
1

Chapter 4 :

Message Authentication Codes

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

Message Authentication Codes and

Collision-Resistant Hash Functions

4.1 Message Integrity
4.6 Information Theoretical Authentication
4.2 Message Authentication Codes – Definitions
4.3 Constructing Secure Message Authentication Codes
4.4 CBC-MAC
4.5 Authenticated Encryption
4.8 Constructing CCA-Secure Encryption Schemes
4.9 Obtaining Privacy and Message Authentication

2

4.2 Definition – Message
Authentication Codes

The aim of a message authentication code is to prevent
an adversary from modifying a message sent by one
party to another, without the parties detecting that a
modification has been made.

This is only possible if the communicating parties have
some secret that the adversary does not know
(otherwise nothing can prevent an adversary from
impersonating the party sending the message).

3

Definition – Message
Authentication Codes

Here, we will continue to consider the private-key
setting where the parties share the same secret key.

4

The syntax of a MAC
• Before formally defining security of a message

authentication code (MAC), we first define what a
MAC is and how it is used.

• Two users who wish to communicate in an authenticated
manner begin by generating and sharing a secret key 
k ∈ K in advance of their communication.

• When one party wants to send a message m ∈ M to the
other, she computes a MAC tag (or simply a tag) t ∈ T
based on the message and the shared key, and sends the
message m along with the tag t to the other party.

5

The syntax of a MAC
• The tag is computed using a tag-generation algorithm that

will be denoted by Mac; rephrasing what we have
already said, the sender of a message m computes  
t ← Mack(m) and transmits (m, t) to the receiver.

• Upon receiving (m,t), the second party verifies whether
t is a valid tag on the message m (with respect to the
shared key) or not.

• This is done by running a verification algorithm Vrfy that
takes as input the shared key as well as a message m
and a tag t, and indicates whether the given tag is valid.

6

Chapter 2/4

Perfect Message Authentication Codes --

Definitions of Chap. 4 in the style of Chap. 2

7

The syntax of a MAC

DEFINITION 4.0 A message authentication code (or
MAC) is a tuple of algorithms (Gen, Mac, Vrfy) such
that :

1. The key-generation algorithm Gen outputs a k ∈ K . 
 
2. The tag-generation algorithm Mac takes as input a key
k ∈ K and a message m ∈ M , and outputs a tag t ∈ T .
Since this algorithm may be randomized, we write this as  
t ← Mack(m).

NIB(Not in book)8

The syntax of a MAC

2. The tag-generation algorithm Mac takes as input a key
k ∈ K and a message m ∈ M , and outputs a tag 
t ∈ T . Since this algorithm may be randomized, we write
this as t ← Mack(m).

3. The verification algorithm Vrfy takes as input a key k

∈ K , a message m ∈ M , and a tag t ∈ T . It outputs a bit b,
with b = 1 meaning valid and b = 0 meaning invalid. We
assume without loss of generality that Vrfy is deterministic,
and so write this as b ≔ Vrfyk(m, t).

NIB9

M TK

authentication

verification
NIB

Mac

Vrfy
10

The syntax of a MAC

It is required that for every key k ∈ K output by Gen, and
every m ∈ M , it holds that  
 

 Vrfyk(m,Mack(m)) = 1 .

NIB11

Security of MAC

 We now define the notion of security for message
authentication codes.

 The intuitive idea behind the definition of security is
that no adversary should be able to generate a valid tag
on any “new” message that was not previously sent (and
authenticated) by one of the communicating parties.

NIB12

Security of MAC
 To formalize this notion we have to define both the
adversary’s power as well as what is considered a “break”.

 As usual, we consider all adversaries and so the real
question with regard to the power of the adversary is
how we model the adversary’s interaction with the
communicating parties.

 In the setting of message authentication, an adversary
observing the communication between the honest parties
will be able to see all the messages sent by these parties
along with their corresponding MAC tags.

NIB13

Security of MAC

• The adversary may also be able to influence the
content of these messages, either indirectly, or directly.

• As an example of the latter, consider the case where
the adversary is the personal assistant of one of the
parties and has significant control over what messages
this party sends.

14

Security of MAC

 To model the above possibilities, we allow the
adversary to request MAC tags for any messages of
its choice.

 Formally, we give the adversary access to a MAC
oracle Mack(·); the adversary can submit any
message m ∈ M that it likes to this oracle, and is
given in return a tag t ← Mack(m).

15

Security of MAC

We will consider it a “break” of the scheme if the
adversary is able to output any message m along with a
tag t such that:

(1) t is a valid tag on the message m i.e., Vrfyk(m, t)=1

(2) the adversary had not previously requested a MAC
tag on the message m (i.e., from its oracle).

16

Security of MAC

• Adversarial success in the first condition means that,
in the real world, if the adversary were to send (m, t)
to one of the honest parties, then this party would be
mistakenly fooled into thinking that m originated from
the legitimate party (since Vrfyk(m, t) = 1).

• The second condition is required because it is always
possible for the adversary to just copy a message and
MAC tag that was previously sent by the legitimate
parties (and, of course, these would be accepted).

