
Chapter 3 :  
Private-Key Encryption

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

1

COMP547 Claude Crépeau

Private-Key Encryption

3.1 Computational Security 
 3.1.1 The Concrete Approach  
 3.1.2 The Asymptotic Approach  
3.2 Defining Computationally-Secure Encryption 
 3.2.1 The Basic Definition of Security 
 3.2.2 Semantic Security  
3.3 Constructing Secure Encryption Schemes 
 3.3.1 Pseudorandom Generators and Stream Ciphers 
 3.3.2 Proofs by Reduction 
 3.3.3 A Secure Fixed-Length Encryption Scheme

2

3.4 Stronger Security Notions 
 3.4.1 Security for Multiple Encryptions  
 3.4.2 Chosen-Plaintext Attacks and CPA-Security 
3.5 Constructing CPA-Secure Encryption Schemes 
 3.5.1 Pseudorandom Functions and Block Ciphers 
 3.5.2 CPA-Secure Encryption from Pseudorandom Functions 
3.6 Modes of Operation 
 3.6.1 Stream-Cipher Modes of Operation 
 3.6.2 Block-Cipher Modes of Operation 
3.7 Chosen-Ciphertext Attacks (CCA)

Private-Key Encryption

3

3.1 Computational Security

Study the notion of pseudorandomness

Things can “look” completely random even though
they are not

This can be used to achieve secure encryption
beating the previous limitations.

4

Computational Security

Encryption schemes whereby a short key can be
used to securely encrypt many long messages.

Such schemes are able to bypass the inherent
limitations of perfect secrecy

Achieve the weaker but sufficient notion of
computational secrecy.

5

A Computational Approach
to Cryptography

 Modern encryption schemes have the property
that they can be broken given enough time.

 Do not satisfy Definition 2.3, but for all practical
purposes, the following level of security suffices.

 Under certain assumptions, the amount of
computation needed to break these encryption
schemes would take more than many lifetimes to
carry out even using the fastest available
supercomputers.

6

The Basic Idea of
Computational Security

Kerckhoffs actually spelled out six principles, the
following of which is very relevant to our discussion
here:

A [cipher] must be practically, if not mathematically,
indecipherable.

7

The Basic Idea of
Computational Security

The computational approach incorporates two
relaxations of the notion of perfect security:

1. Security is only preserved against efficient
adversaries that run in a feasible amount of time

2. Adversaries can potentially succeed with some very
small probability.

8

3.1.1 The concrete
Approach

The concrete approach quantifies the security of a
given cryptographic scheme by explicitly bounding
the maximum success probability of any adversary
running for at most some fixed amount of time.

That is, let t,ε be positive constants with ε ≤ 1.

A concrete definition of security: 
A scheme is (t,ε)-secure if every adversary
running for time at most t succeeds in breaking
the scheme with probability at most ε.

9

Example 3.1

Modern private-key encryption schemes are
generally assumed to give almost optimal security
in the following sense:

When the key has length n, an adversary running
in time t can succeed in breaking the scheme with
probability at most ct/2n for some fixed constant c.

10

Example 3.1

 Computation on the order of t = 260 is barely
within reach today.

Running on a 4 GHz computer, 260 CPU cycles
require 260 cycles / 4x109 cycles/second, or about
9 years.

 Fastest supercomputer : 1 minute.

11

Example 3.1

A typical value for the key length might be 
n = 128.

The difference between 260 and 2128 is a
multiplicative factor of 268 which is a number
containing about 21 decimal digits.

Note that according to physicists’ estimates the
number of seconds since the big bang is in the
order of 258.

12

The concrete approach

When using the concrete security approach,
schemes can be (t,ε)-secure but never just
secure.

 For what ranges of t,ε should we say that a  
(t,ε)-secure scheme is “secure”?

There is no clear answer to this, as a security
guarantee that may suffice for the average user
may not suffice when encrypting classified
government documents.

13

3.1.2 The asymptotic
approach

 This approach, rooted in complexity theory, views the
running time of the adversary as well as its success
probability as functions of a parameter rather than as
concrete numbers.

 A cryptographic scheme will incorporate a security
parameter which is an integer n.

 When honest parties generate keys, they choose some
value n for the security parameter; this value is assumed
to be known to any adversary attacking the scheme.

14

The asymptotic approach

The running time of the adversary (and of the
honest parties) as well as the adversary’s success
probability are all viewed as functions of n.

We equate the notion of “efficient adversaries”
with probabilistic algorithms running in time
polynomial in n. This means that for some
constants a, c the algorithm runs in time a · nc ∈
O(nc) on security parameter n.

15

The asymptotic approach

We require that honest parties run in polynomial
time,

Concerned with achieving security against
polynomial-time adversaries.

Adversarial strategies that require a super-
polynomial amount of time are not considered
realistic threats (and so are essentially ignored).

16

The asymptotic approach

We equate the notion of “small probability of success” with
success probabilities smaller than any inverse polynomial in n,
meaning that for every constant c the adversary’s success
probability is smaller than n−c for all large enough values of n.

A function that grows slower than any inverse polynomial is called
negligible. A definition of asymptotic security thus takes the
following form:

A scheme is secure if every Probabilistic Polynomial Time
adversary succeeds in breaking the scheme with only negligible
probability.

17

Example 3.2

Say we have a scheme that is secure. Then it may
be the case that an adversary running for n3
minutes can succeed in “breaking the scheme” with
probability 240 · 2−n.

When n ≤ 40 this means that an adversary
running for 403 minutes (about 6 weeks) can
break the scheme with probability 1, so such
values of n are not going to be very useful.

18

Example 3.2

 Even for n = 50 an adversary running for 503
minutes (about 3 months) can break the scheme
with probability roughly 1/1000, which may not be
acceptable.

 On the other hand, when n = 500 an adversary
running for more than 200 years breaks the scheme
only with probability roughly 2−500.

19

Example 3.3

 Let us see the effect that the availability of faster
computers might have on security in practice.

Say we have a cryptographic scheme where honest
parties are required to run for 106 · n2 cycles, and
for which an adversary running for 108 · n4 cycles
can succeed in “breaking” the scheme with
probability 220 · 2−n.

20

Example 3.3

Say all parties are using a 2 Ghz computer and  
n = 80.

