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4.2 Definition – Message 
Authentication Codes

The aim of a message authentication code is to prevent 
an adversary from modifying a message sent by one 
party to another, without the parties detecting that a 
modification has been made.

This is only possible if the communicating parties have 
some secret that the adversary does not know 
(otherwise nothing can prevent an adversary from 
impersonating the party sending the message).
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Definition – Message 
Authentication Codes

Here, we will continue to consider the private-key 
setting where the parties share the same secret key. 
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The syntax of a MAC
• Before formally defining security of a message 

authentication code (MAC), we first define what a 
MAC is and how it is used. 

• Two users who wish to communicate in an authenticated 
manner begin by generating and sharing a secret key 
k ∈ K  in advance of their communication. 

• When one party wants to send a message m ∈ M  to the 
other, she computes a MAC tag (or simply a tag) t ∈ T 
based on the message and the shared key, and sends the 
message m along with the tag t to the other party. 
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The syntax of a MAC
• The tag is computed using a tag-generation algorithm that 

will be denoted by Mac; rephrasing what we have 
already said, the sender of a message m computes  
t ← Mack(m) and transmits (m, t) to the receiver.

• Upon receiving (m,t), the second party verifies whether 
t is a valid tag on the message m (with respect to the 
shared key) or not. 

• This is done by running a verification algorithm Vrfy that 
takes as input the shared key as well as a message m 
and a tag t, and indicates whether the given tag is valid. 
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Chapter 2/4 

Perfect Message Authentication Codes --  

Definitions of Chap. 4 in the style of Chap. 2
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The syntax of a MAC

DEFINITION 4.0 A message authentication code (or 
MAC) is a tuple of algorithms (Gen, Mac, Vrfy) such 
that : 

1. The key-generation algorithm Gen outputs a k ∈ K . 
 
2. The tag-generation algorithm Mac takes as input a key 
k ∈ K and a message m ∈ M , and outputs a tag t ∈ T . 
Since this algorithm may be randomized, we write this as  
t ← Mack(m).
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The syntax of a MAC

2. The tag-generation algorithm Mac takes as input a key 
k ∈ K and a message m ∈ M , and outputs a tag 
t ∈ T . Since this algorithm may be randomized, we write 
this as t ← Mack(m). 

3. The verification algorithm Vrfy takes as input a key k 

∈ K , a message m ∈ M , and a tag t ∈ T . It outputs a bit b, 
with b = 1 meaning valid and b = 0 meaning invalid. We 
assume without loss of generality that Vrfy is deterministic, 
and so write this as b ≔ Vrfyk(m, t).
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The syntax of a MAC

It is required that for every key k ∈ K  output by Gen, and 
every m ∈ M , it holds that  
 

                     Vrfyk(m,Mack(m)) = 1 . 

NIB11



Security of MAC

 We now define the notion of security for message 
authentication codes.

 The intuitive idea behind the definition of security is 
that no adversary should be able to generate a valid tag 
on any “new” message that was not previously sent (and 
authenticated) by one of the communicating parties. 
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Security of MAC
 To formalize this notion we have to define both the 
adversary’s power as well as what is considered a “break”. 

 As usual, we consider all adversaries and so the real 
question with regard to the power of the adversary is 
how we model the adversary’s interaction with the 
communicating parties. 

 In the setting of message authentication, an adversary 
observing the communication between the honest parties 
will be able to see all the messages sent by these parties 
along with their corresponding MAC tags.

NIB13



Security of MAC

• The adversary may also be able to influence the 
content of these messages, either indirectly, or directly. 

• As an example of the  latter, consider the case where 
the adversary is the personal assistant of one of the 
parties and has significant control over what messages 
this party sends.
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Security of MAC

 To model the above possibilities, we allow the 
adversary to request MAC tags for any messages of 
its choice. 

 Formally, we give the adversary access to a MAC 
oracle Mack(·); the adversary can submit any 
message m ∈ M  that it likes to this oracle, and is 
given in return a tag t ← Mack(m).
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Security of MAC

We will consider it a “break” of the scheme if the 
adversary is able to output any message m along with a 
tag t such that:

(1) t is a valid tag on the message m i.e., Vrfyk(m, t)=1

(2) the adversary had not previously requested a MAC 
tag on the message m (i.e., from its oracle). 
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Security of MAC

• Adversarial success in the first condition means that, 
in the real world, if the adversary were to send (m, t) 
to one of the honest parties, then this party would be 
mistakenly fooled into thinking that m originated from 
the  legitimate party (since Vrfyk(m, t) = 1). 

• The second condition is required because it is always 
possible for the adversary to just copy a message and 
MAC tag that was previously sent by the legitimate 
parties (and, of course, these would be accepted).
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Security of MAC

• Such an adversarial attack is called a replay attack and 
is not considered a “break” of the message 
authentication code.

• This does not mean that replay attacks are not a 
security concern; they are, and we will have more to say 
about this further on. 