17

Security of MAC

• Such an adversarial attack is called a replay attack and
is not considered a “break” of the message
authentication code.

• This does not mean that replay attacks are not a
security concern; they are, and we will have more to say
about this further on.

18

Security of MAC

• A MAC satisfying the level of security specified above
is said to be existentially unforgeable under an adaptive
chosen-message attack.

• “Existential unforgeability” refers to the fact that the
adversary must not be able to forge a valid tag on any
message, and “adaptive chosen-message attack” refers
to the fact that the adversary is able to obtain MAC
tags on any message it likes, where these messages may
be chosen adaptively during its attack.

19

m0∈M

t0∈T

Mac-Forgea
A
C
,
PΠA

Pr[Vrfyk(m,t)=1] =
1/|T |

existential unforgeability

k ← Gen

ti ← Mack(mi)

m,t

m≠mi

A

m1∈M

t1∈T

...

...

20

Message authentication experiment Mac-Forgea
A
C
,
P
Π
A :  

1. A random key k is generated by running Gen.  
 

2. The adversary A is given oracle access to Mack(·).
The adversary eventually outputs a pair (m, t).
Let Q denote the set of all queries that A asked to its oracle.  
 

3. The output of the experiment is defined to be 1 iff

(1) Vrfyk(m, t) = 1 (2) m ∉ Q .

Perfect Security of MAC

NIB21

Perfect Security of MAC

DEFINITION 4.00 A message authentication code 
Π = (Gen, Mac, Vrfy) is existentially unforgeable
under an adaptive chosen-message attack, or just secure,
if for all adversaries A :

 Pr[Mac-Forgea
A
C
,
P
Π
A

 = 1] =
1/|T |.

NIB22

Is the definition too
strong?

• The above definition is rather strong, in two respects.

• First, the adversary is allowed to request a MAC tag
for any message of its choice.

• Second, the adversary is considered to have “broken”
the scheme if it can output a valid tag on any
previously-unauthenticated message.

23

Is the definition too
strong?

One might object that both of these components of the
definition are unrealistic and overly strong: in “real-
world” usage of a MAC, the honest parties would only
authenticate “meaningful” messages, and similarly it
should only be considered a breach of security if the
adversary can forge a valid tag on a “meaningful”
message.

Why not tailor the definition to capture this ?

24

Is the definition too
strong?

 The crucial point is that what constitutes a
meaningful message is entirely application-dependent.

 While some applications of a MAC may only ever
authenticate English-text messages, other applications
may authenticate spreadsheet files, others database
entries, and others raw data.

 Protocols may also be designed where anything will
be authenticated — in fact, certain protocols for
entity authentication do exactly this.

25

Is the definition too
strong?

By making the definition of security for MACs as
strong as possible, we ensure that secure MACs
are broadly applicable for a wide range of
purposes, without having to worry about
compatibility of the MAC with the semantics of
the application.

26

Replay attacks

We emphasize that the previous definition, and
message authentication codes in general, offer no
protection against replay attacks in which a
previously-sent message (and its MAC tag) are
replayed to one of the honest parties.

Nevertheless, replay attacks are a serious concern.

27

Replay attacks

 Despite the real threat due to replay attacks, a
MAC inherently cannot protect against such attacks
since the definition of a MAC (Definitions 4.0 &
4.1) does not incorporate any notion of state into
the verification algorithm (and so every time a valid
pair (m, t) is presented to the verification algorithm,
it will always output 1).

 Rather, protection against replay attacks — if such
protection is necessary at all — is left to some
higher-level application.

28

Replay attacks

• The reason the definition of a MAC is structured this
way is, once again, because we are unwilling to assume
any semantics regarding applications that use MACs;

• In particular, the decision as to whether or not a
replayed message should be treated as “valid” is
considered to be entirely application-dependent.

29

Replay attacks
 Two common techniques for preventing replay attacks
involve the use of sequence numbers or time-stamps.

 The basic idea of the first approach is that each
message m is assigned a sequence number i, and the
MAC tag is computed over the concatenated message 
i ∥ m.

 It is assumed here that the sender always assigns a
unique sequence number to each message, and that the
receiver keeps track of which sequence numbers it has
already seen.

30

Replay attacks

• Now, any successful replay of a message m will have
to forge a valid MAC tag on a new concatenated
message i′ ∥ m, where i′ (thus i′ ∥ m) has never been
used before.

• This is ruled out by the security of the MAC.

31

Replay attacks

 A disadvantage of using sequence numbers is that
the receiver must store a list of all previous sequence
numbers it has received.

 To alleviate this, time-stamps are sometimes used to
similar effect.

 Here, the sender essentially appends the current
time to the message (say, to the nearest ms) rather
than a sequence number.

32

Replay attacks

• When the receiver obtains a message, it checks
whether the included time-stamp is within some
acceptable window of the current time.

• This method has certain drawbacks as well, including
the need for the sender and receiver to maintain
closely-synchronized clocks, and the possibility that a
replay attack can still take place as long as it is done
quickly enough.

