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6.2 Practical Constructions of 
Pseudorandom Permutations  

(Block Ciphers)

The constructions of block ciphers that we will 
explore in this chapter are heuristic, at  least in the 
sense that they have no known proof of security 
based on any weaker assumption. 

 Nevertheless, a number of the block ciphers that are 
used in practice have withstood many years of public 
scrutiny and attempted cryptanalysis. 

 It is quite reasonable to assume that these block 
ciphers are (strong) peudorandom permutations.
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The requirement that a certain problem (i.e., 
factoring) be hard to solve seems “easier to satisfy” 
than the requirement that a given keyed function be 
indistinguishable from a random function.  

  Less important but still relevant differences 
between the assumptions are that the problem of 
factoring has been studied much longer than the 
problem of distinguishing DES from a random 
function.

6.2 Practical Constructions of 
Pseudorandom Permutations  

(Block Ciphers)
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 The fact that factoring was recognized as a hard 
mathematical problem well before the advent of 
cryptographic schemes based on it.

 Most of the cryptanalytic effort directed at DES 
and other block ciphers has focused on key-recovery 
attacks, where the goal is to recover the key k given 
multiple pairs (x, DESk(x)).

6.2 Practical Constructions of 
Pseudorandom Permutations  

(Block Ciphers)
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Block Ciphers as Strong 
Pseudorandom Perm’s

The view that block ciphers should be modelled as 
pseudorandom permutations has, at least in the 
recent past, served as a major influence in their 
design. 

As an example, the call for proposals for the recent 
Advanced Encryption Standard (AES) that we will 
encounter later in this chapter stated the following 
evaluation criteria: 
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Block Ciphers as Strong 
Pseudorandom Perm’s

The security provided by an algorithm is the most 
important factor. . . . Algorithms will be judged on the 
following factors. . . 

The extent to which the algorithm output is 
indistinguishable from a random permutation on the 
input block.
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Block Ciphers as Strong 
Pseudorandom Perm’s

Essentially, this states that a block cipher should be a 
pseudorandom permutation.

It is unclear to what extent submitted proposals 
were eva lua ted a s s t rong p seudorandom 
permutations. 

Had an attack been demonstrated showing that 
some proposal did not satisfy this criterion, it is 
unlikely the proposal would have been adopted.
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Attacks on Block Ciphers

Ciphertext-only attacks, where the attacker is given 
only outputs {Fk(xi)} for some unknown inputs {xi}.

Known-plaintext attacks, where the attacker is given 
pairs of inputs and outputs {(xi, Fk(xi))}.

Chosen-plaintext attacks, where the attacker is given  
{(xi, Fk(xi)} for inputs {xi} chosen by the attacker. 

Chosen-ciphertext attacks, where the attacker is given 
{(xi, Fk(xi)} and {(Fk−

1(yi), yi)} for {xi}, {yi} chosen 
by the attacker.
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Attacks on Block Ciphers

This is interpreted very strictly in the context of 
block ciphers, and a block cipher is generally only 
considered “good” if the best known attack has time 
complexity roughly equivalent to a brute-force 
search for the key. 

If a cipher with key length n = 112 can be broken in 
time 256 (we will see such an example later), the 
cipher is (generally) considered insecure even though 
256 is still a relatively  large number.
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6.2.1 Substitution-
Permutation Networks 

The main property required of a block cipher is that 
it should behave like a random permutation.

Of course, a truly random permutation would be too 
big to describe.

We need to somehow construct a concise function 
that behaves like a random one. 
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The confusion-diffusion 
paradigm

In addition to his work on perfect secrecy, 
Claude Shannon introduced a basic 
paradigm for constructing concise random-
looking permutations.
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The confusion-diffusion 
paradigm

The basic idea is to construct a random-looking 
permutation F with a  large block  length from many 
smaller random-looking permutations {fi} having a small 
block  length.
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The confusion-diffusion 
paradigm

Say we want F to have a block  length of 128 bits.
Define F as follows:  

 The key k for F will specify 16 random permutations 
f1,...,f16 that each have an 8-bit  block length. 
 

 Given an input x ∈ {0,1}128, we parse it as 16 
consecutive 8-bit blocks x1··· x16 and then set 
 

                       Fk(x) ≔ f1(x1)···f16(x16).  
 

 (Informally) these {f} introduce confusion into F .
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The confusion-diffusion 
paradigm

First, a diffusion step is introduced whereby the bits 
of the output are permuted or “mixed”.

Second, the confusion/diffusion steps — together 
called a round — are repeated multiple times.
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The confusion-diffusion 
paradigm

As an example, a two-round block cipher would 
operate as follows: 

 First, x′ ≔ Fk(x) would be computed.  

 Then the bits of x′ would be re-ordered to give x1.  

 Then x′1 ≔ Fk(x1) would be computed, and the bits 
of x′1 would be re-ordered to give the output x2 .
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The confusion-diffusion 
paradigm

Repeated use of confusion and diffusion ensures that 
any small change in the input will be mixed 
throughout and propagated to all the bits of the 
output. 

The effect is that small changes to the input have a 
significant effect on the output, as one would expect 
of a random permutation.
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Substitution- 
Permutation 

Network
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Substitution-Permutation 
Network

A substitution-permutation network can be 
viewed as a direct implementation of the 
confusion-diffusion paradigm

The main difference here is that we view the 
round functions {fi} as being fixed, and the key is 
used for a different purpose. 