18



Security of MAC

• A MAC satisfying the level of security specified above 
is said to be existentially unforgeable under an adaptive 
chosen-message attack. 

• “Existential unforgeability” refers to the fact that the 
adversary must not be able to forge a valid tag on any 
message, and “adaptive chosen-message attack” refers 
to the fact that the adversary is able to obtain MAC 
tags on any message it likes, where these messages may 
be chosen adaptively during its attack.
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Message authentication experiment Mac-Forgea
A
C
,
P
Π
A :  

1. A random key k is generated by running Gen.  
 

2. The adversary A is given oracle access to Mack(·). 
The adversary eventually outputs a pair (m, t).  
Let Q  denote the set of all queries that A asked to its oracle.  
 

3. The output of the experiment is defined to be 1 iff
 
(1) Vrfyk(m, t) = 1                        (2) m ∉ Q  .

Perfect Security of MAC
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Perfect Security of MAC

DEFINITION 4.00 A message authentication code 
Π  = (Gen, Mac, Vrfy) is existentially unforgeable 
under an adaptive chosen-message attack, or just secure, 
if for all adversaries A :

            Pr[ Mac-Forgea
A
C
,
P
Π
A

 = 1] = 
1/|T |. 
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Is the definition too 
strong?

• The above definition is rather strong, in two respects. 

• First, the adversary is allowed to request a MAC tag 
for any message of its choice. 

• Second, the adversary is considered to have “broken” 
the scheme if it can output a valid tag on any 
previously-unauthenticated message. 
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Is the definition too 
strong?

One might object that both of these components of the 
definition are unrealistic and overly strong: in “real-
world” usage of a MAC, the honest parties would only 
authenticate “meaningful” messages, and similarly it 
should only be considered a breach of security if the 
adversary can forge a valid tag on a “meaningful” 
message.
 
Why not tailor the definition to capture this ?
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Is the definition too 
strong?

 The crucial point is that what constitutes a 
meaningful message is entirely application-dependent. 

 While some applications of a MAC may only ever 
authenticate English-text messages, other applications 
may authenticate spreadsheet files, others database 
entries, and others raw data. 

 Protocols may also be designed where anything will 
be authenticated — in fact, certain protocols for 
entity authentication do exactly this.
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Is the definition too 
strong?

By making the definition of security for MACs as 
strong as possible, we ensure that secure MACs 
are broadly applicable for a wide range of 
purposes, without having to worry about 
compatibility of the MAC with the semantics of 
the application. 
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Replay attacks

We emphasize that the previous definition, and 
message authentication codes in general, offer no 
protection against replay attacks in which a 
previously-sent message (and its MAC tag) are 
replayed to one of the honest parties. 

Nevertheless, replay attacks are a serious concern.
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Replay attacks

 Despite the real threat due to replay attacks, a 
MAC inherently cannot protect against such attacks 
since the definition of a MAC (Definitions 4.0 & 
4.1) does not incorporate any notion of state into 
the verification algorithm (and so every time a valid 
pair (m, t) is presented to the verification algorithm, 
it will always output 1). 

 Rather, protection against replay attacks — if such 
protection is necessary at all — is  left to some 
higher-level application. 
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Replay attacks

• The reason the definition of a MAC is structured this 
way is, once again, because we are unwilling to assume 
any semantics regarding applications that use MACs; 

• In particular, the decision as to whether or not a 
replayed message should be treated as “valid” is 
considered to be entirely application-dependent. 
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Replay attacks
 Two common techniques for preventing replay attacks 
involve the use of sequence numbers or time-stamps. 

 The basic idea of the first approach is that each 
message m is assigned a sequence number i, and the 
MAC tag is computed over the concatenated message 
i ∥ m.

 It is assumed here that the sender always assigns a 
unique sequence number to each message, and that the 
receiver keeps track of which sequence numbers it has 
already seen.
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Replay attacks

• Now, any successful replay of a message m will have 
to forge a valid MAC tag on a new concatenated 
message i′ ∥ m, where i′ (thus i′ ∥ m) has never been 
used before. 

• This is ruled out by the security of the MAC.
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Replay attacks

 A disadvantage of using sequence numbers is that 
the receiver must store a list of all previous sequence 
numbers it has received.

 To alleviate this, time-stamps are sometimes used to 
similar effect. 

 Here, the sender essentially appends the current 
time to the message (say, to the nearest ms) rather 
than a sequence number. 
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Replay attacks

• When the receiver obtains a message, it checks 
whether the included time-stamp is within some 
acceptable window of the current time. 

• This method has certain drawbacks as well, including 
the need for the sender and receiver to maintain 
closely-synchronized clocks, and the possibility that a 
replay attack can still take place as long as it is done 
quickly enough. 
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Chapter 2/4 

Perfect Message Authentication Codes --  

Definitions of Chap. 4 in the style of Chap. 2
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Message authentication experiment Mac-Forge1
A
-
,Π
time :  

1. A random key k is generated by running Gen.  
 

2. The adversary A is given oracle access to Mack (·). 
The adversary eventually outputs a pair (m, t).  
Let Q  denote the set of all queries that A asked to its oracle.  
 