33

Chapter 2/4

Perfect Message Authentication Codes --

Definitions of Chap. 4 in the style of Chap. 2

34

Message authentication experiment Mac-Forge1
A
-
,Π
time :  

1. A random key k is generated by running Gen.  
 

2. The adversary A is given oracle access to Mack (·).
The adversary eventually outputs a pair (m, t).
Let Q denote the set of all queries that A asked to its oracle.  
 

3. The output of the experiment is defined to be 1 if and only if

(1) Vrfyk(m, t) = 1 (2) m ∉ Q (3) |Q |≤1.

Perfect Security of MAC

35

m0 ∈ M

t0 ∈ T

Mac-Forge1
A
-
,Πtime

existential unforgeability

k ← Gen

t0 ← Mack(m0)

m,t

m≠m0
Pr[Vrfyk(m,t)=1] =

1/|T |

A

36

Perfect Security of MAC

DEFINITION 4.22 A message authentication code Π =
(Gen, Mac, Vrfy) is existentially unforgeable under a
single chosen-message attack, or just secure, if for all
adversaries A :

 Pr[Mac-Forge1
A
-
,Π
time = 1] = 1/|T |.

37

Existential
Unforgeability

PROPOSITION 4.01 Let Π = (Gen, Mac, Vrfy)
be an authentication scheme over a message space M.

Π is perfectly secret with respect to Definition 4.00 if
it is perfectly secret with respect to Definition 4.22
and a new key is generated for each authentication.

NIB38

The One-Time MAC
(Wegman-Carter
Authentication)

In 1981, Carter and Wegman invented the one-
time MAC.

For this purpose, they define the useful notion of
Strongly Universal2 families of hash functions.

Larry Carter Mark Wegman

39

Strongly Universal2

Definition 4.23 (Strongly Universal2) 
Let H be a set of hash functions from M to T. 
H is Strongly Universal2 if  
for all m1, m2, distinct elements of M,  
for all m′1, m′2, distinct elements of M, and 
for all t1, t2, t′1, t′2, (not necessarily distinct) elements of T, 
we have 
 

|{h ∈ H : h(m1) = t1, h(m2) = t2}| =  
|{h ∈ H : h(m′1) = t′1, h(m′2) = t′2}| = | H |/|T |2

40

Strongly Universal2
Remark: An equivalent definition is the following,  
H is Strongly Universal2 if for any h picked uniformly
at random from H we have that 
 
1. ∀m, m′∈M , t, t′∈ T 
Pr[h(m)=t] = Pr[h(m′)=t′] = 1/|T | 
 
2. ∀m1≠m2, m′1≠m′2∈T, t1, t2, t′1, t′2 ∈ T  
Pr[h(m2)=t2 | h(m1)=t1] = 
 Pr[h(m′2)=t′2 | h(m′1)=t′1] = 1/|T |.

41

Strongly Universal2

We first define the following class: 
 

H 2 = { h : Fq → Fq | h(m) = am + b for some a, b ∈ Fq }  
 

here, M = T = Fq, |M | = |T | = q, | H 2 | = q2. 
 
 
Theorem 4.26 H 2 is Strongly Universal2 .

42

Strongly Universal2

Proof. Consider m≠m′, and two outputs t,t′, 
 am + b = t  
 − am′+ b = t′ .  
 a (m −m′) = (t − t′) 
 ⟺ a = (t−t′)(m−m′)−1  

((m−m′)−1 exists and is unique when m≠m′) and so

 

⟺ b = t − am = t − (t−t′)(m−m′)−1m.

43

Strongly Universal2

These values of a and b define a unique h such that
h(m) = t, h(m′) = t′. We thus have that 
 
∀m≠m′, t, t′ 
|{ h : h(m) = t, h(m′) = t′ }| = 1 = | H 2 |/| T |2 

 

44

One-time MAC is defined as follows:

1. Fix a prime power q. Then the message space M,
and tag space T are Fq, while key space K = Fq

2.

2. The key-generation algorithm Gen selects a pair
of values a, b uniformly from K = Fq

2.

The One-Time MAC
(Wegman-Carter Authentication)

45

3.Authentication Mac : given a key (a, b) ∈ Fq
2 and a

message m ∈ Fq
 , output t ≔ am+b.

4.Verification Vrfy : given a key (a, b) ∈ Fq
2, a message 

m ∈ Fq
 , and a tag t ∈ Fq

 , accept iff t = am+b.

The One-Time MAC
(Wegman-Carter Authentication)

46

Before discussing the security of the one-time MAC,
we note that Vrfyk(Mack(m)) = 1  
 (a correct authentication scheme).

The one-time MAC is perfectly secret because H 2
is Strongly Universal2.

The One-Time MAC
(Wegman-Carter Authentication)

47

Strongly Universal2

 In H 2, seeing two message-tag pairs completely
determines a and b.

 Therefore, seeing two message-tag pairs enables to
determine all further message-tag pairs.

NIB48

Unfortunately, the one-time MAC authentication
scheme has a number of drawbacks.