We now refer to the {fi} as S-boxes. 
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Substitution-Permutation 
Network

A substitution-permutation network essentially 
follows the steps of the confusion-diffusion paradigm 
outlined earlier.

Since the S-boxes no longer depend on the key, we 
need to introduce dependence in some other way. 

(In accordance with Kerckhoffs’ principle, we assume 
that the exact structure of the S-boxes and the mixing 
permutations are publicly-known, with the only secret 
being the key.)
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Substitution-Permutation 
Network

 There are many ways this can be done.

 We will focus here on the case where this is done by 
simply XORing some function of the key with the 
intermediate results that are fed as input to each round 
of the network.
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Substitution-Permutation 
Network
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Substitution-Permutation 
Network

 The key to the block cipher is sometimes referred 
to as the master key.

 The sub-keys that are XORed with the 
intermediate results in each round are derived from 
the master key according to a key schedule.

 Key schedule is often very simple and may work by 
just taking subsets of the bits of the key, though more 
complex schedules can also be defined.
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Design principle 1 — 
invertibility of the S -boxes

In a substitution-permutation network, the 
S-boxes must be invertible; that is, they must be 
one-to-one and onto functions.

The reason for this is that otherwise the block 
cipher will not be a permutation. 

To see that making the S-boxes one-to-one and 
onto suffices, we show that when this holds it is 
possible to fully determine the input given the 
output and the key.

24



Invertibility of  
the S -boxes

Specifically, we show that every round can be 
inverted.

This implies that the entire network can be 
inverted by working from the end back to the 
beginning.
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Invertibility of  
the S -boxes
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Invertibility of  
the S -boxes

PROPOSITION 6.3 Let F be a keyed function defined 
by a substitution-permutation network in which the S-boxes 
are all one-to-one and onto. Then regardless of the key 
schedule and the number of rounds, Fk is a permutation for 
any choice of k.
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Design principle 2 —  
the avalanche effect
An important property in any block cipher is that 
small changes to the input must result in large 
changes to the output.

Otherwise, the outputs of the block cipher on two 
similar inputs will not  look independent 

(whereas in a random permutation, the outputs of 
any two unequal inputs are independently 
distributed).

28



the avalanche effect

Block ciphers are designed to exhibit the avalanche 
effect, meaning that changing a single bit of the 
input affects every bit of the output.

(This does not mean that changing one bit of the 
input changes every bit of the output, only that it 
has some effect on every bit of the output.) 
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the avalanche effect
It is easy to demonstrate that the avalanche effect 
holds in a substitution-permutation network 
provided that the following two properties hold (and 
sufficiently-many rounds are used):

1.The S-boxes are designed so that changing a single bit of 
the input to an S-box changes at least two bits in the 
output of the S-box. 

2.The mixing permutations are designed so that the output 
bits of any given S-box are spread into different S-boxes 
in the next round.
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the avalanche effect
Consider now what happens when the block cipher is 
applied to two inputs that differ by only a single bit:

1. After the first round, the intermediate values differ in 
exactly two bit-positions.  
 
This is because XORing the current sub-key maintains 
the 1-bit difference in the intermediate values, and so 
the inputs to all the S-boxes except one are identical. 
 
In the one S-box where the inputs differ, the output of 
the S-box causes a 2-bit difference. The mixing 
permutation applied to the results changes the positions 
of these differences, but maintains a 2-bit difference.
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the avalanche effect
2. By the second property mentioned earlier, the mixing 
permutation applied at the end of the first round spreads 
the two bit-positions where the intermediate results 
differ into two different S-boxes in the second round. 
 
So, in the second round there are now two S-boxes that 
receive inputs differing by a single bit.  
 
Following the same argument as before, we see that at 
the end of the second round the intermediate values 
differ in 4 bits. 
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the avalanche effect

 One might expect that the “best” way to design S-
boxes would be to choose them at random. 

 Interestingly, this turns out not to be the case, at 
least if we  want to satisfy the above criterion. 

 For example, consider the case of an S-box 
operating on 4-bit inputs and let x and x′ be two 
different inputs.

  Let y ≔ S(x), and now consider choosing y′ ≠ y at 
random as the value of S(x′).
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the avalanche effect
There are 4 strings that differ from y in only 1 bit, 
and so with probability 4/15 we will choose y′ 
that does not differ from y in two or more bits. 

The problem is compounded when we consider all 
inputs, and becomes even worse when we 
consider that multiple S-boxes are needed. 

We conclude based on this example that, as a 
general rule, it is best to carefully design S-boxed 
with certain desired properties (in addition to the 
one discussed above) rather than choosing them 
blindly at random. 
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Security of Substitution-
Permutation Networks

Experience, along with many years of cryptanalytic 
effort, indicate that substitution-permutation 
networks are a good choice for constructing pseudo-
random permutations as long as great care is taken in 
the choice of the S-boxes, the mixing permutations, 
and the key schedule. 

 The Advanced Encryption Standard (AES), 
described in Section 5.5, is similar in structure to 
the substitution-permutation network described 
above, and is widely believed to be a very strong 
pseudorandom permutation. 
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Security of Substitution-
Permutation Networks

It is important to understand, however, that the 
strength of a cipher constructed in this way depends 
heavily on the number of rounds used.
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Attacks on reduced-
round Subs-Per Network

Attack on a single-round substitution-permutation network:  
Let F be a single-round substitution-permutation 
network. 