Then honest parties run for 106 · 6400 cycles,  
or 3.2 seconds, and an adversary running for 
108 · 804 cycles, or roughly 3 week, 
can break the scheme with probability only 2−40.

21

Example 3.3
Say 8 Ghz computers become available, and all
parties upgrade.

Honest parties can increase n to 160 (which
requires generating a fresh key) and still maintain
their running time to 3.2 seconds.

In contrast, the adversary now has to run for 8
million seconds, or more than 13 weeks, to
achieve success probability 2−80.

The effect of a faster computer has been to make
the adversary’s job harder!!!

22

Necessity of the
Relaxations

Assume we have an encryption scheme where the
size of the key space K is much smaller than the
size of the message space M.

Two attacks, lying at opposite extremes, apply
regardless of how the encryption scheme is
constructed:

23

Necessity of the Relaxations :
Brute-Force Search

Given a ciphertext c, an adversary can decrypt c
using all keys k ∈ K .

This gives a list of all possible messages to which c
can possibly correspond.

Since this list cannot contain all of M (because
|K | < |M |), this leaks some information about
the message that was encrypted.

24

Moreover, say the adversary carries out a known-
plaintext attack and learns that ciphertexts c1,...,cℓ
correspond to the messages m1,...,mℓ respectively.

The adversary can again try decrypting each of these
ciphertexts with all possible keys until it finds a key k
for which Deck(ci) = mi for all i.

Necessity of the Relaxations :
Brute-Force Search

25

This key will be unique with high probability, in which
case the adversary has found the key that the honest
parties are using.

Subsequent usage of this key will therefore be
insecure.

The type of attack succeeds with probability
essentially 1 in time linear in |K |.

Necessity of the Relaxations :
Brute-Force Search

26

Consider again the case where the adversary
learns that c1,...,cℓ correspond to m1,...,mℓ.

The adversary can guess a key k ∈ K at random
and check to see whether Deck(ci) = mi for all i.

If so, we again expect that with high probability k is
the key that the honest parties are using.

Here the adversary runs in essentially constant time
and succeeds with non-zero (although very small)
probability of roughly 1/|K |.

Necessity of the Relaxations :
Random Attack

27

Necessity of the
Relaxations

It follows that if we wish to encrypt many messages
using a single short key, security can only be
achieved if we limit the running time of the
adversary1 and also allow a very small probability of
success without considering it a break2. 
 
1 so that the adversary does not have time to carry out a brute-force search. 
2 so that the second “random attack” is ruled out.

28

Efficient Algorithms and
Negligible Success

We define efficient computation as that which can
be carried out in Probabilistic Polynomial Time
(abbreviated PPT).

An algorithm A is said to run in polynomial time if
there exists a polynomial p(·) such that, for every
input x ∈ {0,1}

∗
, the computation of A(x)

terminates within at most p(|x|) steps 
 (here, |x|= length of the string x).

29

Efficient Algorithms and
Negligible Success

A probabilistic algorithm is one that has the
capability of “tossing coins”;

This is a metaphorical way of saying that the
algorithm has access to a source of randomness
that yields unbiased random bits that are each
independently equal to 1 with probability ½ and to
0 with probability ½.

30

Efficient Algorithms and
Negligible Success

DEFINITION 3.4 A function f is negligible if for
every polynomial p(·) there exists an N such that for
all integers n > N it holds that 
 
 f (n) < 1/p(n)

31

PROPOSITION 3.6 Let negl1 and negl2 be
negligible functions of an integer n. Then,  
 
1. The function 
negl3(n) = negl1(n) + negl2(n) is also negligible.  
 
2. For any positive polynomial p, 
the function negl4(n) = p(n) · negl1(n) is also negligible.

Efficient Algorithms and
Negligible Success

32

Efficient Algorithms and
Negligible Success

Events that occur with negligible probability are so
unlikely that they can be ignored for all practical
purposes.

Therefore, a break of a cryptographic scheme that
occurs with negligible probability is not significant.

33

Asymptotic Security:
A Summary

The general framework of any security definition
will be : 
 
A scheme is secure if for every PPT adversary A
carrying out an attack of some specified type, the
probability that A succeeds in this attack (where
success is also well-defined) is negligible.

Such a definition is asymptotic because it is
possible that for small values of n an adversary can
succeed with high probability.

34

Asymptotic Security:
A Summary

In order to see this in more detail, we will use the
full definition of “negligible” in the above
statement:  
 
A scheme is secure if for every PPT adversary A
carrying out an attack of some specified type, and
for every polynomial p(·), there exists an integer
N such that the probability that A succeeds is
less than 1/p(n) for every n > N.

Note that nothing is guaranteed for values n ≤ N.

35

3.2 Defining Computationally
Secure Encryption

DEFINITION 3.7 A private-key encryption
scheme is a tuple of probabilistic polynomial-time
algorithms (Gen, Enc, Dec) such that:  
 
1/3. The key-generation algorithm Gen takes as
input the security parameter 1n and outputs a key k;
we write this as k ← Gen(1n) (thus emphasizing the
fact that Gen is a randomized algorithm). 
We will assume without loss of generality that any
key k ← Gen(1n) satisfies |k| ≤ n.

36

Defining Computationally
Secure Encryption

DEFINITION 3.7 A private-key encryption
scheme is a tuple of probabilistic polynomial-time
algorithms (Gen, Enc, Dec) such that:  
 
2/3. The encryption algorithm Enc takes as input a
key k and a plaintext message m ∈ {0,1}

∗
, and

outputs a ciphertext c. Since Enc may be
randomized, we write c ← Enck(m).

37

DEFINITION 3.7 A private-key encryption
scheme is a tuple of probabilistic polynomial-time
algorithms (Gen, Enc, Dec) such that:  
 
3/3. The decryption algorithm Dec takes as input a
key k and a ciphertext c, and outputs a message m.
We assume that Dec is deterministic, and so write
this as m ≔ Deck(c).

Defining Computationally
Secure Encryption

38

Defining Computationally
Secure Encryption

It is required that for every n, every key k output
by Gen(1n), and every m ∈ {0,1}

∗
, it holds that

Deck(Enck(m)) = m.

If (Gen, Enc, Dec) is such that for k output by
Gen(1n), algorithm Enck is only defined for  
m ∈ {0,1}ℓ (n), then we say that (Gen, Enc, Dec)
is a fixed-length private-key encryption scheme for
messages of length ℓ (n).