3. The output of the experiment is defined to be 1 if and only if
 
(1) Vrfyk(m, t) = 1           (2) m ∉ Q             (3) |Q |≤1.

Perfect Security of MAC
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m0 ∈ M

t0 ∈ T

Mac-Forge1
A
-
,Πtime

existential unforgeability

k ← Gen

t0 ← Mack(m0)

m,t

m≠m0
Pr[ Vrfyk(m,t)=1 ] = 

1/|T |

A
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Perfect Security of MAC

DEFINITION 4.22 A message authentication code Π = 
(Gen, Mac, Vrfy) is existentially unforgeable under a 
single chosen-message attack, or just secure, if for all 
adversaries A :

            Pr[ Mac-Forge1
A
-
,Π
time = 1] = 1/|T |. 
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Existential 
Unforgeability

PROPOSITION 4.01 Let Π  = (Gen, Mac, Vrfy) 
be an authentication scheme over a message space M. 

Π is perfectly secret with respect to Definition 4.00 if 
it is perfectly secret with respect to Definition 4.22 
and a new key is generated for each authentication. 

NIB38



The One-Time MAC 
(Wegman-Carter 
Authentication) 

In 1981, Carter and Wegman invented the one-
time MAC.

For this purpose, they define the useful notion of 
Strongly Universal2 families of hash functions.

Larry Carter Mark Wegman
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Strongly Universal2

Definition 4.23 ( Strongly Universal2 ) 
Let H be a set of hash functions from M to T. 
H is Strongly Universal2 if  
for all m1, m2, distinct elements of M,  
for all m′1, m′2, distinct elements of M, and 
for all t1, t2, t′1, t′2, (not necessarily distinct) elements of T, 
we have 
 

|{h ∈ H : h(m1) = t1, h(m2) = t2}| =  
|{h ∈ H : h(m′1) = t′1, h(m′2) = t′2}| = | H |/|T |2 
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Strongly Universal2
Remark: An equivalent definition is the following,  
H is Strongly Universal2 if for any h picked uniformly 
at random from H  we have that 
 
1. ∀m, m′∈M , t, t′∈ T 
Pr[ h(m)=t ] = Pr[ h(m′)=t′ ] = 1/|T | 
 
2. ∀m1≠m2, m′1≠m′2∈T, t1, t2, t′1, t′2 ∈ T  
Pr[ h(m2)=t2 | h(m1)=t1 ] = 
           Pr[ h(m′2)=t′2 | h(m′1)=t′1 ] = 1/|T |.
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Strongly Universal2

We first define the following class: 
 

H 2 = { h : Fq → Fq | h(m) = am + b for some a, b ∈ Fq }  
 

here, M = T  = Fq, |M | = |T | = q, | H 2 | = q2. 
 
 
Theorem 4.26 H 2 is Strongly Universal2 . 
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Strongly Universal2

Proof. Consider m≠m′, and two outputs t,t′, 
                    am + b = t  
               −    am′+ b = t′       .  
                  a (m −m′) = (t − t′) 
             ⟺ a = (t−t′)(m−m′)−1  

( (m−m′)−1 exists and is unique when m≠m′) and so 

 

⟺ b = t − am = t − (t−t′)(m−m′)−1m.
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Strongly Universal2

These values of a and b define a unique h such that 
h(m) = t, h(m′) = t′. We thus have that 
 
∀m≠m′, t, t′ 
|{ h : h(m) = t, h(m′) = t′ }| = 1 = | H 2 |/| T |2 

                                                                                                    
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One-time MAC is defined as follows:

1. Fix a prime power q. Then the message space M, 
and tag space T  are Fq, while key space K = Fq

2.

2. The key-generation algorithm Gen selects a pair 
of values a, b uniformly from K = Fq

2.

The One-Time MAC 
(Wegman-Carter Authentication) 
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3.Authentication Mac : given a key (a, b) ∈ Fq
2 and a 

message m ∈ Fq
  ,  output t ≔ am+b. 

4.Verification Vrfy : given a key (a, b) ∈ Fq
2, a message 

m ∈ Fq 
 , and a tag t ∈ Fq

  , accept iff t = am+b.

The One-Time MAC 
(Wegman-Carter Authentication) 
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Before discussing the security of the one-time MAC, 
we note that Vrfyk(Mack(m)) = 1  
               (a  correct authentication scheme). 

The one-time MAC is perfectly secret because H 2 
is Strongly Universal2.

The One-Time MAC 
(Wegman-Carter Authentication) 
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Strongly Universal2

 In H 2, seeing two message-tag pairs completely 
determines a and b.