We demonstrate an attack where the adversary is 
given only a single input/output pair (x,y) for a 
randomly-chosen input value x, and easily learns the 
secret key k for which y = Fk(x).

37



Attacks on reduced-
round Subs-Per Network

The adversary begins with the output value y and 
then inverts the mixing permutation and the S-boxes. 
It can do this because the specification of the 
permutation and the S-boxes is public.
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Attacks on reduced-
round Subs-Per Network

The intermediate value that the adversary computes 
from these inversions is exactly x ⊕ k (assuming, 
without loss of generality, that the master key is used 
as the sub-key in the only round of the network).
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Attack on a single-round 
Subs-Per Network

Since the adversary also has the input x, it 
immediately derives the secret key k.

This is therefore a complete break.
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6.2.2 Feistel Networks

Horst Feistel
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Feistel Networks

 A Feistel network is an alternative approach for 
constructing a block cipher. 

 The low-level building blocks (S-boxes, mixing 
permutations, and a key schedule) are the same.

 The difference is in the high-level design.
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Feistel Networks

A Feistel network is a way of constructing an invertible 
function from non-invertible components.
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Feistel Networks

The advantage of Feistel networks over 
substitution-permutation networks is that a Feistel 
network eliminates the requirement that S-boxes 
be invertible.

This is important because a good block cipher 
should have “unstructured” behavior.

however, requiring that all the components of the 
construction be invertible inherently introduces 
structure.
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Feistel Networks

 In a Feistel network, round functions need not be 
invertible. 

 Round functions typically contain components  like 
S-boxes and mixing permutations. 

 But a Feistel network can deal with any round 
functions irrespective of their design. When the 
round functions are constructed from S-boxes.
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Feistel Networks

 The ith round of a Feistel network operates as 
follows. 

 The input to the round is divided into two halves 
denoted Li-1 and Ri-1. 

 If the block length of the cipher is n bits, then Li-1 
and Ri-1 each have length n/2.

 The ith round function fi will take an n/2-bit input 
and produce an n/2-bit output.
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Feistel Networks

The output (Li,Ri) of the round is given by 

Li ≔ Ri-1 and Ri ≔ Li-1 ⊕ fi (Ri-1).

In a t-round Feistel network, the n-bit 
input to the network is parsed as (L0,R0), 
and the output is the n-bit value (Lt,Rt) 
obtained after applying all t rounds.
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Feistel Networks

The master key k is used to derive sub-keys that 
are used in each round.

The ith round function fi depends on the ith sub-
key, denoted ki .
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Feistel Networks

Formally, the design of a Feistel network specifies a 
publicly-known mangler function fi′ associated with 
each round i. 

This function fi ′ takes as input a sub-key ki and an 
n/2-bit string and outputs an n/2-bit string.

When the master key is fixed the ith round 
function fi is defined via fi(R) def= fi ′(ki, R). 
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Inverting a Feistel 
network

 A Feistel network is invertible regardless of the round 
functions {fi} (and of the mangler functions {fi ′}). 

 Given the output (Li, Ri) of the ith round, we can 
compute (Li-1, Ri-1) as follows: 

 First set Ri-1 ≔ Li . 

 Then compute Li-1 ≔ Ri ⊕ fi (Ri-1). 
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Inverting a Feistel 
network

PROPOSITION 5.2 Let F be a keyed function defined 
by a Feistel network.  
Then regardless of the mangler functions { f′i } and the 
number of rounds, Fk is a permutation for any choice of k. 
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6.2.3 DES – The Data 
Encryption Standard
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The Data Encryption 
Standard

 The Data Encryption Standard, or DES, was developed in the 
1970s at IBM (with help from the National Security Agency)

 Adopted in 1977 as a Federal Information Processing Standard 
(FIPS) for the US.

 In its basic form, DES is no longer considered secure due to 
its short key length of 56 bits. 

 Nevertheless, it remains in wide use today in its strengthened 
form of triple-DES.
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The Data Encryption 
Standard

DES is of great historical significance, and has 
undergone intensive scrutiny within the 
cryptographic community, arguably more than any 
other cryptographic algorithm in history.

The common consensus is that, relative to its key 
length, DES is extremely secure.

Indeed, even after so many years, the best known 
attack on DES in practice is a brute-force search 
over all 256 possible keys.
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The Design of DES

The DES block cipher is a 16-round Feistel network 
with a block length of 64 bits and a key length of 56 
bits.

The input/output length of a DES round function is 32 
bits. 

The round functions used in each of the 16 rounds of 
DES are all derived from the same mangler function  
f′i = f′  . 
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The Design of DES

The key schedule of DES is used to derive a 48-bit sub-
key ki for each round from the 56-bit master key k.

The ith round function fi is defined as
 
                             fi(R) def=  f′(ki,R). 

The round functions are non-invertible.
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The Design of DES

The key schedule of DES is relatively simple, with 
each sub-key ki being a permuted subset of 48 bits 
from the master key. 

  We will not describe the key schedule exactly. 
 
