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3.1 Computational Security

Study the notion of pseudorandomness

Things can “look” completely random even though 
they are not

This can be used to achieve secure encryption 
beating the previous limitations.
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Computational Security

Encryption schemes whereby a short key can be 
used to securely encrypt many long messages.

Such schemes are able to bypass the inherent 
limitations of perfect secrecy 

Achieve the weaker but sufficient notion of 
computational secrecy. 
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A Computational Approach 
to Cryptography

 Modern encryption schemes have the property 
that they can be broken given enough time.

 Do not satisfy Definition 2.3, but for all practical 
purposes, the following level of security suffices.

 Under certain assumptions, the amount of 
computation needed to break these encryption 
schemes would take more than many lifetimes to 
carry out even using the fastest available 
supercomputers. 
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The Basic Idea of 
Computational Security

Kerckhoffs actually spelled out six principles, the 
following of which is very relevant to our discussion 
here: 

A [cipher] must be practically, if not mathematically, 
indecipherable. 
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The Basic Idea of 
Computational Security

The computational approach incorporates two 
relaxations of the notion of perfect security:

1. Security is only preserved against efficient 
adversaries that run in a feasible amount of time

2. Adversaries can potentially succeed with some very 
small probability. 
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3.1.1 The concrete 
Approach

The concrete approach quantifies the security of a 
given cryptographic scheme by explicitly bounding 
the maximum success probability of any adversary 
running for at most some fixed amount of time.

That is, let t,ε be positive constants with ε ≤ 1.

A concrete definition of security: 
A scheme is (t,ε)-secure if every adversary 
running for time at most t succeeds in breaking 
the scheme with probability at most ε. 
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Example 3.1 

Modern private-key encryption schemes are 
generally assumed to give almost optimal security 
in the following sense:

When the key has length n, an adversary running 
in time t can succeed in breaking the scheme with 
probability at most ct/2n for some fixed constant c.
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Example 3.1 

 Computation on the order of t = 260 is barely 
within reach today.

Running on a 4 GHz computer, 260 CPU cycles 
require 260 cycles / 4x109 cycles/second, or about 
9 years.

 Fastest supercomputer : 1 minute.

11



Example 3.1 

A typical value for the key  length might be 
n = 128. 

The difference between 260 and 2128 is a 
multiplicative factor of 268 which is a number 
containing about 21 decimal digits. 

Note that according to physicists’ estimates the 
number of seconds since the big bang is in the 
order of 258.
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The concrete approach

When using the concrete security approach, 
schemes can be (t,ε)-secure but never just 
secure.

 For what ranges of t,ε should we say that a  
(t,ε)-secure scheme is “secure”?

There is no clear answer to this, as a security 
guarantee that may suffice for the average user 
may not suffice when encrypting classified 
government documents. 
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3.1.2 The asymptotic 
approach

 This approach, rooted in complexity theory, views the 
running time of the adversary as well as its success 
probability as functions of a parameter rather than as 
concrete numbers.

 A cryptographic scheme will incorporate a security 
parameter which is an integer n. 

 When honest parties generate keys, they choose some 
value n for the security parameter; this value is assumed 
to be known to any adversary attacking the scheme.
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The asymptotic approach

The running time of the adversary (and of the 
honest parties) as well as the adversary’s success 
probability are all viewed as functions of n. 

We equate the notion of “efficient adversaries” 
with probabilistic algorithms running in time 
polynomial in n. This means that for some 
constants a, c the algorithm runs in time a · nc ∈ 
O(nc) on security parameter n.
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The asymptotic approach

We require that honest parties run in polynomial 
time, 

Concerned with achieving security against 
polynomial-time adversaries.

Adversarial strategies that require a super-
polynomial amount of time are not considered 
realistic threats (and so are essentially ignored). 
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The asymptotic approach

We equate the notion of “small probability of success” with 
success probabilities smaller than any inverse polynomial in n, 
meaning that for every constant c the adversary’s success 
probability is smaller than n−c for  all  large enough values of n. 

A function that grows slower than any inverse polynomial is called 
negligible. A definition of asymptotic security thus takes the 
following form:

A scheme is secure if every Probabilistic Polynomial Time 
adversary succeeds in breaking the scheme with only negligible 
probability.
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Example 3.2

Say we have a scheme that is secure. Then it may 
be the case that an adversary running for n3 
minutes can succeed in “breaking the scheme” with 
probability 240 · 2−n. 

When n ≤  40 this means that an adversary 
running for 403 minutes (about 6 weeks) can 
break the scheme with probability 1, so such 
values of n are not going to be very useful.
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Example 3.2

 Even for n = 50 an adversary running for 503 
minutes (about 3 months) can break the scheme 
with probability roughly 1/1000, which may not be 
acceptable.