 Therefore, seeing two message-tag pairs enables to 
determine all further message-tag pairs.
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Unfortunately, the one-time MAC authentication 
scheme has a number of drawbacks.

The key is required to be twice as long as the message. 

a  very long key must be securely stored, 

the error probability of 1/|M | may be a serious 
overkill.  We may be happy with, say, 1/250.

As the name indicates — One-time MAC is only 
“secure” if keys are used only once.

The One-Time MAC 
(Wegman-Carter Authentication) 
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Another Strongly 
Universal2 Family

In this case, we use the following class: 
 
HM =

{ h : (Fp)M
 → Fp | h(m) = a⊙m + b mod p,  a ∈ (Fp)M,  b ∈ Fp } 

 
where M ⊆ (Fp)M, |M | ≤ pM, T = Fp, |T | = p. 
 
Theorem 4.04 HM is Strongly Universal2 .

Where a⊙m means ∑aimi over the field Fp.

NIB50



Assume we wish to authenticate (with error probability 
at most ϵ) at most ℓ messages from the set 
M =(Fp)M, and let M′ = (Fp)M+ logp ℓ, for a prime p≥1/ϵ.

Let HM+logp ℓ be a Strongly Universal2 set of functions 
from M′ to T = Fp as previously.
 

To each message in M that we send, we append a 
unique index number i from (Fp)logp ℓ, and interpret the 
result as an element of M′. (The purpose of these 
indices is to detect replay attacks as well as deletion 
and insertion of messages).

Perfect Security of MAC
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One-time MAC is defined as follows:

1. Fix M′= (Fp)M+ logp ℓ. The tag space T = Fp, while the 

key space K = (Fp)M+ logp ℓ  x (Fp)ℓ.

2. The key-generation algorithm Gen selects uniformly 
a list of values a1,a2,...,aM+ logp ℓ ,b1,b2,...,bℓ from K .

NIB

The One-Time MAC 
(Wegman-Carter Authentication) 
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3.Authentication Mac : 
given a key (a, bi) and m'i = i ∥ mi ∈ (Fp)M+ logp ℓ,  
output ti ≔ a⊙m'i + bi  mod p. 

4.Verification Vrfy : given a key (a, bi), with a message  
m'i ∈ (Fp)M+ logp ℓ, and a tag ti ∈ Fp, output 1 iff  
 

                        ti = a⊙m'i + bi mod p.

NIB

The One-Time MAC 
(Wegman-Carter Authentication) 
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Existential 
Unforgeability

PROPOSITION 4.01 Let Πℓ = (Gen, Mac, Vrfy) be 
the authentication scheme as above. Then Πℓ is secure with 
respect to Definition 4.00 as long as |Q  | < ℓ.

NIB54



The key required (per authentication) is of size = 
 tag-size + (message-size/ℓ) p-digits = 
              1 + 

M+ logp ℓ/ℓ  ~ O(1) p-digit for large ℓ~M.

A rather long key must be securely stored, but 
is much more efficient than one-time pad.

If we are flexible on the error probability 
( ≤ 2ϵ ), much more efficient families exist.

NIB

The One-Time MAC 
(Wegman-Carter Authentication) 
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The syntax of a MAC

DEFINITION 4.1 A message authentication code (or 
MAC) is a tuple of PPT algorithms (Gen, Mac, Vrfy) 
such that: 

1. The key-generation algorithm Gen takes as input the 
security parameter 1n and outputs a key k with |k| ≤ n. 
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The syntax of a MAC

2. The tag-generation algorithm Mac takes as input a key 
k and a message m ∈ {0, 1}

∗
, and outputs a tag t. Since 

this algorithm may be randomized, we write this as  
t ← Mack(m). 

3. The verification algorithm Vrfy takes as input a key k, 
a message m, and a tag t. It outputs a bit b, with b = 1 
meaning valid and b = 0 meaning invalid.  We assume 
without loss of generality that Vrfy is deterministic, and so 
write this as b ≔ Vrfyk(m, t).
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The syntax of a MAC

It is required that for every n, every key k output by  
Gen(1n), and every m ∈ {0, 1}∗, it holds that  
 

                     Vrfyk(m,Mack(m)) = 1 . 

If (Gen, Mac, Vrfy) is such that for every k output by  
Gen(1n), algorithm Mack is only defined for messages 
m ∈ {0, 1}ℓ (n) ( and Vrfyk outputs 0 for any m ∉ {0, 1}ℓ (n) ), 

then we say that it is a fixed-length MAC for  length ℓ (n). 
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Security of MAC

 We now define the notion of computational security 
for message authentication codes.

 The intuitive idea behind the definition of security is 
that no PPT adversary should be able to generate a 
valid tag on any “new” message that was not previously 
sent (and authenticated) by one of the communicating 
parties. 
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 To formalize this notion we have to define both the 
adversary’s power as well as what is considered a “break”. 