The key is required to be twice as long as the message.

a very long key must be securely stored,

the error probability of 1/|M | may be a serious
overkill. We may be happy with, say, 1/250.

As the name indicates — One-time MAC is only
“secure” if keys are used only once.

The One-Time MAC
(Wegman-Carter Authentication)

NIB49

Another Strongly
Universal2 Family

In this case, we use the following class: 
 
HM =

{ h : (Fp)M
 → Fp | h(m) = a⊙m + b mod p, a ∈ (Fp)M, b ∈ Fp } 

 
where M ⊆ (Fp)M, |M | ≤ pM, T = Fp, |T | = p. 
 
Theorem 4.04 HM is Strongly Universal2 .

Where a⊙m means ∑aimi over the field Fp.

NIB50

Assume we wish to authenticate (with error probability
at most ϵ) at most ℓ messages from the set 
M =(Fp)M, and let M′ = (Fp)M+ logp ℓ, for a prime p≥1/ϵ.

Let HM+logp ℓ be a Strongly Universal2 set of functions
from M′ to T = Fp as previously.
 

To each message in M that we send, we append a
unique index number i from (Fp)logp ℓ, and interpret the
result as an element of M′. (The purpose of these
indices is to detect replay attacks as well as deletion
and insertion of messages).

Perfect Security of MAC

NIB51

One-time MAC is defined as follows:

1. Fix M′= (Fp)M+ logp ℓ. The tag space T = Fp, while the

key space K = (Fp)M+ logp ℓ x (Fp)ℓ.

2. The key-generation algorithm Gen selects uniformly
a list of values a1,a2,...,aM+ logp ℓ ,b1,b2,...,bℓ from K .

NIB

The One-Time MAC
(Wegman-Carter Authentication)

52

3.Authentication Mac : 
given a key (a, bi) and m'i = i ∥ mi ∈ (Fp)M+ logp ℓ,
output ti ≔ a⊙m'i + bi mod p.

4.Verification Vrfy : given a key (a, bi), with a message  
m'i ∈ (Fp)M+ logp ℓ, and a tag ti ∈ Fp, output 1 iff  
 

 ti = a⊙m'i + bi mod p.

NIB

The One-Time MAC
(Wegman-Carter Authentication)

53

Existential
Unforgeability

PROPOSITION 4.01 Let Πℓ = (Gen, Mac, Vrfy) be
the authentication scheme as above. Then Πℓ is secure with
respect to Definition 4.00 as long as |Q | < ℓ.

NIB54

The key required (per authentication) is of size = 
 tag-size + (message-size/ℓ) p-digits = 
 1 +

M+ logp ℓ/ℓ ~ O(1) p-digit for large ℓ~M.

A rather long key must be securely stored, but
is much more efficient than one-time pad.

If we are flexible on the error probability 
(≤ 2ϵ), much more efficient families exist.

NIB

The One-Time MAC
(Wegman-Carter Authentication)

55

56

tasks

security
Encryption Authentication Identification Quantum

Symmetric
Informational

Miller-Vernam
One-Time PAD

Wegman-Carter
Universal Hash

Simple
Solutions

Quantum
Key

Distribution

Symmetric
Computational

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

Quantum
Attacks,
Q-Safety

Asymmetric
Computational

RSA, ElGammal,
Blum-

Goldwasser
RSA, DSA, etc

Guilloux-
Quisquater,
Schnor, etc

Quantum
Attacks,
Q-Safety

DONE IN PROGRESS TO DO GIVE UP

57

Chapter 4 :

Message Authentication Codes

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

The syntax of a MAC

DEFINITION 4.1 A message authentication code (or
MAC) is a tuple of PPT algorithms (Gen, Mac, Vrfy)
such that:

1. The key-generation algorithm Gen takes as input the
security parameter 1n and outputs a key k with |k| ≤ n.

58

The syntax of a MAC

2. The tag-generation algorithm Mac takes as input a key
k and a message m ∈ {0, 1}

∗
, and outputs a tag t. Since

this algorithm may be randomized, we write this as  
t ← Mack(m).

3. The verification algorithm Vrfy takes as input a key k,
a message m, and a tag t. It outputs a bit b, with b = 1
meaning valid and b = 0 meaning invalid. We assume
without loss of generality that Vrfy is deterministic, and so
write this as b ≔ Vrfyk(m, t).

59

The syntax of a MAC

It is required that for every n, every key k output by  
Gen(1n), and every m ∈ {0, 1}∗, it holds that  
 

 Vrfyk(m,Mack(m)) = 1 .

If (Gen, Mac, Vrfy) is such that for every k output by  
Gen(1n), algorithm Mack is only defined for messages 
m ∈ {0, 1}ℓ (n) (and Vrfyk outputs 0 for any m ∉ {0, 1}ℓ (n)),

then we say that it is a fixed-length MAC for length ℓ (n).

60

Security of MAC

 We now define the notion of computational security
for message authentication codes.