39

Indistinguishability in the
presence of an eavesdropper

An experiment is defined for any private-key
encryption scheme Π = (Gen, Enc, Dec), any PPT
adversary A and any value n for the security
parameter. 
 

The eavesdropping indistinguishability experiment
 

 PrivKe
A
a,vΠ(n) :

40

41

A

Pr[b = b′]≤ ½ + negl(n)
computationally secretb b′

PrivKeAa,vΠ

m0, m1 ∈ M

cc ← Enck(mb)
b ← { 0, 1 }
k ← Gen(1n)

1n

PrivKeAa,vΠ(n)
1. The adversary A is given input 1n, and outputs a pair
of messages m0 , m1 of the same length.

2. A key k is generated by running Gen(1n), and a
random bit b ← {0,1} is chosen. A (challenge)
ciphertext c ← Enck(mb) is computed and given to A. 
 
 

3. A outputs a bit b′.
 

4. The output of the experiment is defined to be 1 
if b′ = b, and 0 otherwise. 
 (If PrivKe

A
a,vΠ(n) = 1, we say that A succeeded.)

42

PrivKeAa,vΠ(n)

If Π is a fixed-length scheme for messages of
length ℓ (n), the previous experiment is modified
by requiring m0, m1 ∈ {0,1} ℓ (n).

43

Defining Computationally-
Secure Encryption

DEFINITION 3.8 A private-key encryption scheme
Π = (Gen, Enc, Dec) has indistinguishable
encryptions in the presence of an eavesdropper if for all
PPT adversaries A there exists a negligible function
negl such that  
 

 Pr[PrivKe
A
a,vΠ(n) = 1] ≤ ½ + negl(n),  

 
where the probability is taken over the random coins used by A, as well
as the random coins used in the experiment (for choosing the key, the
random bit b, and any random coins used in the encryption process).

44

Defining Computationally-
Secure Encryption

DEFINITION 3.9 A private-key encryption scheme  
Π = (Gen, Enc, Dec) has indistinguishable encryptions in
the presence of an eavesdropper if for all PPT adversaries A
there exists a negligible function negl such that

| Pr[output(PrivKe
A
a,vΠ(n, b=0)) = 1] −  

 Pr[output(PrivKe
A
a,vΠ(n, b=1)) = 1] | ≤ negl(n).  

The fact that this definition is equivalent to Definition 3.8 is
left as an exercise.

45

3.2.2 *Semantic Security
DEFINITION 3.12 A private-key encryption scheme 
(Gen, Enc, Dec) is semantically secure in the presence of an
eavesdropper if for every PPT algorithm A there exists a
PPT algorithm A′ such that for all efficiently-sampleable
distributions X = (X1,...) and all polynomial-time computable
functions f and h, there exists a negligible function negl s.t. 
 
 | Pr[A(1n, Enck(m), h(m)) = f(m)] − 
 Pr[A′(1n, |m|, h(m)) = f(m)] | ≤ negl(n),  
 
where m is chosen according to distribution Xn , and the
probabilities are taken over the choice of m and the key k, and
any random coins used by A, A′, and the encryption process.

46

 z′

 z

Ac
c ← Enck(m)

k ← Gen(1n) 1n

h(m)

1n

h(m)

A′

| Pr[z = f(m)] − Pr[z′ = f(m)] | ≤ negl(n),  

|m|
47

Semantic Security
THEOREM 3.13 A private-key encryption scheme
has indistinguishable encryptions in the presence of
an eavesdropper 
 

 if and only if 
 

it is semantically secure in the presence of an
eavesdropper.

Shafi Goldwasser Silvio Micali48

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

49

Chapter 3 :  
Private-Key Encryption

COMP547 Claude Crépeau

3.3 Constructing Secure
Encryption Schemes

Loosely speaking, a pseudorandom string is a string
that looks like a uniformly distributed string, as
long as the entity that is “looking” runs in
polynomial time.

Just as indistinguishability can be viewed as a
computational relaxation of perfect secrecy,
pseudorandomness is a computational relaxation
of true randomness.

50

3.3.1 Pseudorandom Generators
and Stream Ciphers

An important conceptual point is that, technically
speaking, no fixed string can be said to be
“pseudorandom” (in the same way that it does not make
much sense to refer to any fixed string as “random”).

Pseudorandomness actually refers to a distribution over
strings, and when we say that a distribution D over
strings of length ℓ is pseudorandom this means that D is
indistinguishable from the uniform distribution over
strings of length ℓ.

51

Pseudorandomness

Strictly speaking, since we are in an asymptotic setting we
actually need to speak of the pseudorandomness of a
sequence of distributions D = {Dn}, where distribution Dn is
associated with security parameter n. 
 We ignore this point in our current discussion.

More precisely, it is infeasible for any PPT algorithm to tell
whether it is given a string sampled according to D or an  
ℓ-bit string chosen uniformly at random.

52

A pseudorandom generator is a deterministic
algorithm that receives a short truly random seed
and stretches it into a long string that is
pseudorandom.

Stated differently, a pseudorandom generator uses
a small amount of true randomness in order to
generate a large amount of pseudorandomness.

Pseudorandom
Generators

53

SEEMS

RANDOM
RANDOM x g(x)g

 PPsseeuuddoo--rraannddoomm BBiitt GGeenneerraattoorr

÷÷
÷÷
÷÷
÷÷
÷÷
÷

54

RANDOM SEEMS
RANDOMx g(x)

Pseudorandom Generators

Pseudorandom
Generators

In the definition that follows, we set n to be the
length of the seed that is input to the generator and
ℓ (n) to be the output length.

The generator is only interesting if ℓ (n) > n. 

Otherwise, it doesn’t generate any new (apparent)
randomness

55

ℓ (n)

n

÷÷
÷÷
÷÷
÷÷
÷÷
÷

÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷

÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷

÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷÷
÷

÷÷
÷÷÷÷÷ ÷÷

÷÷
÷÷

÷÷

÷÷
÷÷
÷÷

÷
÷÷

÷÷
÷

Pseudorandom
Generators

56

Pseudorandom
Generators

DEFINITION 3.14 Let ℓ (·) be a polynomial and let
G be a deterministic polynomial-time algorithm such that
for any input s ∈ {0,1}n, algorithm G outputs a string of
length ℓ (n). (The function ℓ is called the expansion
factor of G). We say that G is a pseudorandom
generator if the following two conditions hold:  

Silvio MicaliManuel Blum

57

1. (Expansion:) For every n it holds that ℓ(n) > n.  
 
