stream should be discarded.

139

Let p be a large prime with known factorisation of
p-1. Let g be a primitive element mod p.

Let s0 be a random seed, 1 ≤ s0 ≤ p. Consider the
sequence si+1 ≔ gsi mod p and the generator 
 

 G : s0 ⟼ half(s0) ∥ half(s1) ∥... ∥half(s ℓ)  
 

where “∥” stands for concatenation and 
 half(x) = 0 if 0 ≤ x ≤ (p-1)/2  
 1 if (p+1)/2 ≤ x ≤ p-1.

G is pseudorandom unless discrete log mod p is easy.

Stream ciphers
in practice? : Blum-Micali

{
140

141

tasks

security
Encryption Authentication Identification Quantum

Symmetric
Informational

Miller-Vernam
One-Time PAD

Wegman-Carter
Universal Hash

Simple
Solutions

Quantum
Key

Distribution

Symmetric
Computational

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

Quantum
Attacks,
Q-Safety

Asymmetric
Computational

RSA, ElGammal,
Blum-

Goldwasser
RSA, DSA, etc

Guilloux-
Quisquater,
Schnor, etc

Quantum
Attacks,
Q-Safety

DONE IN PROGRESS TO DO GIVE UP

142

Chapter 6 :  
Practical Constructions of

Symmetric-Key Primitives

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

Attack on a two-round
Subs-Per Network

 Let the block length of the cipher be 64 bits, and let each S-
box have a 4-bit input/output length.

 Furthermore, let the key k be of length 128 bits where the
first half ka ∈ {0,1}64 of the key is used in the first round and
the second half kb ∈ {0,1}64 is used in the second round.  

 We use independent keys here to simplify the description of
the attack below, but this only makes the attack more difficult.

EXTRA.SLIDES.••••...143...•••.EXTRA.SLIDES

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

16
. . .

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

16
. . .

ka

kb

x

y
EXTRA.SLIDES.••••...144...•••.EXTRA.SLIDES

Attack on a two-round
Subs-Per Network

 Say the adversary is given an input x and the output y = Fk(x)
of the cipher. 

 The adversary begins by “working backward”, inverting the
mixing permutation and S-boxes in the second round of the
cipher (as in the previous attack).  

 Denote by w1 the first 4 bits of the result. Letting α1 denote
the first 4 bits of the output of the first round, we have that 
 w1 = α1 ⊕ k1b, where k1b denotes the first 4 bits of kb.

EXTRA.SLIDES.••••...145...•••.EXTRA.SLIDES

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

16
. . .

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

16
. . .

ka

kb

x

y

w1

α1α

w
k1b

EXTRA.SLIDES.••••...146...•••.EXTRA.SLIDES

Attack on a two-round
Subs-Per Network

The important observation here is that when
“working forward” starting with the input x, the
value of α1 is influenced by at most 4 different S-
boxes (because, in the worst case, each bit of α1
comes from a different S-box in the first round).

Furthermore, since the mixing permutation of the
first round is known, the adversary knows exactly
which of the S-boxes influence α1.

EXTRA.SLIDES.••••...147...•••.EXTRA.SLIDES

Attack on a two-round
Subs-Per Network

This, in turn, means that at most 16 bits of the key
ka (in known positions) influence the computation of
these four S-boxes.

It follows that the adversary can guess the
appropriate 16 bits of ka and the 4-bit value k1b, and
then verify possible correctness of this guess using
the known input/output pair (x,y).

EXTRA.SLIDES.••••...148...•••.EXTRA.SLIDES

Attack on a two-round
Subs-Per Network

This verification is carried out by XORing the
relevant 16 bits of the input x with the relevant 16
bits of ka, computing the resulting α1 , and then
computing k1b = w1 ⊕ α1.

Proceeding in this way, the adversary can exhaustively
find all values of these 16 bits of the key that are
consistent with the given (x, y).

This takes time 216 to try all possibilities.

EXTRA.SLIDES.••••...149...•••.EXTRA.SLIDES