 It suffices for us to note that the 56 bits of the 
master key are divided into two halves -- a “left half ” 
and a “right half ” -- each containing 28 bits. 
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The Design of DES

 In each round, the left-most 24 
bits of the sub-key are taken as 
some subset of the 28 bits in the 
left half of the master key, and the 
right-most 24 bits of the sub-key are 
taken as some subset of the 28 bits 
in the right half of the master key.
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The DES mangler 
function f’

The mangler function in DES is constructed using a 
paradigm we have previously analyzed: 

It is (essentially) just a 1-round substitution-
permutation network! 
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The DES mangler 
function f’

In more detail, computation of  
f ′(ki,R) with ki ∈ {0,1}48 and  
R ∈ {0,1}32 proceeds as follows: 

 First, R is expanded to a 48-bit 
value R′. This is done by simply 
duplicating half the bits of R; we 
denote this by R′ ≔ E(R) where 
E represents the expansion 
function.

R:                ki:
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The DES mangler 
function f’

 Following this step, the 
expanded va lue R′ i s 
XORed with ki , and the 
resulting value is divided 
into 8 blocks, each of which 
is 6 bits long.

R:                ki:
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The DES mangler 
function f’

 Each block is passed through 
a (different) S-box that takes a 
6-bit input and yields a 4-bit 
output; concatenating the 
output from the 8 S-boxes gives 
a 32-bit result. 

 As the final step, a mixing 
permutation is applied to the 
bits of this result to obtain the 
final output of  f′.

R:                ki:
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The S-boxes
The eight S-boxes that form the “core” of f ′  are a 
crucial element of the DES construction, and were 
very carefully designed (reportedly, with the help of the 
National Security Agency). 

Studies of DES have shown that if small changes to the 
S-boxes had been introduced, or if the S-boxes had 
been chosen at random, DES would have been much 
more vulnerable to attack. 

Warning: seemingly arbitrary choices are not arbitrary 
at all, and if not made correctly may render the entire 
construction insecure. 
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The S-boxes

Recall that each S-box maps 6-bit strings to 4-bit strings.

Each S-box can be viewed as a table with 4 rows and 16 
columns, where each cell of the table contains a 4-bit entry. 
 
A 6-bit input can be viewed as indexing one of the 26 = 64 
cells of the table in the following way:
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The S-boxes

 The first and last input bits are used to choose the table 
row, and bits 2–5 are used to choose the column. 
 
 The 4-bit entry at a particular cell represents the output 
value for the input associated with that position.
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The S-boxes

1. Each S-box is a 4-to-1 function. 

2. Each row in the table contains each of the 16 
possible 4-bit strings exactly once. (That is, each row is 
a permutation of the 16 possible 4-bit strings.)

3. Changing one bit of the input always changes at least 
two bits of the output. 

67



The DES avalanche 
effect

The third property of the DES S-boxes described 
above, along with the mixing permutation that is used in 
the mangler function, ensure that DES exhibits a 
strong avalanche effect.
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The DES avalanche 
effect

DES has 16 rounds, and so the avalanche effect is 
completed early (8th round) in the computation.

This ensures that the computation of DES on similar 
inputs yields completely independent-looking outputs.

We remark that the avalanche effect in DES is also due 
to a careful choice of the mixing permutation, and in 
fact it has been shown that a random mixing 
permutation would yield weaker effect.
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Attacks on Reduced-
Round Variants

Clearly DES with three rounds or fewer cannot be a 
pseudorandom function because the avalanche effect is 
not yet complete after only three rounds. 

Thus, we will be interested in demonstrating more 
difficult (and more damaging) key-recovery attacks which 
compute the key k using only a relatively small number 
of input/output pairs computed using that key.
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Attacks on Reduced-
Round Variants of DES

 All the attacks below will be known-plaintext attacks 
whereby the adversary has plaintext/ciphertext pairs 
{(xi,yi)} with yi = DESk(xi) for some secret key k. 

 When we describe the attacks, we will focus on a 
particular input/output pair (x, y) and will describe 
the information about the key that an adversary can 
derive from this pair.
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Single-round DES

In single-round DES, we have that y = (L1,R1) where
                  L1 = R0 and R1 = L0 ⊕ f1(R0). 
We therefore know an input/output pair for f1; 
specifically, we know that f1(R0) = R1 ⊕ L0 (all these 
values are known). 
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Single-round DES

By applying the inverse of the 
mixing permutation to the output 
R1 ⊕ L0 , we obtain the 
intermediate value that contains 
the outputs from all the S-boxes, 
where the first 4 bits are the 
output from the first S-box, the 
next 4 bits are the output from 
the second S-box, and so on.

This means that we have the 
exact output of each S-box. 
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Single-round DES

Consider the (known) 4-bit output of the first S-box. 

Recalling that each S-box is a 4-to-1 function, this 
means that there are exactly four possible inputs to this 
S-box that would result in the given output, and similarly 
for all the other S-boxes; each such input is 6 bits long.
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Single-round DES

The input to the S-boxes is 
simply the XOR of E(R0) with 
the key k1 used in this round. 
(Actually, for single-round DES, 
k1 is the only key.) 

Since R0 is known, we conclude 
that for each 6-bit portion of k1 
there are four possible values 
(and compute them).
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Single-round DES

This means we have reduced the number of 
possible keys k₁ from 248 to 448/6 = 48 = 216 
(since there are four possibilities for each of the 
eight 6-bit portions of k₁ ). 

This is already a small number and so we can 
just try all the possibilities on a different input/
output pair (x′, y′) to find the right one.