2. (Pseudorandomness:) For all PPT distinguishers D,
there exists a negligible function negl such that: 
 

 | Pr[D(r) = 1] − Pr[D(G(s)) = 1] | ≤ negl(n),  
  

where r is chosen uniformly at random from {0,1}ℓ (n),
the seed s is chosen uniformly at random from {0,1}n,
and the probabilities are taken over the random coins
used by D and the choice of r and s.

Pseudorandom
Generators

58

Pseudorandom Generators

÷÷ ÷

÷ ÷ ÷ ÷ ÷

G

computational indistinguishability

s ← { 0, 1 }n

1n

ℓ (n)÷÷ ÷

| Pr[D(G(s)) = 1] − Pr[D(r) = 1] | ≤ negl(n)

r ← { 0, 1 }ℓ (n)

G(s)

1n

D
G(s) r

59

Pseudorandom
Generators: Discussion.

It is trivial to distinguish between a random string
and a pseudorandom string given an unlimited
amount of time.

Upon input some string w, distinguisher D outputs
1 if and only if there exists a string s ∈ {0,1}n such
that G(s) = w. 
 
 | Pr[D(r) = 1] − Pr[D(G(s)) = 1] | = 1− 2−n

60

The seed and its length
The seed for a pseudorandom generator must be chosen
uniformly at random, and be kept entirely secret from
the distinguisher.

Another important point, evident from the above
discussion of brute-force attacks, is that s must be long
enough so that no “efficient algorithm” has time to
traverse all possible seeds.

Technically, this is taken care of by the fact that all
algorithms are assumed to run in polynomial time and
thus cannot search through all 2n possible seeds when n
is large enough.

61

Existence of
Pseudorandom Generators

The first question one should ask is whether any
entity satisfying Definition 3.14 exists.  

Unfortunately, we do not know how to unequivocally
prove the existence of pseudorandom generators.

62

Existence of
Pseudorandom Generators

We believe that pseudorandom generators exist,
and this belief is based on the fact that they can be
constructed under the rather weak assumption
that one-way functions exist.

In practice, various constructions believed to act as
pseudorandom generators are known.

63

Stream Ciphers

Formally, we view a stream cipher as a pair of
deterministic algorithms (Init, GetBits) where:

Init takes as input a seed s and an optional
initialization vector IV , and outputs an initial state
st0.

GetBits takes as input state information sti, and
outputs a bit y and updated state sti+1. (In practice,
y is a block of several bits; we treat y as a single bit
here for generality and simplicity.)

64

Stream Ciphers

65

Stream Ciphers

A stream cipher is secure:

In the basic sense if it takes no IV and for any
polynomial ℓ with ℓ (n) > n, the function Gℓ is a
pseudorandom generator with expansion factor ℓ .

One possible security notion for stream ciphers
that use an IV is discussed in Section 3.6.1.

66

3.3.3 Secure Fixed-Length
Encryption Schemes

Pseudorandom
generator

k

pad

plaintext ciphertext
67

A Secure Fixed-Length
Encryption Scheme

68

A Secure Fixed-Length
Encryption Scheme

THEOREM 3.18 If G is a pseudorandom
generator, then Construction 3.17 is a fixed-
length private-key encryption scheme that has
indistinguishable encryptions in the presence of an
eavesdropper.

69

A Secure Fixed-Length
Encryption Scheme

PROOF IDEA 

Let Π denote Construction 3.17.

We show that if there exists a PPT adversary A for
which Definition 3.8 does not hold, then we can
construct a probabilistic polynomial-time algorithm
that distinguishes the output of G from a truly
random string.

70

A Secure Fixed-Length
Encryption Scheme

The intuition behind this claim is that if Π used a truly
random string in place of the pseudorandom string G(k),
then the resulting scheme would be identical to the one-
time pad encryption scheme and A would be unable to
correctly guess which message was encrypted with
probability any better than ½.

So, if Definition 3.8 does not hold then A must be
distinguishing the output of G from a random string. 

71

A Secure Fixed-Length
Encryption Scheme

It is easy to get lost in the details of the proof and
wonder whether anything has been gained as
compared to the one-time pad; after all, the one-
time pad also encrypts an ℓ-bit message by XORing
it with an ℓ-bit string!

The point of the construction, of course, is that the
ℓ-bit string G(k) can be much longer than the key k.

72

3.4 Stronger Security
Notions

Security for Multiple Encryptions

Security Against (CPA) Chosen-Plaintext Attacks

73

3.4.1 Security for
Multiple Encryptions

A

Pr[b = b′] ≤ ½ + negl(n)
computationally secretb b′

Cci ← Enck(mib) 
C ≔ (c1,c2,...,ct)

b ← { 0, 1 }
k ← Gen(1n)

1n

M0, M1 ∈ M

()M0 ≔ (m10,...,mt0) 
M1 ≔ (m11,...,mt1) 
with |mi0| = |mi1| for all i

74

Security for Multiple
Encryptions: PrivKmAu, lΠ t(n)

1. The adversary A is given input 1n, and outputs a pair of
vectors of messages M0 ≔ (m10,...,mt0) and  
M1 ≔ (m11,...,mt1) with |mi0| = |mi1| for all 1≤ i ≤ t.

2. A key k is generated by running Gen(1n), and a random
bit b ← {0, 1} is chosen. For all i, the ciphertext 
ci ← Enck(mib) is computed and the vector of 
ciphertexts C ≔ (c1,...,ct) is given to A.

3. A outputs a bit b′.

4. The output of the experiment is defined  
to be 1 if b′ = b, and 0 otherwise.

75

Security for Multiple
Encryptions

DEFINITION 3.19 A private-key encryption scheme
Π = (Gen, Enc, Dec) has indistinguishable multiple
encryptions in the presence of an eavesdropper if for all
PPT adversaries A there exists a negligible function negl
s.t.  
 Pr[PrivKm

A
u, lΠ t(n) = 1] ≤ ½ + negl(n),  

 
where the probability is taken over the random coins used by A, as well
as the random coins used in the experiment (for choosing the key and
the random bit b, as well as for the encryption itself).