 As usual, we consider only PPT adversaries and so the 
real question with regard to the power of the adversary 
is how we model the adversary’s interaction with the 
communicating parties. 

 In the setting of message authentication, an adversary 
observing the communication between the honest parties 
will be able to see all the messages sent by these parties 
along with their corresponding MAC tags.

Security of MAC
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m0∈M

t0∈T

m1∈M

t1∈T

...

... A

Mac-ForgeA,Π(n)

Pr[ Vrfyk(m, t)=1 ] ≤ negl(n)
existential unforgeability

k ← Gen(1n)

ti ← Mack(mi)

m,t

m≠mi

1n
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Message authentication experiment 
Mac-forgeA,Π(n): 

1. A random key k is generated by running Gen(1n).  
 

2. The adversary A is given 1n and oracle access to Mack(·). 
The adversary eventually outputs a pair (m, t).  
Let Q  denote the set of all queries that A asked to its oracle.  
 

3. The output of the experiment is defined to be 1 iff
 
(1) Vrfyk(m, t) = 1             and             (2) m ∉ Q  . 

Security of MAC
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DEFINITION 4.2 A message authentication code Π  = 
(Gen, Mac, Vrfy) is existentially unforgeable under 
an adaptive chosen-message attack, or just secure, if for 
all PPT adversaries A, there exists a negligible function 
negl s.t. : 

            Pr[ Mac-forgeA,Π(n) = 1 ] ≤ negl(n). 

Security of MAC
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4.4 Constructing  
Secure MACs

 Pseudorandom functions are a natural tool for 
constructing secure message authentication codes. 

 Intuitively, if the MAC tag t is obtained by applying a 
pseudorandom function to the message m, then 
forging a tag on a previously-unauthenticated 
message requires the adversary to guess the value of 
the pseudorandom function at a “new” point (i.e., 
message).
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Constructing  
Secure MACs

• Now, the probability of guessing the value of a random 
function on a new point is 2−n (when the output  
length of the function is n). 

• It follows that the probability of guessing such a value 
for a pseudorandom function can be only negligibly 
greater. 
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Constructing  
Secure MACs

68



Constructing  
Secure MACs

THEOREM 4.6 If F is a pseudorandom function, then 
Construction 4.5 is a fixed-length MAC for messages 
of  length n that is existentially unforgeable under an 
adaptive chosen-message attack.
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Extension to Variable-
Length Messages
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Extension to Variable-
Length Messages

THEOREM 4.8 If Π′ is a secure fixed-length MAC for 
messages of length n, then Construction 4.7 is a MAC 
that is existentially unforgeable under an adaptive chosen-
message attack.
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PROOF Sketch

The intuition is that as long as Π′  is secure, an 
adversary cannot introduce a new block with a 
valid tag. 

Furthermore, the extra information included in 
each block prevents the various attacks (dropping 
blocks, re-ordering blocks, etc.) sketched earlier. 

We stress that showing that known attacks are 
thwarted is far from a proof of security.
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4.4 CBC-MAC
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CBC-MAC

THEOREM 4.12 Let ℓ be a polynomial. If F is a 
pseudorandom function, then Construction 4.11 is a 
fixed-length MAC for messages of length ℓ (n)·n that is 
existentially unforgeable under an adaptive chosen-message 
attack.
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CBC-MAC

The proof of Theorem 4.12 is very involved. 

We stress that even though Construction 4.11 
can be extended in the obvious way to handle 
messages whose length is an arbitrary multiple of 
n, the construction is only secure when the  length 
of the messages being authenticated is fixed. 

That is, if an adversary is able to obtain MAC tags 
for messages of varying lengths, then the scheme is 
no longer secure.
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CBC-MAC vs. CBC-mode 
encryption

There are two differences between the basic CBC-
MAC and the CBC mode of encryption: 

1. CBC-mode encryption uses a random IV and this is 
crucial for obtaining security.

In contrast, CBC-MAC uses no IV (or the fixed value  
IV = 0n) and this is also crucial for obtaining security. 

Specifically, CBC-MAC using a random IV is not secure.
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CBC-MAC vs. CBC-mode 
Encryption

2. In CBC-mode encryption all blocks ti (ci) are output 
by the encryption algorithm as part of the ciphertext, 
whereas in CBC-MAC only the final block is output.

This may seem to be a technical difference resulting from 
the fact that, for the case of encryption, all blocks must be 
output in order to enable decryption, whereas for a MAC 
this is simply not necessary and so is not done. 

However, if CBC-MAC is modified to output all blocks 
then it is no longer secure. 
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Secure CBC-MAC for 
variable-length message
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Secure CBC-MAC for 
variable-length message

In order to obtain a secure version of CBC-MAC 
for variable-length messages, Construction 4.11 
must be modified.