Recover full key using two known plaintexts in 
time 216 . 
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Two-round DES

 In two-round DES, the output y is equal to (L2,R2) 
where 
           L1 = R0                       R1 = L2 = L0 ⊕ f1(R0) 
           L2 = R1 = L0 ⊕ f1(R0)        R2 = L1 ⊕ f2(R1).  
 

Note that L0, R0, L2, R2 are known from the input/
output pair and thus we also know

            L0 ⊕ L2 = f1(R0)   and    R0 ⊕ R2 = f2(L2).
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Two-round DES

This means that we know the input/output of f1 and 
f2 , and so the same method used in the attack on 
single-round DES can be used here to determine both 
k1 and k2 in time roughly 2 · 216.
 
This attack works even if k1 and k2 are completely 
independent keys.

In fact, the key schedule of DES ensures that many of 
the bits of k1 and k2 are equal, which can be used to 
further speed up the attack. 
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Three-round DES

The time complexity of the attack is roughly 2· 228+224 < 230, 
and its space complexity is 2· 212. An attack of this complexity 
could be carried out on a standard personal computer.
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The Security of DES

 After almost 30 years of intensive study, the best 
known practical attack on DES is still just an 
exhaustive search through its key space. 

 Unfortunately, the 56-bit key length of DES is short 
enough that an exhaustive search through all 256 
possible keys is now feasible (though still non-trivial).
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The Security of DES

 Already in the late ’70s there were strong objections 
to the choice of such a short key for DES. 

 Back then, the objection was theoretical as the 
computational power needed to search through that 
many keys was generally unavailable. 

 The practicality of a brute force attack on DES 
nowadays, however, was demonstrated in 1997 when a 
number of DES challenges set up by RSA Security 
were solved.
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The Security of DES

 The first challenge was broken in 1997 by the 
DESCHALL project using thousands of computers 
coordinated across the Internet; the computation 
took 96 days. 

 A second challenge was broken the following year in 
just 41 days by the distributed.net project.

 A significant breakthrough came  later in 1998 when 
the third challenge was solved in just 56 hours. 
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The Security of DES

 This impressive feat was achieved via a special-
purpose DES-breaking machine called Deep Crack that 
was built by the Electronic Frontier Foundation at a 
cost of $250,000. 

 The  latest challenge was solved in just over 22 hours   
.(a combined effort of Deep Crack and distributed.net).

 The bottom line is that DES has a key that is far too 
short and cannot be considered secure for any 
application today. 

84



The Security of DES

  Looking ahead a bit, we note that the Advanced 
Encryption Standard (AES) — the replacement for 
DES — was explicitly designed to address concerns 
regarding the short key length and block length of 
DES. 

 AES supports keys of  length 128 bits (and more), 
and a block length of 128 bits.
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6.2.6 Advanced Cryptanalytic 
Attacks on DES

 The successful brute-force attacks described above 
do not utilize any internal weaknesses of DES. 

 Indeed, for many years no such weaknesses were 
known. 

 The first breakthrough on this front was by Biham 
and Shamir in the late ’80s who developed a 
technique called differential cryptanalysis and used it to 
design an attack on DES using  less time than a 
brute-force search. 
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Advanced Cryptanalytic 
Attacks on DES

 Their specific attack takes time 237 (and uses 
negligible memory) but requires the attacker to analyze 
236 ciphertexts obtained from a pool of 247 chosen 
plaintexts. 

 While the existence of this attack was a breakthrough 
result from a theoretical standpoint, it does not appear 
to be of much practical concern since it is hard to 
imagine any realistic scenario where an adversary can 
obtain this many values in a chosen-plaintext attack. 
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Advanced Cryptanalytic 
Attacks on DES

Eli Biham and Adi Shamir
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Differential Cryptanalysis

Let ∆x, ∆y ∈ {0, 1}n. We say that the differential  
(∆x, ∆y) appears with probability p if for random 
inputs x1 and x2= x1 ⊕ ∆x and random choice of 
key k, the probability that Fk(x1) ⊕ Fk(x2) = ∆y is p. 

It is clear that for a random function, no 
differential should appear with probability p much 
higher than 2−n.
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Advanced Cryptanalytic 
Attacks on DES

1.Interestingly, the work of Biham and Shamir indicated 
that the DES S-boxes had been specifically designed 
to be resistant to differential cryptanalysis (to some 
extent), suggesting that the technique of differential 
cryptanalysis was known (but not publicly revealed) by 
the designers of DES.

90



Advanced Cryptanalytic 
Attacks on DES

2.After Biham and Shamir announced their 
r e s u l t , t h e d e s i g n e r s o f D E S 
(represented by Don Coppersmith) 
claimed that they were indeed aware of 
differential cryptanalysis and had 
designed DES to thwart this type of 
attack (but were asked by the NSA to 
keep it quiet in the interests of national 
security). Don Coppersmith
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6.2.4 Increasing the Key 
Length of a Block Cipher

The only known practical weakness of DES is its 
relatively short key. 

It thus makes sense to try to design a block cipher 
with a larger key length using “basic” DES as a 
building block. 

Some approaches to doing so are discussed in this 
section.
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Internal tampering vs. 
black-box constructions.

Although we refer to DES throughout the discussion, 
and DES is the most prominent instance where these 
techniques have been applied, everything we say here 
applies generically to any block cipher. 