76

Security for Multiple
Encryptions

PROPOSITION 3.20 There exist private-key
encryption schemes that have indistinguishable
encryptions in the presence of an eavesdropper but do
not have indistinguishable multiple encryptions in the
presence of an eavesdropper.

77

Necessity of probabilistic
encryption

In the proof of Proposition 3.20 we show that
Construction 3.17 is not secure for multiple
encryptions.  
 

The only feature of that construction used in the
proof [is] that encrypting a message always yields
the same ciphertext, and so we actually obtain that
any deterministic scheme must be insecure for
multiple encryptions.

78

Necessity of probabilistic
encryption

THEOREM 3.21 Let Π = (Gen, Enc, Dec) be an
encryption scheme for which Enc is a deterministic function
of the key and the message. Then Π does not have
indistinguishable multiple encryptions in the presence of an
eavesdropper.

79

3.4.2 Security Against (CPA)
Chosen-Plaintext Attacks

 We formally introduce a more powerful type of
adversarial attack, called a chosen-plaintext attack
(CPA).

 The definition of security under CPA is the same as
in Definition 3.8, except that the adversary’s
attack capabilities are strengthened.

80

Security Against CPA

The basic idea behind a chosen-plaintext attack is
that the adversary A is allowed to ask for
encryptions of multiple messages chosen adaptively.

81

Security Against CPA

This is formalized by allowing A to interact freely
with an encryption oracle, viewed as a “black-box”
that encrypts messages of A’s choice using the
secret key k.

We denote by AO(·) the computation of A given
access to an oracle O.

We denote the computation of A with access to
an encryption oracle that uses key k by AEnck(·).

82

Security Against CPA

When A queries its oracle by providing it with a
plaintext message m as input, the oracle returns a
ciphertext c ← Enck(m) as the reply.

When Enc is randomized, the oracle uses fresh
random coins each time it answers a query.

83

Security Against CPA

The definition of security requires that A should not
be able to distinguish the encryption of two arbitrary
messages, even when A is given access to an encryption
oracle.

84

CPA Indistinguishability
Experiment: PrivKcAp,

aΠ(n)

A

Pr[b = b′] ≤ ½ + negl(n)
computationally secretb b′

w0 ∈ M

cc ← Enck(mb)
b ← { 0, 1 }

k ← Gen(1n) 1n

m0, m1 ∈ M

vi ← Enck(wi)
v0 ∈ C

yi ← Enck(xi)

w1 ∈ M

v1 ∈ C
. . .

x0 ∈ M

y0 ∈ C

x1 ∈ M

y1 ∈ C
. . .

85

PrivKcAp, aΠ(n)
1. A key k is generated by running Gen(1n). 

2. The adversary A is given input 1n and oracle access to
Enck(·), and outputs a pair of messages m0, m1 of the
same length. 

3. A random bit b ← {0,1} is chosen, and then a  
ciphertext c ← Enck(mb) is created and given to A. 
We call c the challenge ciphertext. 

4.The adversary A continues to have oracle access to
Enck(·), and outputs a bit b′.

5.The output of the experiment is defined to be 1 if 
b′=b, and 0 otherwise. 
 

(When PrivKc
A
p,aΠ(n) = 1, we say that A succeeded.) 86

indistinguishable
encryptions under CPA
DEFINITION 3.22 A private-key encryption scheme
Π = (Gen, Enc, Dec) has indistinguishable
encryptions under a chosen-plaintext attack (or is
CPA-secure) if for all probabilistic polynomial-time
adversaries A there exists a negligible function negl s.t. 
 
 Pr[PrivKc

A
p, aΠ(n) = 1] ≤ ½ + negl(n),  

 
where the probability is over the random coins used by A,
as well as the random coins used in the experiment.

87

indistinguishable
encryptions under CPA

 Any scheme that has indistinguishable encryptions
under a chosen-plaintext attack clearly also has
indistinguishable encryptions in the presence of an
eavesdropper.

 This holds because PrivKeav is a special case of
PrivKcpa where the adversary doesn’t use its oracle
at all.

88

indistinguishable
encryptions under CPA

It may appear that Definition 3.22 is impossible
to achieve.

Consider an adversary that outputs (m0, m1) and
then receives the ciphertext c ← Enck(mb).

Since the adversary A has oracle access to Enck, it
can request that this oracle encrypts the messages
m0 and m1 and thus obtain ci ← Enck(mi).

89

indistinguishable
encryptions under CPA

Adversary A can then compare c0 and c1 to c:  
if c = c0 then, seemingly, A knows that b = 0, and  
if c = c1 then it knows that b = 1.

Why doesn’t this strategy allow A to determine b
with probability one ?

90

indistinguishable
encryptions under CPA

The answer is that such an attack would indeed
work if the encryption scheme was deterministic.

As with security under multiple encryptions, no
deterministic encryption scheme can be secure
against chosen-plaintext attacks.

Any CPA-secure encryption scheme must be
probabilistic.

91

CPA Indistinguishability
Experiment: PrivKLAR,

−Πc pa(n)

A

Pr[b = b′] ≤ ½ + negl(n)
computationally secretb b′

m01 ∈ M

ci ← Enck(mib)

b ← { 0, 1 }
k ← Gen(1n) 1n

c1 ∈ C
. . .

92

m11 ∈ M

m02 ∈ M

c2 ∈ C

m12 ∈ M

PrivKL
A
R,
−Πc pa(n)

1. A key k is generated by running Gen(1n). 

2. A random bit b ← {0,1} is chosen. 
3.The adversary A is given input 1n and oracle access to
LRk,b such that LRk,b(m0,m1) := Enck(mb). 

4.The adversary A outputs a bit b′.
5.The output of the experiment is defined to be 1 if 
b′=b, and 0 otherwise. 
 

(When PrivKL
A
R
,
−Πcpa(n) = 1, we say that A

succeeded.)

93

DEFINITION 3.23 A private-key encryption scheme
Π = (Gen, Enc, Dec) has indistinguishable multiple
encryptions under a chosen-plaintext attack (or is
CPA-secure) if for all probabilistic polynomial-time
adversaries A there exists a negligible function negl s.t. 
 
 Pr[PrivKLAR, −Πc pa(n) = 1] ≤ ½ + negl(n),  
 
where the probability is over the random coins used by A,
as well as the random coins used in the experiment.