 The intuitive idea behind the definition of security is
that no PPT adversary should be able to generate a
valid tag on any “new” message that was not previously
sent (and authenticated) by one of the communicating
parties.

61

 To formalize this notion we have to define both the
adversary’s power as well as what is considered a “break”.

 As usual, we consider only PPT adversaries and so the
real question with regard to the power of the adversary
is how we model the adversary’s interaction with the
communicating parties.

 In the setting of message authentication, an adversary
observing the communication between the honest parties
will be able to see all the messages sent by these parties
along with their corresponding MAC tags.

Security of MAC

62

m0∈M

t0∈T

m1∈M

t1∈T

...

... A

Mac-ForgeA,Π(n)

Pr[Vrfyk(m, t)=1] ≤ negl(n)
existential unforgeability

k ← Gen(1n)

ti ← Mack(mi)

m,t

m≠mi

1n

63

Message authentication experiment 
Mac-forgeA,Π(n): 

1. A random key k is generated by running Gen(1n).  
 

2. The adversary A is given 1n and oracle access to Mack(·).
The adversary eventually outputs a pair (m, t).
Let Q denote the set of all queries that A asked to its oracle.  
 

3. The output of the experiment is defined to be 1 iff

(1) Vrfyk(m, t) = 1 and (2) m ∉ Q .

Security of MAC

64

DEFINITION 4.2 A message authentication code Π =
(Gen, Mac, Vrfy) is existentially unforgeable under
an adaptive chosen-message attack, or just secure, if for
all PPT adversaries A, there exists a negligible function
negl s.t. :

 Pr[Mac-forgeA,Π(n) = 1] ≤ negl(n).

Security of MAC

65

4.4 Constructing
Secure MACs

 Pseudorandom functions are a natural tool for
constructing secure message authentication codes.

 Intuitively, if the MAC tag t is obtained by applying a
pseudorandom function to the message m, then
forging a tag on a previously-unauthenticated
message requires the adversary to guess the value of
the pseudorandom function at a “new” point (i.e.,
message).

66

Constructing
Secure MACs

• Now, the probability of guessing the value of a random
function on a new point is 2−n (when the output
length of the function is n).

• It follows that the probability of guessing such a value
for a pseudorandom function can be only negligibly
greater.

67

Constructing
Secure MACs

68

Constructing
Secure MACs

THEOREM 4.6 If F is a pseudorandom function, then
Construction 4.5 is a fixed-length MAC for messages
of length n that is existentially unforgeable under an
adaptive chosen-message attack.

69

Extension to Variable-
Length Messages

70

Extension to Variable-
Length Messages

THEOREM 4.8 If Π′ is a secure fixed-length MAC for
messages of length n, then Construction 4.7 is a MAC
that is existentially unforgeable under an adaptive chosen-
message attack.

71

PROOF Sketch

The intuition is that as long as Π′ is secure, an
adversary cannot introduce a new block with a
valid tag.

Furthermore, the extra information included in
each block prevents the various attacks (dropping
blocks, re-ordering blocks, etc.) sketched earlier.

We stress that showing that known attacks are
thwarted is far from a proof of security.

72

4.4 CBC-MAC

�73

CBC-MAC

THEOREM 4.12 Let ℓ be a polynomial. If F is a
pseudorandom function, then Construction 4.11 is a
fixed-length MAC for messages of length ℓ (n)·n that is
existentially unforgeable under an adaptive chosen-message
attack.

74

CBC-MAC

The proof of Theorem 4.12 is very involved.

We stress that even though Construction 4.11
can be extended in the obvious way to handle
messages whose length is an arbitrary multiple of
n, the construction is only secure when the length
of the messages being authenticated is fixed.

That is, if an adversary is able to obtain MAC tags
for messages of varying lengths, then the scheme is
no longer secure.

75

CBC-MAC vs. CBC-mode
encryption

There are two differences between the basic CBC-
MAC and the CBC mode of encryption:

1. CBC-mode encryption uses a random IV and this is
crucial for obtaining security.

In contrast, CBC-MAC uses no IV (or the fixed value  
IV = 0n) and this is also crucial for obtaining security.

Specifically, CBC-MAC using a random IV is not secure.

76

CBC-MAC vs. CBC-mode
Encryption

2. In CBC-mode encryption all blocks ti (ci) are output
by the encryption algorithm as part of the ciphertext,
whereas in CBC-MAC only the final block is output.

This may seem to be a technical difference resulting from
the fact that, for the case of encryption, all blocks must be
output in order to enable decryption, whereas for a MAC
this is simply not necessary and so is not done.

However, if CBC-MAC is modified to output all blocks
then it is no longer secure.

77

Secure CBC-MAC for
variable-length message

78

Secure CBC-MAC for
variable-length message

In order to obtain a secure version of CBC-MAC
for variable-length messages, Construction 4.11
must be modified.

This can be done in a number of ways. Two possible
options that can be proven secure are:

79

Secure CBC-MAC for
variable-length message

Fk FkFk Fk

�80

Secure CBC-MAC for
variable-length message

1. Prepend the message with its length |m| (encoded as
an n-bit string), and then compute the basic CBC-
MAC on the resulting message.