The first approach would be to somehow modify the 
internal structure of DES, while increasing the key length.
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Internal tampering vs. 
black-box constructions
For example, one could leave the mangler function 
untouched and simply use a 128-bit master key with 
a different key schedule (still choosing a 48-bit sub-
key in each round). 

Or, one could change the S-boxes themselves and use 
a larger sub-key in each round. 

The disadvantage of this approach is that by modifying 
DES — in even the smallest way — we  lose the 
confidence we have gained in DES by virtue of the 
fact that it has remained secure for so many years.
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Internal tampering vs. 
black-box constructions

More to the point, cryptographic constructions are 
very sensitive and thus even mild, seemingly-
insignificant changes can render the original 
construction completely insecure.

Changing the internals of a block cipher is therefore 
not recommended.
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Internal tampering vs. 
black-box constructions

 An alternative approach that does not suffer from the 
above problem is to use DES as a “black box”. 

 That is, in this approach we completely ignore the 
internal structure of DES and treat it as a black box that 
implements a “perfect” block cipher with a 56-bit key.
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Internal tampering vs. 
black-box constructions

  Then, a new cipher is constructed that uses only 
invocations of the original unmodified DES. 

  Since DES itself is not changed at all, this approach 
is much more likely to lead to a secure cipher (though 
it may also lead to a less efficient one).
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Double Encryption

  Let F be a block cipher. Then a new block cipher F′ 
with a key that is twice the  length of the original one is 
defined by  
                        F′k₁, k₂(x) def= Fk₂(F k₁(x)),  

where k₁ and k₂ are independent keys. 

If F is DES then F′ is a block cipher taking a 112-bit key. 

 If exhaustive search were the best available attack on F′, 
a key length of 112 bits would be sufficient.
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Double Encryption

Unfortunately, we now show an attack on F′ that 
runs in time roughly 2n when the original keys k₁ 
and k₂ are each of length n (and the block length is 
at least n); 

 This is significantly less than the 22n time one would 
hope would be necessary to carry out an exhaustive 
search for a 2n-bit key.

 This means that the new block cipher is essentially 
no better than the old one, even though it has a key 
that is twice as long.
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meet-in-the-middle 
attack
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meet-in-the-middle 
attack

Say the adversary is given a single input/output pair
(x, y) where y = F′k₁,k₂(x) = Fk₂(Fk₁(x)).  The adversary 
will narrow down the set of possible keys in the 
following way:
 
1. Set S ≔ ∅.

2. For each k₁ ∈ {0,1}n, compute z ≔ Fk₁(x) and store 
(z,k₁) in a  list L.

3. For each k₂ ∈ {0,1}n, compute z ≔ Fk−₂1(y) and store 
(z,k₂) in a  list L′.

101



meet-in-the-middle 
attack

4. Sort L and L′, respectively, by their first components.

5. Say that an entry (z1,k1) in L and another entry 
(z2,k₂) in L′ are a match if z1 = z2 . For each match of 
this sort, add (k1,k₂) to S. 
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meet-in-the-middle 
attack
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meet-in-the-middle 
attack

 The set S output by this algorithm contains exactly 
those values (k₁,k2) for which y = F′k₁,k₂(x). 

 This holds because it outputs exactly those values 
(k₁,k₂) satisfying
 
                           Fk₁(x) = F−k

1₂(y), 
 
which holds if and only if y = F′k₁,k₂(x). 
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meet-in-the-middle 
attack

 If n is also the block length of F then a random pair 
(k1, k2) is expected to satisfy Equation (5.3) with 
probability roughly 2−n , and so the number of 
elements in S will be approximately 22n /2n = 2n. 

 Given another two input/output pairs and trying all 
2n elements of S with respect to these pairs is 
expected to identify the correct (k1, k2) with very 
high probability. 
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Triple Encryption 

The obvious generalization of the preceding approach is 
to apply the block cipher three times in succession. 

Two variants of this approach are common: 

1. Variant 1 — three independent keys: 
Choose 3 independent keys k1,k2,k3 and define 

              F′k₁,k₂,k₃(x) def= Fk₃(Fk−₂1(Fk₁(x))). 
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Triple Encryption 

The obvious generalization of the preceding 
approach is to apply the block cipher three times in 
succession. 

Two variants of this approach are common: 

2. Variant 2 — two independent keys: 
Choose 2 independent keys k1,k2 and define

                F′k₁,k₂(x) def= Fk₁(Fk−₂1(Fk₁(x))). 
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Triple Encryption 

 Before comparing the security of the two 
alternatives we note that the middle invocation of 
the original cipher is actually in the reverse direction. 

 If F is a sufficiently good cipher this makes no 
difference to the security, since if F is a strong 
pseudorandom permutation then F−1 must be too. 
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Triple Encryption 

The reason for this strange alternation between F, 
F−1 , and F is so that if one chooses k1=k2=k3 ,the 
result is a single invocation of F with k1. 

This ensures backward compatibility (i.e., in order 
to switch back to a single invocation of F , it 
suffices to just set the keys to all be equal). 
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Security of the first 
variant

 The key length of this variant is 3n (where, as 
before, the key length of the original cipher F is n) 
and so we might hope that the best attack on this 
cipher would require time 23n. 

 However, the cipher is susceptible to a meet-in-the-
middle attack just as in the case of double 
encryption, though the attack now takes time 22n. 

 This is the best known attack. 