This can be done in a number of ways. Two possible 
options that can be proven secure are:
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Secure CBC-MAC for 
variable-length message

Fk FkFk Fk
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Secure CBC-MAC for 
variable-length message

1. Prepend the message with its length |m| (encoded as 
an n-bit string), and then compute the basic CBC-
MAC on the resulting message.

(This is shown in Figure 4.2.)
 
We stress that appending the block length to the end of 
the message is not secure.

1/2
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Secure CBC-MAC for 
variable-length message

2. Change the scheme so that key generation chooses 
two independent keys k1 ← {0, 1}n and k2 ← {0, 1}n. 

Then, to authenticate a message m first compute the 
basic CBC-MAC of m using k1 and let t be the result; 
output the tag  t′ ≔ Fk₂(t).

2/2
82



4.5 Obtaining Privacy 
and Authentication

• In Chapter 3, we studied how it is possible to 
encrypt messages and thereby obtain privacy. 

• In Chapter 4, we have shown how message 
authentication codes can be used to guarantee data 
authenticity or integrity. 

• Often, however, we need both privacy and message 
integrity.
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Privacy only vs. privacy 
and message integrity

It is best practice to always encrypt and authenticate 
by default; 

Encryption alone should not be used unless there 
are compelling reasons to do so (such as 
implementations on severely resource-constrained 
devices) and, even then, only if one is absolutely 
sure that no damage can be caused by undetected 
modification of the data.
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Security requirements

Let ΠE = (GenE, Enc, Dec) be an arbitrary encryption 
scheme and ΠM = (GenM, Mac, Vrfy) be a message 
authentication code. 

An Encryption scheme  
                   Π′=(Gen′, EncMac′, Dec′)  
derived as a combination of ΠE and ΠM is a tuple of 
algorithms that operate as follows: 
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Security requirements
- The key-generation algorithm Gen′ takes input 1n, and 

runs GenE(1n) and GenM(1n) to obtain keys kE and 
kM (resp.). The key is k=(kE, kM).

- The Encryption EncMac′ takes as input the key k and a 
message m and outputs a value c that is derived by 
applying some combination of EnckE(·) and MackM(·).

- The decryption algorithm Dec′ takes as input the key k 
and a transmitted value c, and applies some combination 
of DeckE(·) and VrfykM(·). 

- The output of Dec′ is either a plaintext m or a special 
symbol ⊥ that indicates an error (of authentication).
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Correctness 
requirements

The correctness requirement is that for every n, every 
pair of keys (kE, kM) output by Gen′(1n), and every 
value m ∈ {0, 1}∗, 
 
               Dec′kE,kM(EncMac′kE,kM(m)) = m. 
 
Π′  actually satisfies the syntax of a private-key 
encryption scheme.
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Security requirements

Unforgeable-Encryption experiment Enc-forgeA,Π′(n):
 

1.  A random key k = (kE,  kM) is generated by running 
Gen′(1n).  

2. The adversary A is given input 1n and oracle access to the 
algorithm EncMac′k(·).  The adversary eventually outputs c.  
Let Q  denote the set of all queries that A asked to its oracle.  

3.  Let m ≔ Dec′k(c). The output of the experiment is defined 
    to be 1 iff             (1) m ≠ ⊥               (2) m ∉ Q  .

88



Security requirements

DEFINITION 4.16 An Encryption scheme Π′  achieves 
Unforgeability if for all PPT adversaries A, there exists a 
negligible function negl such that: 
 
             Pr[ Enc-forgeA,Π′(n) = 1 ] ≤ negl(n).
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Security requirements

DEFINITION 4.17 A tuple (Gen′, EncMac′, Dec′) 
is an Authenticated Encryption scheme if it is 
Unforgeable & CCA-secure.
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Obtaining Privacy and 
Authentication

There are three common approaches to combining 
encryption and message authentication.  Let kE be an 
encryption key, and kM be a MAC key.

 A common mistake is to use the same key for both 
encryption and authentication. 

 This should never be done, as independent keys 
should always be used for independent applications 
(unless a specific proof of security when using the 
same key is known).
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Obtaining Privacy and 
Authentication

1. Encrypt-and-authenticate: In this method, 
encryption and message authentication are 
computed independently. That is, given a plaintext 
message m, the sender transmits ‹c,t› where:  

          c ← EnckE(m)   and   t ← MackM(m).
 
The receiver decrypts c to recover m, and then verifies 
the tag t. If VrfykM(m, t) = 1, the receiver outputs m; 
otherwise, it outputs ⊥. 
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Obtaining Privacy and 
Authentication

2. Authenticate-then-encrypt: Here a MAC tag t 
is first computed, and then the message and tag are 
encrypted together. That is, the sender transmits c 
computed as:  
         t ← MackM(m)   and   c ← EnckE(m∥t). 
 
The authentication tag t is not sent “in the clear”, but is 
instead incorporated into the plaintext that is encrypted. 