(This is shown in Figure 4.2.)

We stress that appending the block length to the end of
the message is not secure.

1/2
81

Secure CBC-MAC for
variable-length message

2. Change the scheme so that key generation chooses
two independent keys k1 ← {0, 1}n and k2 ← {0, 1}n.

Then, to authenticate a message m first compute the
basic CBC-MAC of m using k1 and let t be the result;
output the tag t′ ≔ Fk₂(t).

2/2
82

4.5 Obtaining Privacy
and Authentication

• In Chapter 3, we studied how it is possible to
encrypt messages and thereby obtain privacy.

• In Chapter 4, we have shown how message
authentication codes can be used to guarantee data
authenticity or integrity.

• Often, however, we need both privacy and message
integrity.

83

Privacy only vs. privacy
and message integrity

It is best practice to always encrypt and authenticate
by default;

Encryption alone should not be used unless there
are compelling reasons to do so (such as
implementations on severely resource-constrained
devices) and, even then, only if one is absolutely
sure that no damage can be caused by undetected
modification of the data.

84

Security requirements

Let ΠE = (GenE, Enc, Dec) be an arbitrary encryption
scheme and ΠM = (GenM, Mac, Vrfy) be a message
authentication code.

An Encryption scheme  
 Π′=(Gen′, EncMac′, Dec′)  
derived as a combination of ΠE and ΠM is a tuple of
algorithms that operate as follows:

85

Security requirements
- The key-generation algorithm Gen′ takes input 1n, and

runs GenE(1n) and GenM(1n) to obtain keys kE and
kM (resp.). The key is k=(kE, kM).

- The Encryption EncMac′ takes as input the key k and a
message m and outputs a value c that is derived by
applying some combination of EnckE(·) and MackM(·).

- The decryption algorithm Dec′ takes as input the key k
and a transmitted value c, and applies some combination
of DeckE(·) and VrfykM(·).

- The output of Dec′ is either a plaintext m or a special
symbol ⊥ that indicates an error (of authentication).

86

Correctness
requirements

The correctness requirement is that for every n, every
pair of keys (kE, kM) output by Gen′(1n), and every
value m ∈ {0, 1}∗, 

 Dec′kE,kM(EncMac′kE,kM(m)) = m.
 
Π′ actually satisfies the syntax of a private-key
encryption scheme.

87

Security requirements

Unforgeable-Encryption experiment Enc-forgeA,Π′(n):

1. A random key k = (kE, kM) is generated by running
Gen′(1n).  

2. The adversary A is given input 1n and oracle access to the
algorithm EncMac′k(·). The adversary eventually outputs c.  
Let Q denote the set of all queries that A asked to its oracle.  

3. Let m ≔ Dec′k(c). The output of the experiment is defined
 to be 1 iff (1) m ≠ ⊥ (2) m ∉ Q .

88

Security requirements

DEFINITION 4.16 An Encryption scheme Π′ achieves
Unforgeability if for all PPT adversaries A, there exists a
negligible function negl such that: 

 Pr[Enc-forgeA,Π′(n) = 1] ≤ negl(n).

89

Security requirements

DEFINITION 4.17 A tuple (Gen′, EncMac′, Dec′)
is an Authenticated Encryption scheme if it is
Unforgeable & CCA-secure.

90

Obtaining Privacy and
Authentication

There are three common approaches to combining
encryption and message authentication. Let kE be an
encryption key, and kM be a MAC key.

 A common mistake is to use the same key for both
encryption and authentication.

 This should never be done, as independent keys
should always be used for independent applications
(unless a specific proof of security when using the
same key is known).

91

MackM

t

Encrypt-and-
authenticate

Enc kE

c

⟨c,t⟩

m

92

Obtaining Privacy and
Authentication

1. Encrypt-and-authenticate: In this method,
encryption and message authentication are
computed independently. That is, given a plaintext
message m, the sender transmits ‹c,t› where:  

 c ← EnckE(m) and t ← MackM(m).
 
The receiver decrypts c to recover m, and then verifies
the tag t. If VrfykM(m, t) = 1, the receiver outputs m;
otherwise, it outputs ⊥.

93

Authenticate-then-
Encrypt

t
Enc k1

c

m
MackM

Enc kE

94

Obtaining Privacy and
Authentication

2. Authenticate-then-encrypt: Here a MAC tag t
is first computed, and then the message and tag are
encrypted together. That is, the sender transmits c
computed as:  
 t ← MackM(m) and c ← EnckE(m∥t). 

The authentication tag t is not sent “in the clear”, but is
instead incorporated into the plaintext that is encrypted.

The receiver decrypts c, and then verifies the tag t on m.
As before, if VrfykM(m, t) = 1 the receiver outputs m;
otherwise, it outputs ⊥.

95

Encrypt-then-
Authenticate

c

t

m

⟨c,t⟩

Mac kM

Enc kE

96

Obtaining Privacy and
Authentication

3. Encrypt-then-authenticate: In this case, the
message m is first encrypted and then a MAC tag is
computed over the encrypted message. That is, the
message is the pair ‹c, t› where:

 c ← EnckE(m) and t ← MackM(c).