 Thus, although this variant is not as secure as we 
might have hoped, it obtains sufficient security for all 
practical purposes if n = 56. 
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Security of the second 
variant

 The key length of this variant is 2n and so the best we 
can hope for is security against attacks running in time 
22n. 

 There is no known attack with better time complexity 
when the adversary is given only a single input/output pair. 

 However, there is a known chosen-plaintext attack that 
finds the key in time 2n using 2n chosen input/output 
pairs. Despite this, it is still a reasonable choice in practice.
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Triple-DES (3DES)

 Triple-DES is based on a triple invocation of DES 
using two or three keys, as described above.

 It is widely believed to be highly secure and in 1999 
officially replaced DES as a standard. 

 Triple-DES is still widely used today and is 
considered a very strong block cipher. 

 Its only drawbacks are its relatively small block 
length and the fact that it is quite slow since it 
requires 3 full block cipher operations.
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6.2.5 AES – The 
Advanced Encryption 

In January 1997, the United States National Institute of 
Standards and Technology (NIST) announced that it 
would hold a competition to select a new block cipher 
— to be called the Advanced Encryption Standard, or 
AES — to replace DES.
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The Advanced Encryption 
Standard

 The competition began with an open call for teams 
to submit candidate block ciphers for evaluation. 

 A total of 15 different algorithms were submitted 
from all over the world, and these submissions 
included the work of many of the very best 
cryptographers and cryptanalysts today. 

 Each team’s candidate cipher was intensively 
analyzed by NIST, the public, the other teams.
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The Advanced Encryption 
Standard

 Two workshops were held, one in 1998 and one in 
1999, at which cryptanalytic attacks of the various 
submissions were shown. 

 Following the second workshop, NIST narrowed 
the field down to 5 “finalists” and the second round 
of the competition began. 

 A third AES workshop was held, inviting additional 
scrutiny on the five finalists.
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The Advanced Encryption 
Standard

 In October 2000, NIST announced that the 
winning algorithm was Rijndael (a block cipher 
designed by Joan Daemen and Vincent Rijmen from 
Belgium), though it conceded that any of the 5 
finalists would have made an excellent choice. 

 In particular, no serious security vulnerabilities were 
found in any of the 5 finalists, and the selection of a 
“winner” was based in part on properties such as 
efficiency, flexibility, etc. 
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The AES construction

 The AES block cipher has a 128-bit block length 
and can use 128-bit, 192-bit, or 256-bit keys. 

 The  length of the key affects the key schedule (i.e., 
the sub-key that is used in each round) as well as the 
number of rounds, but does not affect the high-level 
structure of each round. 
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The AES construction

 In contrast to DES that uses a Feistel structure, 
AES is essentially a substitution-permutation 
network. 

 During computation of the AES algorithm, a 4-by-4 
array of bytes called the state is modified in a series 
of rounds. 

 The state is initially set equal to the input to the 
cipher (note that the input is 128 bits which is 
exactly 16 bytes).
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The AES construction
AddRoundKey
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The AES construction

Stage 1 — AddRoundKey: 

In every round of AES, a 128-bit sub-key is derived 
from the master key, and is interpreted as a 4-by-4 
array of bytes. 

The state array is updated by XORing it with this sub-
key. 
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The AES construction
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The AES construction

Stage 2 — SubBytes: 

In this step, each byte of the state array is 
replaced by another byte according to a single 
fixed  lookup table S . 

This S-box is a bijection over {0,1}8. 
We stress that there is only one S-box and it 
is used for substituting all the bytes in the 
state array, in every round. 
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a7

a6

a5

a4

a3

a2

a1

a0

0

1

1

0

0

0

1

1

1 1 1 1 0 0 0 1

1 1 1 0 0 0 1 1

1 1 0 0 0 1 1 1

1 0 0 0 1 1 1 1 
0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 0

0 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

b7

b6

b5

b4

b3

b2

b1

b0

⊕    =
-1*

        x-1 if x≠0

x-1*=               .

        0  if x=0
{
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The AES construction

126



The AES construction

Stage 3 — ShiftRows: 

In this step, the bytes in each row of the state 
array are cyclically shifted to the  left as follows: 

  the first row of the array is untouched, 
  the second row is shifted one place to the left, 
  the third row is shifted two places to the left, and 
  the fourth row is shifted three places to the left. 
     (All shifts are cyclic.) 
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The AES construction
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The AES construction

Stage 4 — MixColumns: 

In this step, an invertible linear transformation is applied 
to each column. 

One can think of this as matrix multiplication 
(over the appropriate field). 
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(( ) ) ( )a0,c

a1,c

a2,c


a3,c

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02 =

b0,c

b1,c

b2,c


b3,c

ai,c

bi,c

0316 = 000000112 = 0x7+0x6+0x5+0x4+0x3+0x2+1x+1 = x+1

0216 = 000000102 = 0x7+0x6+0x5+0x4+0x3+0x2+1x+0 = x

0116 = 00000012 = 0x7+0x6+0x5+0x4+0x3+0x2+0x+1 = 1
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The AES construction

By viewing stages 3 and 4 together as a “mixing” 
step, we see that each round of AES has the 
structure of a substitution-permutation network: 

The round sub-key is first XORed with the input 
to the current round; 

Next, a small, invertible function is applied to 
“chunks” of the resulting value; 

Finally, the bits of the result are mixed in order to 
obtain diffusion. 
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The AES construction

The only difference is that, unlike our general 
description of substitution-permutation networks, 
here the mixing step does not consist of a simple 
permutation of the bits but is instead carried out 
using an invertible linear transformation of the bits.