The receiver decrypts c, and then verifies the tag t on m. 
As before, if VrfykM(m, t) = 1 the receiver outputs m; 
otherwise, it outputs ⊥.
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Obtaining Privacy and 
Authentication

3. Encrypt-then-authenticate: In this case, the 
message m is first encrypted and then a MAC tag is 
computed over the encrypted message. That is, the 
message is the pair ‹c, t› where: 

                                c ← EnckE(m)   and   t ← MackM(c). 

The receiver verifies t before decrypting c. As before, if 
VrfykM(m,c) = 1 the receiver outputs m; otherwise, ⊥.
Observe that this is exactly Construction 4.19 from 
the previous section. 
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Encrypt-and-
authenticate

 This combination is not (necessarily) secure, since it 
may violate privacy.

 To see this, note that a secure MAC does not 
necessarily imply any privacy and, specifically, it is 
possible for the tag of a message to leak the entire 
message.
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Authenticate-then-
encrypt

We show that this combination is also not 
necessarily secure. 

We use the following encryption scheme:

Let Transform(m) be as follows: any 0 in m is 
transformed to 00 and any 1 in m is transformed 
arbitrarily to 01 or 10. The inverse transform parses 
the encoded message as pairs of bits, and then maps 
00 to 0, and 01 or 10 to 1.  
If a 11 is encountered, the result is ⊥.
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Authenticate-then-
encrypt

Define     Enck(m) = Enc′k(Transform(m)),  
where Enc′ represents counter mode encryption using 
a pseudorandom function. 
   (The important point is it works by generating a new 
pseudorandom stream for each message to encrypt, 
and then XORing the stream with the message.)
 
Note that Enc is CPA-secure. 
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Authenticate-then-
encrypt

Consider the following chosen-ciphertext attack: Given 
a challenge ciphertext  
      c = Enc′k₁( Transform(m ∥ Mack₂(m)) ), 
 the attacker simply flips the first two bits of the 
second block of c (the first being the random IV) and 
verifies whether the resulting ciphertext is valid.

(Technically, this can be determined via a query to the 
decryption oracle. The adversary only needs to know if 
the ciphertext is valid or not, however, and so a weaker 
oracle would also suffice.) 
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Authenticate-then-
encrypt

If the first bit of the underlying message m is 1, then 
the modified ciphertext will be valid. 

This is because if the first bit of m is 1, then the first 
two bits of Transform(m) are 01 or 10, and flipping 
these bits yields another valid encoding of m. 

Furthermore, the tag will still be valid since it is applied 
to m and not the encoding of m.
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Authenticate-then-
encrypt

On the other hand, if the first bit of m is 0 then the 
modified ciphertext will not be valid since the first two 
bits of Transform(m) would be 00 and their 
complement is 11. 

This attack can be carried out on each bit of m 
separately, resulting in complete recovery of the 
message m. 
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Obtaining Privacy and 
Authentication
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Constructing Autheticated 
Encryption Schemes

 The construction works in the following way. The 
sender and receiver share two keys, one for a CPA-
secure encryption scheme and the other for a 
message authentication code. 

 To encrypt a message m, the sender first encrypts it 
using the CPA-secure scheme and then computes a 
MAC tag t on the resulting ciphertext c; the entire 
ciphertext is now ‹c,t›. 

 Given a ciphertext ‹c,t›, the recipient verifies validity 
of the MAC tag before decrypting c. 
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Encrypt-then-
authenticate

THEOREM 4.19 Let ΠE be a CPA-secure private-key 
encryption scheme, and let ΠM be a secure message 
authentication code (with unique tags). Then the combination 
(Gen′, Enc′, Dec′) derived by applying the encrypt-then-
authenticate approach to ΠE,ΠM (Construction 4.18) is 
an Authenticated Encryption scheme.
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The need for 
independent keys

 We conclude by stressing a basic principle of 
security and cryptography: different security goals 
should always use independent keys. 

 That is, if an encryption scheme and a message 
authentication code are both needed, then 
independent keys should be used for each one.
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The need for 
independent keys

• In order to illustrate this here, consider what can 
happen to the encrypt-then-authenticate methodology 
when the same key k is used for both encryption and 
authentication. 

•  Let F be a strong pseudorandom permutation.

• It follows that F−1 is also a strong pseudorandom 
permutations.
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The need for 
independent keys

• Define Enck(m) = Fk(m∥r) for m ∈ {0, 1}n/2 and a 
random r ← {0,1}n/2, and Mack(c) = Fk−

1(c).  

• It can be shown that the given encryption scheme is 
CPA-secure (in fact, it is even CCA-secure), and we 
know that the given message authentication code is a 
secure MAC. 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The need for 
independent keys

• Define Enck(m) = Fk(m∥r) for m ∈ {0, 1}n/2 and a 
random r ← {0, 1}n/2, and Mack(c) = Fk−

1(c).  