94

CPA security for
multiple encryptions

CPA security for
multiple encryptions

PROPOSITION 3.24 Any private-key encryption
scheme that has indistinguishable encryptions under a
chosen-plaintext attack also has indistinguishable
multiple encryptions under a chosen-plaintext attack.

95

Fixed-length vs.
arbitrary-length

Given any CPA-secure fixed-length encryption
scheme Π = (Gen, Enc, Dec), it is possible to
construct a CPA-secure encryption scheme  
 Π′ = (Gen′, Enc′, Dec′) 
for arbitrary-length messages quite easily:

 Enck′(m) ≔ Enck(m1), ... , Enck(m ℓ)

96

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

97

Chapter 3 :  
Private-Key Encryption

COMP547 Claude Crépeau

3.5 Constructing CPA-
Secure Encryption Schemes

We will construct encryption schemes that are
secure against chosen-plaintext attacks.

We begin by introducing the important notion of
Pseudorandom Functions.

98

3.5.1 Pseudorandom
Functions

Instead of considering Pseudorandom Strings, we
consider Pseudorandom Functions.

We will specifically be interested in Pseudorandom
Functions mapping n-bit strings to n-bit strings.

It does not make much sense to say that any fixed
Function f : {0, 1}n → {0, 1}n is Pseudorandom.

We must technically refer to the 
 Pseudorandomness of a distribution over functions.

99

Pseudorandom Functions

A keyed function F is a two-input function  
F : {0,1}

∗
 × {0,1}

∗
 → {0,1}

∗
, where the first input

is called the key and denoted k, and the second
input is just called the input.

In general the key k will be chosen and then fixed,
and we will then be interested in the single-input
function Fk : {0,1}

∗
 → {0,1}

∗
 defined by  

 

 Fk(x) def= F(k,x).

100

Pseudorandom Functions

We assume that the function F is only defined
when the key k and the input x have the same
length, in which case |Fk(x)| = |x| = |k|.

By fixing a key k ∈ {0,1}n we obtain a function 
Fk(·) mapping n-bit strings to n-bit strings.

101

Pseudorandom Functions

Intuitively, we call F pseudorandom if the function Fk
(for a randomly-chosen key k) is indistinguishable
from a function chosen uniformly at random from
the set of all functions having the same domain and
range.

That is, if no polynomial-time adversary can
distinguish whether it is interacting with Fk (for
randomly-chosen key k) or f (where f is chosen at
random from the set of all functions mapping n-bit
strings to n-bit strings).

102

Pseudorandom Functions

A function f is fully specified by giving its value on
each point in its domain.

In fact, we can view any function (over a finite
domain) as a large look-up table that stores f(x)
in the row of the table labeled by x.

103

Pseudorandom Functions

For f : {0, 1}n → {0, 1}n the look-up table for f
has 2n rows and each row contains an n-bit
string.

Any such table can thus be represented using
exactly n · 2n bits.

104

Pseudorandom Functions

DEFINITION 3.25 Let F:{0,1}
∗

 × {0,1}
∗

 → {0,1}
∗
 be

an efficient, length-preserving, keyed function. We say that F
is a Pseudorandom Function if for all PPT distinguishers
D, there exists a negligible function negl such that:  
 
 | Pr[DFk(·)(1n) = 1] − Pr[Df(·)(1n) = 1] | ≤ negl(n)  
 
where k ← {0,1}n is chosen uniformly at random and f is chosen
uniformly at random from the set of functions mapping n-bit strings to
n-bit string.

105

÷÷ ÷

÷ ÷ ÷ ÷ ÷

G

÷÷ ÷÷÷ ÷÷÷ ÷

Pseudorandom Function Generators

computational indistinguishability

s ← { 0, 1 }n

1n

| Pr[DFs(·)(1n) = 1] − Pr[Df(·)(1n) = 1] | ≤ negl(n)

f ← { 0, 1 }ℓ (n)xn

Fs(·)

1n

÷÷ ÷÷÷ ÷÷÷ ÷÷÷ ÷ℓ (n) 
x 
n

D

106

x0

yi ← Fs(xi)
y0

x1

y1

. . .

yi ← f(xi)

x0

y0

x1

y1

. . .

On the Existence of
Pseudorandom Functions

As with Pseudorandom Generators, it is important
to ask whether Pseudorandom Functions exist and,
if so, under what assumptions.

In practice, very efficient primitives called block
ciphers are used and are widely believed to act as
Pseudorandom Functions.

This is discussed further in Chapter 6.

107

On the Existence of
Pseudorandom Functions
From a theoretical point of view, it is known that
pseudorandom functions exist if and only if
pseudorandom generators exist.

Pseudorandom functions can be constructed based
on any of the hard problems that allow the
construction of pseudorandom generators. (This is
discussed at length in Chapter 7 if you are curious).

The existence of pseudorandom functions based on
these hard problems represents one of the surprising
and amazing contributions of modern cryptography.

108

On the Existence of
Pseudorandom Functions

k

G0(k)

G1(G0(k))

109

110

On the Existence of
Pseudorandom Functions

On the Existence of
Pseudorandom Functions

THEOREM 7.22 If G is a Pseudorandom 
Generator with expansion factor ℓ (n) = 2n, then
Construction 7.21 is a Pseudorandom Function.

Oded Goldreich Shafi Goldwasser Silvio Micali
111

Pseudorandom Permutations
and Block Ciphers

Let F : {0,1}
∗

 × {0,1}
∗

 → {0,1}
∗
 be an efficient,

length-preserving, keyed function.

We call F a keyed permutation if for every k, the
function Fk(·) is a bijection.

We say that a keyed permutation is efficient if
there is a PPT algorithm computing Fk(x) given k
and x, as well as a PPT algorithm computing  
Fk−1(x) given k and x.

112

Pseudorandom Permutations
and Block Ciphers

We define what it means for an efficient keyed
permutation F to be a pseudorandom permutation
in a manner exactly analogous to Definition
3.25.

The only change is that we now require that Fk
(for a randomly-chosen k) be indistinguishable
from a randomly-chosen permutation rather than a
randomly-chosen function.

113

Pseudorandom Permutations
and Block Ciphers

Actually, this is merely an aesthetic decision since
random permutations and (length-preserving) random
functions are anyway indistinguishable using
polynomially-many queries.