The receiver verifies t before decrypting c. As before, if
VrfykM(m,c) = 1 the receiver outputs m; otherwise, ⊥.
Observe that this is exactly Construction 4.19 from
the previous section.

97

Encrypt-and-
authenticate

 This combination is not (necessarily) secure, since it
may violate privacy.

 To see this, note that a secure MAC does not
necessarily imply any privacy and, specifically, it is
possible for the tag of a message to leak the entire
message.

98

Authenticate-then-
encrypt

We show that this combination is also not
necessarily secure.

We use the following encryption scheme:

Let Transform(m) be as follows: any 0 in m is
transformed to 00 and any 1 in m is transformed
arbitrarily to 01 or 10. The inverse transform parses
the encoded message as pairs of bits, and then maps
00 to 0, and 01 or 10 to 1.  
If a 11 is encountered, the result is ⊥.

99

Authenticate-then-
encrypt

Define Enck(m) = Enc′k(Transform(m)),  
where Enc′ represents counter mode encryption using
a pseudorandom function.
 (The important point is it works by generating a new
pseudorandom stream for each message to encrypt,
and then XORing the stream with the message.)

Note that Enc is CPA-secure.

100

Authenticate-then-
encrypt

Consider the following chosen-ciphertext attack: Given
a challenge ciphertext  
 c = Enc′k₁(Transform(m ∥ Mack₂(m))), 
 the attacker simply flips the first two bits of the
second block of c (the first being the random IV) and
verifies whether the resulting ciphertext is valid.

(Technically, this can be determined via a query to the
decryption oracle. The adversary only needs to know if
the ciphertext is valid or not, however, and so a weaker
oracle would also suffice.)

101

Authenticate-then-
encrypt

If the first bit of the underlying message m is 1, then
the modified ciphertext will be valid.

This is because if the first bit of m is 1, then the first
two bits of Transform(m) are 01 or 10, and flipping
these bits yields another valid encoding of m.

Furthermore, the tag will still be valid since it is applied
to m and not the encoding of m.

102

Authenticate-then-
encrypt

On the other hand, if the first bit of m is 0 then the
modified ciphertext will not be valid since the first two
bits of Transform(m) would be 00 and their
complement is 11.

This attack can be carried out on each bit of m
separately, resulting in complete recovery of the
message m.

103

Obtaining Privacy and
Authentication

�104

Constructing Autheticated
Encryption Schemes

 The construction works in the following way. The
sender and receiver share two keys, one for a CPA-
secure encryption scheme and the other for a
message authentication code. 

 To encrypt a message m, the sender first encrypts it
using the CPA-secure scheme and then computes a
MAC tag t on the resulting ciphertext c; the entire
ciphertext is now ‹c,t›. 

 Given a ciphertext ‹c,t›, the recipient verifies validity
of the MAC tag before decrypting c.

105

Encrypt-then-
authenticate

THEOREM 4.19 Let ΠE be a CPA-secure private-key
encryption scheme, and let ΠM be a secure message
authentication code (with unique tags). Then the combination
(Gen′, Enc′, Dec′) derived by applying the encrypt-then-
authenticate approach to ΠE,ΠM (Construction 4.18) is
an Authenticated Encryption scheme.

106

The need for
independent keys

 We conclude by stressing a basic principle of
security and cryptography: different security goals
should always use independent keys.

 That is, if an encryption scheme and a message
authentication code are both needed, then
independent keys should be used for each one.

107

The need for
independent keys

• In order to illustrate this here, consider what can
happen to the encrypt-then-authenticate methodology
when the same key k is used for both encryption and
authentication.

• Let F be a strong pseudorandom permutation.

• It follows that F−1 is also a strong pseudorandom
permutations.

108

The need for
independent keys

• Define Enck(m) = Fk(m∥r) for m ∈ {0, 1}n/2 and a
random r ← {0,1}n/2, and Mack(c) = Fk−

1(c).  

• It can be shown that the given encryption scheme is
CPA-secure (in fact, it is even CCA-secure), and we
know that the given message authentication code is a
secure MAC. 

109

The need for
independent keys

• Define Enck(m) = Fk(m∥r) for m ∈ {0, 1}n/2 and a
random r ← {0, 1}n/2, and Mack(c) = Fk−

1(c).  

• However, the encrypt-then-authenticate combination
applied to the message m with the same key k yields:  
 
Enck(m),Mack(Enck(m)) = Fk(m∥r), Fk−

1(Fk(m∥r))  
 = Fk(m∥r), m∥r.

110

CCA Indistinguishability
Experiment: PrivKc

A
c
,
aΠ(n)

A

Pr[b = b′] ≤ ½ + negl(n)
computationally secretb b′

vi,wi∈M×C

c
c ← Enck(mb)
b ← { 0, 1 }

k ← Gen(1n) 1n

m0, m1 ∈ M

xi ← Enck(vi)

x ' i ← Enck(v' i)

xi,yi∈C×Myi ← Deck(wi)

y ' i ← Deck(w' i)

... ...