• However, the encrypt-then-authenticate combination 
applied to the message m with the same key k yields:  
 
Enck(m),Mack(Enck(m)) = Fk(m∥r), Fk−

1(Fk(m∥r))  
                                      = Fk(m∥r), m∥r.
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CCA Indistinguishability 
Experiment: PrivKc

A
c
,
aΠ(n)

A

Pr[ b = b′ ] ≤ ½ + negl(n)
computationally secretb b′

vi,wi∈M×C

c
c ← Enck(mb)
b ← { 0, 1 }

k ← Gen(1n) 1n

m0, m1 ∈ M

xi ← Enck(vi)

x '  i ← Enck(v' i )

xi,yi∈C×Myi ← Deck(wi)

y '  i ← Deck(w' i )

... ...

... ...

v'i,w'i   ∈M×C \{c}

x'i,y'i ∈C×M

... ...

... ...
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3.7 Sec. Against Chosen-
Ciphertext Attacks (CCA)
Consider the following experiment for any private-key 
encryption scheme Π = (Gen, Enc, Dec), adversary A, 
and value n for the sec. parameter. 
CCA indistinguishability experiment PrivKc

A
c
,
aΠ(n) : 

 
1. A key k is generated by running Gen(1n). 

2. The adversary A is given input 1n and oracle access to 
Enck(·) and Deck(·). It outputs a pair of messages  
m0, m1 of the same length. 
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3.7 Sec. Against Chosen-
Ciphertext Attacks (CCA)

3. A random bit b ← { 0, 1 } is chosen, and then a challenge 
ciphertext c ← Enck(mb) is computed and given to A.  
  

4. The adversary A continues to have oracle access to  
Enck(·) and Deck(·), but is not allowed to query the latter 
on the challenge ciphertext itself. Finally, A outputs a bit b′. 
 

5. The output of the experiment is defined to be 1 if  
       b′ = b, and 0 otherwise.
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3.7 Sec. Against Chosen-
Ciphertext Attacks (CCA)
DEFINITION 3.33 A private-key encryption scheme Π 
has indistinguishable encryptions under a chosen-
ciphertext attack (or is CCA-secure) if for all PPT 
adversaries A there exists a negligible function negl such 
that:  

       Pr[ PrivKc
A
c
,
a
Π(n) = 1 ] ≤ ½ + negl(n), 

 
where the probability is taken over all random coins used in 
the experiment. 
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Security Against Chosen-
Ciphertext Attacks (CCA)

THEOREM 4.20 
If ΠE is a CPA-secure private-key encryption scheme, 
and ΠM is a secure MAC (with unique tags),  
then Construction 4.18 is a CCA-secure private-key 
encryption scheme. 
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CCA-security and real-
life implications

Construction 4.18 may seem unsatisfying, since it 
achieves CCA-security simply by ensuring that the 
decryption oracle is useless to the adversary. 

Instead of being viewed as a drawback of the 
construction, this should be viewed as an advantage! 

Although there are other ways to achieve CCA-
security, here the adversary is unable to generate any 
valid ciphertext that was not already created by one 
of the honest parties. 

This means that Construction 4.18 achieves both 
privacy and message authentication. 116



Authenticated Encryption  
vs. CCA-security

• Although we use the same construction for 
achieving CCA-security and Authenticated 
Encryption, the security goals in each case are 
different. 

• In the setting of CCA-security we are not 
necessarily interested in obtaining message 
authentication; rather, we wish to ensure privacy 
even against a strong adversary who is able to make 
decryption queries.
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Secure message transmission  
vs. CCA-security

• When considering Authenticated Encryption, in 
contrast, we are interested in the twin goals of 
CCA-security and integrity. 

• Clearly, as we have defined it, Authenticated 
Encryption implies CCA-security. The opposite 
direction is not necessarily true.
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Encryption from 
Authentication

Many governments felt for a long time that 
Encryption could be used by dishonest people 
to accomplish some unauthorized activities, 


whereas Authentication was a much safer 
primitive because it does not a priori 
provides confidentiality.


This impression turned out to be wrong as 
demonstrated by Ron Rivest in 1998.
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Encryption from 
Authentication

Suppose Alice and Bob have a secure MAC 
(Gen, Mack, Vrfyk) and that Alice wants to send 
a secret bit b to Bob.

She may pick two random messages m0, m1, with a 
random tag r ≠ Mack(mi) and sends : 
 
(m0, Mack(m0)) and (m1, r)   to transmit b = 0 or  
(m0, r) and (m1, Mack(m1))   to transmit b = 1.
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Encryption from 
Authentication

Bob upon receiving two messages (m0, t0),(m1, t1) 
decrypts the bit b as 
 
b = 0 if Vrfyk(m0, t0)=1 and 
b = 1 if Vrfyk(m1, t1)=1.
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Encryption from 
Authentication

With probability one, Bob can tell which of the 
two messages is authenticated properly,

whereas an adversary who does not know the key 
k cannot determine the validity of the two 
messages...
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