Intuitively this is due to the fact that a random
function f looks identical to a random permutation
unless a distinct pair of values x and y are found for
which f(x) = f(y) (since in such a case the function
cannot be a permutation). However, the probability of
finding such points x, y using a polynomial number of
queries is negligible.

114

Pseudorandom Permutations
and Block Ciphers

PROPOSITION 3.27 If F is a Pseudorandom
Permutation then it is also a Pseudorandom Function.

115

On the existence of
Pseudorandom Permutations

Fk1

Fk2

Fk3

Michael Luby Charles Rackoff

116

On the existence of
Pseudorandom Permutations

THEOREM 7.23

If F is a length-preserving Pseudorandom Function,
then F(3) is a Pseudorandom Permutation that maps
2n-bit strings to 2n-bit strings (and uses a key of
length 3n).

117

Pseudorandom Permutations
and Block Ciphers

If F is an efficient pseudorandom permutation
then cryptographic schemes based on F might
require honest parties to compute the inverse 
Fk−1 in addition to the permutation Fk itself.

This potentially introduces new security concerns
that are not covered by the fact that F is
pseudorandom.

118

Pseudorandom Permutations
and Block Ciphers

We may need to impose the stronger requirement
that Fk be indistinguishable from a random
permutation even if the distinguisher is additionally
given oracle access to the inverse of the permutation.

If F has this property, we call it a 
 
 Strong Pseudorandom Permutation.

119

DEFINITION 3.28 Let F : {0,1}
∗

 × {0,1}
∗

 → {0,1}
∗

be an efficient, keyed permutation. We say that F is a
strong pseudorandom permutation if for all
probabilistic polynomial-time distinguishers D, there exists
a negligible function negl such that:

  −1 −1 | Pr[DFk(·),Fk (·)(1n) = 1] − Pr[Df(·),f (·)(1n) = 1] | ≤ negl(n),
 
where k ← {0,1}n is chosen uniformly at random and f is chosen
uniformly at random from the set of permutations on n-bit strings.

Pseudorandom Permutations
and Block Ciphers

120

Pseudorandom Permutations
and Block Ciphers

Unfortunately, it is often not stated in the literature
that a block cipher is actually assumed to be a strong
pseudorandom permutation.

Explicitly modeling block ciphers in this way enables a
formal analysis of many practical constructions that
rely on block ciphers.

These constructions include encryption schemes (as
studied here), message authentication codes (to be
studied in Chapter 4), authentication protocols,
and more.

121

Pseudorandom Permutations
and Block Ciphers

As with stream ciphers, block ciphers themselves
are not secure encryption schemes.

Rather, they are building blocks that can be used to
construct secure encryption schemes.

For examp le , u s i ng a b lock c i pher i n
Construction 3.30 yields a CPA-secure
private-key encryption scheme.

122

Pseudorandom Permutations
and Block Ciphers

In contrast, an encryption scheme that works
by just computing c ≔ Fk(m), where Fk is a
strong pseudorandom permutation, is not CPA
secure.

This distinction between block ciphers as
building blocks and encryption schemes that
use block ciphers is of great importance and
one that is too often missed.

123

On the existence of Strong
Pseudorandom Permutations

Fk1

Fk2

Fk3

Fk4

124

On the existence of Strong
Pseudorandom Permutations

THEOREM 7.25

If F is a length-preserving Pseudorandom Function,
then F(4) is a Strong Pseudorandom Permutation that
maps 2n-bit strings to 2n-bit strings (and uses a key
of length 4n).

125

3.5.2 CPA-Secure Encryption
from Pseudorandom Functions

Pseudorandom
function generator

k

pad

plaintext

ciphertext

Fresh random string r

126

Using a Pseudorandom
Function in Cryptography

Pseudorandom functions turn out to be a very
useful building block for a number of different
cryptographic constructions.

We use them below to obtain CPA-secure
encryption and in Chapter 4 to construct
message authentication codes.

127

Using a Pseudorandom
Function in Cryptography

Given a scheme that is based on a pseudorandom
function, a general way of analyzing the scheme is
to first prove its security under the assumption
that a truly random function is used instead.

Next, the security of the original scheme is derived
by proving that if an adversary can break the
scheme when a pseudorandom function is used,
then it must implicitly be distinguishing the
function from random.

128

CPA-Secure Encryption from
Pseudorandom Functions

129

CPA-Secure Encryption from
Pseudorandom Functions

Intuitively, security holds because Fk(r) looks
completely random to an adversary who observes
a ciphertext ‹r,s› as long as the value r was not
used in some previous encryption.

Moreover, this “bad event” (namely, a repeating
value of r) occurs with only negligible probability.

130

CPA-Secure Encryption from
Pseudorandom Functions

THEOREM 3.31 If F is a pseudorandom function,
then Construction 3.30 is a fixed-length private-key
encryption scheme for messages of length n that has
indistinguishable encryptions under CPA.

131

Efficiency of
Construction 3.30

Construction 3.30 has the drawback that the
length of the ciphertext is (at least) double the
length of the plaintext.

This is because each block of size n is encrypted
using an n-bit random string which must be
included as part of the ciphertext.

In Section 3.6.2 we will show how the
ciphertext length can be significantly reduced.

132

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

133

Chapter 3 :  
Private-Key Encryption

COMP547 Claude Crépeau

F k FkF k

c

c

c c c

F k F kF k

F k F kF k

3.6 Modes of Operation

Fk F kF k

134

Note that arbitrary-length messages can be
unambiguously padded to a total length that is a
multiple of any desired block size by appending a 1
followed by sufficiently-many 0s.

We will therefore just assume that the length of the
plaintext message is an exact multiple of the block size.

Throughout this section, we will refer to a
pseudorandom permutation/block cipher F with block
length n, and will consider the encryption of messages
consisting of ℓ blocks each of length n.

135

3.6.2 Block Cipher Modes
of Operation

Mode 1 — (ECB)

Electronic Code Book mode

F k F kF k

136

Electronic Code Book
(ECB) mode

This is the most naive mode of operation possible.

Given a plaintext message m ≔ m1, m2, ..., mℓ, the
ciphertext is obtained by “encrypting” each block
separately.