Simplifying things a bit and looking at a trivial 3-bit 
example, an invertible linear transformation might 
map x to ⟨ x1 ⊕ x2 ∥ x2 ⊕ x3 ∥ x1 ⊕ x2 ⊕ x3 ⟩. 
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The AES construction

The number of rounds in AES depends on the 
length of the key. 

There are 10 rounds for a 128-bit key, 12 rounds 
for a 192-bit key, and 14 rounds for a 256-bit key. 

In the final round of AES the MixColumns stage 
is replaced with an additional AddRoundKey 
step.
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Security of AES

 As we have mentioned, the AES cipher was subject 
to intensive scrutiny during the selection process and 
this has continued ever since. 

 To date, the only non-trivial cryptanalytic attacks that 
have been found are for reduced-round variants of 
AES. 

 It is often hard to compare cryptanalytic attacks 
because each tends to perform better with regard to 
some parameter; we describe the complexity of one 
set of attacks merely to give a flavor of what is known.
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Security of AES

 Known attacks on 6-round AES for 128-bit keys 
(using on the order of 272 encryptions), 8-round 
AES for 192-bit keys (using on the order of 2188 
encryptions), and 8-round AES for 256-bit keys 
(using on the order of 2204 encryptions).

  We stress that the above attacks are for reduced-
round variants of AES, and as of today no attack 
better than exhaustive key search is known for the 
full AES construction.
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Security of AES
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There are a number of practical constructions of stream 
ciphers available, and these are typically extraordinarily fast. 

Linear feedback shift registers (LFSRs) have, historically, 
been popular as stream ciphers. However, they have been 
shown to be horribly insecure (to the extent that the key 
can be completely recovered given sufficiently-many bytes 
of the output) and so should never be used today.

6.1 Practical Constructions of  
Stream Ciphers
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Stream Ciphers 
in Practice: RC4

A popular example is the stream cipher RC4 which is widely 
considered to be secure when used appropriately (see below).

The security of practical stream ciphers is not yet very well 
understood, particularly in comparison to block ciphers.
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Stream ciphers in 
practice : RC4

For example, “plain” RC4 (still widely deployed) is 
now known to have some significant weaknesses. 

For one, the first few bytes of the output stream 
generated by RC4 have been shown to be biased. 

It was also shown that this weakness can be used 
to feasibly break the WEP encryption protocol 
used in 802.11 wireless networks. 

If RC4 is to be used, the first 1024 bits or so of 
the output stream should be discarded.
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Let p be a large prime with known factorisation of 
p-1. Let g be a primitive element mod p.

Let s0 be a random seed, 1 ≤ s0 ≤ p. Consider the 
sequence si+1 ≔ gsi mod p and the generator 
 

         G : s0 ⟼ half(s0) ∥ half(s1) ∥... ∥half(s ℓ)  
 

where “∥” stands for concatenation and 
                                       half(x) =    0     if 0 ≤ x ≤ (p-1)/2  
                                                        1     if (p+1)/2 ≤ x ≤ p-1.

G is pseudorandom unless discrete log mod p is easy.

Stream ciphers 
in practice? : Blum-Micali

{
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Attack on a two-round 
Subs-Per Network

  Let the block length of the cipher be 64 bits, and let each S-
box have a 4-bit input/output length. 

 Furthermore, let the key k be of length 128 bits where the 
first half ka ∈ {0,1}64 of the key is used in the first round and 
the second half kb ∈ {0,1}64 is used in the second round.  

 We use independent keys here to simplify the description of 
the attack below, but this only makes the attack more difficult.
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Attack on a two-round 
Subs-Per Network

 Say the adversary is given an input x and the output y = Fk(x) 
of the cipher. 
 
 The adversary begins by “working backward”, inverting the 
mixing permutation and S-boxes in the second round of the 
cipher (as in the previous attack).  

 Denote by w1 the first 4 bits of the result.  Letting α1 denote 
the first 4 bits of the output of the first round, we have that 
 w1 = α1 ⊕ k1b, where k1b denotes the first 4 bits of kb.
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Attack on a two-round 
Subs-Per Network

The important observation here is that when 
“working forward” starting with the input x, the 
value of α1 is influenced by at most 4 different S-
boxes (because, in the worst case, each bit of α1 
comes from a different S-box in the first round). 

Furthermore, since the mixing permutation of the 
first round is known, the adversary knows exactly 
which of the S-boxes influence α1.
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Attack on a two-round 
Subs-Per Network

This, in turn, means that at most 16 bits of the key 
ka (in known positions) influence the computation of 
these four S-boxes. 

It follows that the adversary can guess the 
appropriate 16 bits of ka and the 4-bit value k1b, and 
then verify possible correctness of this guess using 
the known input/output pair (x,y). 
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Attack on a two-round 
Subs-Per Network

This verification is carried out by XORing the 
relevant 16 bits of the input x with the relevant 16 
bits of ka, computing the resulting α1 , and then 
computing k1b = w1 ⊕ α1.

Proceeding in this way, the adversary can exhaustively 
find all values of these 16 bits of the key that are 
consistent with the given (x, y).

This takes time 216 to try all possibilities.
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