... ...

v'i,w'i ∈M×C \{c}

x'i,y'i ∈C×M

... ...

... ...

111

3.7 Sec. Against Chosen-
Ciphertext Attacks (CCA)
Consider the following experiment for any private-key
encryption scheme Π = (Gen, Enc, Dec), adversary A,
and value n for the sec. parameter.
CCA indistinguishability experiment PrivKc

A
c
,
aΠ(n) : 

1. A key k is generated by running Gen(1n). 

2. The adversary A is given input 1n and oracle access to
Enck(·) and Deck(·). It outputs a pair of messages  
m0, m1 of the same length.

112

3.7 Sec. Against Chosen-
Ciphertext Attacks (CCA)

3. A random bit b ← { 0, 1 } is chosen, and then a challenge
ciphertext c ← Enck(mb) is computed and given to A.  

4. The adversary A continues to have oracle access to  
Enck(·) and Deck(·), but is not allowed to query the latter
on the challenge ciphertext itself. Finally, A outputs a bit b′. 
 

5. The output of the experiment is defined to be 1 if  
 b′ = b, and 0 otherwise.

113

3.7 Sec. Against Chosen-
Ciphertext Attacks (CCA)
DEFINITION 3.33 A private-key encryption scheme Π
has indistinguishable encryptions under a chosen-
ciphertext attack (or is CCA-secure) if for all PPT
adversaries A there exists a negligible function negl such
that:  

 Pr[PrivKc
A
c
,
a
Π(n) = 1] ≤ ½ + negl(n), 

 
where the probability is taken over all random coins used in
the experiment.

114

Security Against Chosen-
Ciphertext Attacks (CCA)

THEOREM 4.20 
If ΠE is a CPA-secure private-key encryption scheme, 
and ΠM is a secure MAC (with unique tags),  
then Construction 4.18 is a CCA-secure private-key
encryption scheme.

115

CCA-security and real-
life implications

Construction 4.18 may seem unsatisfying, since it
achieves CCA-security simply by ensuring that the
decryption oracle is useless to the adversary.

Instead of being viewed as a drawback of the
construction, this should be viewed as an advantage!

Although there are other ways to achieve CCA-
security, here the adversary is unable to generate any
valid ciphertext that was not already created by one
of the honest parties.

This means that Construction 4.18 achieves both
privacy and message authentication. 116

Authenticated Encryption
vs. CCA-security

• Although we use the same construction for
achieving CCA-security and Authenticated
Encryption, the security goals in each case are
different.

• In the setting of CCA-security we are not
necessarily interested in obtaining message
authentication; rather, we wish to ensure privacy
even against a strong adversary who is able to make
decryption queries.

117

Secure message transmission
vs. CCA-security

• When considering Authenticated Encryption, in
contrast, we are interested in the twin goals of
CCA-security and integrity.

• Clearly, as we have defined it, Authenticated
Encryption implies CCA-security. The opposite
direction is not necessarily true.

118

119

Chapter 4 :

Message Authentication Codes

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

COMP547 Claude Crépeau

Encryption from
Authentication

Many governments felt for a long time that
Encryption could be used by dishonest people
to accomplish some unauthorized activities,

whereas Authentication was a much safer
primitive because it does not a priori
provides confidentiality.

This impression turned out to be wrong as
demonstrated by Ron Rivest in 1998.

NIB120

Encryption from
Authentication

Suppose Alice and Bob have a secure MAC 
(Gen, Mack, Vrfyk) and that Alice wants to send
a secret bit b to Bob.

She may pick two random messages m0, m1, with a
random tag r ≠ Mack(mi) and sends : 
 
(m0, Mack(m0)) and (m1, r) to transmit b = 0 or  
(m0, r) and (m1, Mack(m1)) to transmit b = 1.

NIB121

Encryption from
Authentication

Bob upon receiving two messages (m0, t0),(m1, t1)
decrypts the bit b as 
 
b = 0 if Vrfyk(m0, t0)=1 and 
b = 1 if Vrfyk(m1, t1)=1.

NIB122

Encryption from
Authentication

With probability one, Bob can tell which of the
two messages is authenticated properly,

whereas an adversary who does not know the key
k cannot determine the validity of the two
messages...

NIB123

124

tasks

security
Encryption Authentication Identification Quantum

Symmetric
Informational

Miller-Vernam
One-Time PAD

Wegman-Carter
Universal Hash

Simple
Solutions

Quantum
Key

Distribution

Symmetric
Computational

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

Quantum
Attacks,
Q-Safety

Asymmetric
Computational

RSA, ElGammal,
Blum-

Goldwasser
RSA, DSA, etc

Guilloux-
Quisquater,
Schnor, etc

Quantum
Attacks,
Q-Safety

DONE IN PROGRESS TO DO GIVE UP

Groupe	de	recherche	
en	cryptographie

Cryptography	
Research	Group