137

Electronic Code Book
(ECB) mode

“Encryption” here means a direct application of the
pseudorandom permutation to the plaintext block: 
 
 c ≔ Fk(m1), Fk(m2), ..., Fk(mℓ)

Decryption is carried in the obvious way, using the
fact that Fk−1 is efficiently computable.

The encryption process here is deterministic and
therefore this mode of operation cannot be  
CPA-secure.

138

Electronic Code Book
(ECB) mode

Even worse, ECB-mode encryption does not have
indistinguishable encryptions in the presence of an
eavesdropper.  
(This is due to the fact that if the same block is
repeated twice in the plaintext, this can be
detected as a repeating block in the ciphertext.)

It is easy to distinguish an encryption of a plaintext
that consists of two identical blocks from an
encryption of a plaintext that consists of two
different blocks.

139

140

Mode 2 — (CBC)

Cipher Block Chaining mode

F k F kF k

141

Cipher Block Chaining
(CBC) mode

In this mode, a random initial vector (IV) of length
n is first chosen.

Each of the remaining ciphertext blocks is
generated by applying the pseudorandom
permutation to the XOR of the current plaintext
block and the previous ciphertext block.

142

Cipher Block Chaining
(CBC) mode

Set c0 ≔ IV and then,  
for i ≔ 1 to ℓ,  
 set ci ≔ Fk(ci-1 ⊕ mi).

The final ciphertext is c0, c1, ..., cℓ.

We stress that the IV is sent in the clear as part of
the ciphertext; this is crucial so that decryption
can be carried out.

143

Cipher Block Chaining
(CBC) mode

Importantly, encryption in CBC mode is probabilistic
and it has been proven that if F is a pseudorandom
permutation then CBC-mode encryption is CPA-
secure.

Mihir Bellare Phil Rogaway

144

Cipher Block Chaining
(CBC) mode

The main drawback of this mode is that encryption
must be carried out sequentially because the
ciphertext block ci-1 is needed in order to encrypt
the plaintext block mi.

If parallel processing is available, CBC-mode
encryption may not be the most efficient choice.

145

Mode 3 — (OFB)

Output Feedback mode

F k F kF k

146

Output Feedback (OFB)
mode

The third mode we present here is called OFB.

Essentially, this mode is a way of using a block
cipher to generate a pseudorandom stream that is
then XORed with the message.

147

Output Feedback (OFB)
mode

First, a random IV ← {0,1}n is chosen and a stream
is generated from IV (independently of the
plaintext message) in the following way:

Define r0 ≔ IV , and set the ith block ri of the
stream to ri ≔ Fk(ri-1).

Then, each block of the plaintext is encrypted by
XORing it with the appropriate block of the
stream; that is, c ≔ m ⊕ r.

148

Output Feedback (OFB)
mode

This mode is also probabilistic, and it can be shown
that it too is a CPA-secure encryption scheme if F is
a pseudorandom function.

Encryption and decryption are Sequential.

149

Output Feedback (OFB)
mode

This mode has the advantage that the bulk of the
computation can be done independently of the actual
message to be encrypted. Using pre-processing,
encryption of the plaintext (once it is known) is
incredibly fast.

In contrast to CBC mode, here it is not required that
F be invertible (in fact, it need not even be a
permutation)

150

Mode 4 — (CTR)

Counter mode

F k F kF k

c

c

c c c

151

Counter (CTR) mode

There are different variants of CTR-mode
encryption; we describe the randomized counter
mode here.

As with OFB, counter mode can be viewed as a
way of generating a pseudorandom stream from a
block cipher.

152

Counter (CTR) mode

First, a random ctr ← {0,1}n is chosen.

A stream is generated as ri ≔ Fk(ctr + i) 
(where ctr and i are viewed as integers and
addition is performed modulo 2n).

Finally, the ith block is computed as ci ≔ ri ⊕ mi ,
and the ctr is again sent as part of the ciphertext.

Note once again that decryption does not require
F to be invertible, or even a permutation.

153

Counter (CTR) mode

First and foremost, randomized counter mode is
CPA-secure.

Second, both encryption and decryption can be
fully parallelized and, as with OFB mode, it is
possible to generate the pseudorandom stream
ahead of time, independently of the message.

Finally, it is possible to (en- &) de-crypt the ith
block of the ciphertext without (en- &) decrypting
anything else; this property is called random access.

154

Block length and
security

Most of the above modes use a random IV.

The IV has the effect of randomizing the
encryption process, and ensures that (with high
probability) the block cipher is always evaluated on
a new input that was never used before.

155

Block length and
security

This is important because, if an input to the block
cipher is used more than once then security can
be violated. (E.g., in the case of counter mode, the
same pseudorandom string will be XORed with
two different plaintext blocks.)

156

Block length and
security

Interestingly, this shows that it is not only the key
length of a block cipher that is important in
evaluating its security, but also its block length. For
example, say we use a block cipher with a 64-bit
block length.

In randomized counter mode, even if a completely
random function with this block length is used (i.e.,
even if the block cipher is “perfect”), an adversary
can achieve success probability roughly ½ + q2/263
in a chosen-plaintext attack when it makes q
queries to its encryption oracle, each q blocks
long.

157

Block length and
security

Although this is asymptotically negligible (when the
block length grows as a function of the security
parameter n), security no longer holds in any
practical sense (for this particular block length)
when q ≈ 230.

Depending on the application, one may want to
switch to a block cipher having a larger block
length (230 is only one gigabyte, which is not much
considering today’s storage needs).

158

3.7 Security Against Chosen-
Ciphertext Attacks (CCA)

We need the tools of Chapter 4 (Message
Authentication Codes) to address this issue.

We will return to it in due time...

159

160

tasks

security
Encryption Authentication Identification Quantum

Symmetric
Informational

Miller-Vernam
One-Time PAD

Wegman-Carter
Universal Hash

Simple
Solutions

Quantum
Key

Distribution

Symmetric
Computational

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

from PRBG
from PRFG

DES, AES, etc

Quantum
Attacks,
Q-Safety

Asymmetric
Computational

RSA, ElGammal,
Blum-

Goldwasser
RSA, DSA, etc

Guilloux-
Quisquater,
Schnor, etc

Quantum
Attacks,
Q-Safety

DONE IN PROGRESS TO DO GIVE UP

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

_ Second Edition _
Jonathan Katz •Yehuda Lindell

161

Chapter 3 :  
Private-Key Encryption

COMP547 Claude Crépeau