 On the other hand, when n = 500 an adversary 
running for more than 200 years breaks the scheme 
only with probability roughly 2−500.
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Example 3.3

 Let us see the effect that the availability of faster 
computers might have on security in practice.

Say we have a cryptographic scheme where honest 
parties are required to run for 106 · n2 cycles, and 
for which an adversary running for 108 · n4 cycles 
can succeed in “breaking” the scheme with 
probability 220 · 2−n.
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Example 3.3

Say all parties are using a 2 Ghz computer and  
n = 80.

Then honest parties run for 106 · 6400 cycles,  
or 3.2 seconds, and an adversary running for 
108 · 804 cycles, or roughly 3 week, 
can break the scheme with probability only 2−40. 
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Example 3.3
Say 8 Ghz computers become available, and all 
parties upgrade.

Honest parties can increase n to 160 (which 
requires generating a fresh key) and still maintain 
their running time to 3.2 seconds.

In contrast, the adversary now has to run for 8 
million seconds, or more than 13 weeks, to 
achieve success probability 2−80.

The effect of a faster computer has been to make 
the adversary’s job harder!!!
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Necessity of the 
Relaxations

Assume we have an encryption scheme where the 
size of the key space K is much smaller than the 
size of the message space M.

Two attacks, lying at opposite extremes, apply 
regardless of how the encryption scheme is 
constructed: 
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Necessity of the Relaxations : 
Brute-Force Search

Given a ciphertext c, an adversary can decrypt c 
using all keys k ∈ K .

This gives a list of all possible messages to which c 
can possibly correspond. 

Since  this  list  cannot  contain  all  of M ( because 
|K | < |M | ), this leaks some information about 
the message that was encrypted.
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Moreover, say the adversary carries out a known-
plaintext attack and learns that ciphertexts c1,...,cℓ 
correspond to the messages m1,...,mℓ respectively. 

The adversary can again try decrypting each of these 
ciphertexts with all possible keys until it finds a key k 
for which Deck(ci) = mi for all i.

Necessity of the Relaxations : 
Brute-Force Search
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This key will be unique with high probability, in which 
case the adversary has found the key that the honest 
parties are using.

Subsequent usage of this key will therefore be 
insecure. 

The type of attack succeeds with probability 
essentially 1 in time  linear in |K |. 

Necessity of the Relaxations : 
Brute-Force Search
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Consider again the case where the adversary 
learns that c1,...,cℓ correspond to m1,...,mℓ.

The adversary can guess a key k ∈ K at random 
and check to see whether Deck(ci) = mi for all i. 

If so, we again expect that with high probability k is 
the key that the honest parties are using. 

Here the adversary runs in essentially constant time 
and succeeds with non-zero (although very small) 
probability of roughly 1/|K |. 

Necessity of the Relaxations : 
Random Attack
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Necessity of the 
Relaxations

It follows that if we wish to encrypt many messages 
using a single short key, security can only be 
achieved if we limit the running time of the 
adversary1 and also allow a very small probability of 
success without considering it a break2. 
 
1 so that the adversary does not have time to carry out a brute-force search. 
2 so that the second “random attack” is ruled out.
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Efficient Algorithms and 
Negligible Success

We define efficient computation as that which can 
be carried out in Probabilistic Polynomial Time 
(abbreviated PPT). 

An algorithm A is said to run in polynomial time if 
there exists a polynomial p(·) such that, for every 
input x ∈ {0,1}

∗
, the computation of A(x) 

terminates within at most p(|x|) steps 
                        (here, |x|= length of the string x). 
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Efficient Algorithms and 
Negligible Success

A probabilistic algorithm is one that has the 
capability of  “tossing coins”;

This is a metaphorical way of saying that the 
algorithm has access to a source of randomness 
that yields unbiased random bits that are each 
independently equal to 1 with probability ½ and to 
0 with probability ½.
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Efficient Algorithms and 
Negligible Success

DEFINITION 3.4 A function f is negligible if for 
every polynomial p(·) there exists an N such that for 
all integers n > N it holds that 
 
                             f (n) < 1/p(n) 
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PROPOSITION 3.6 Let negl1 and negl2 be 
negligible functions of an integer n. Then,  
 
1. The function 
negl3(n) = negl1(n) + negl2(n) is also negligible.  
 
2. For any positive polynomial p, 
the function negl4(n) = p(n) · negl1(n) is also negligible. 

Efficient Algorithms and 
Negligible Success
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Efficient Algorithms and 
Negligible Success

Events that occur with negligible probability are so 
unlikely that they can be ignored for all practical 
purposes.

Therefore, a break of a cryptographic scheme that 
occurs with negligible probability is not significant. 
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Asymptotic Security:  
A Summary

The general framework of any security definition 
will be : 
 
A scheme is secure if for every PPT adversary A 
carrying out an attack of some specified type, the 
probability that A succeeds in this attack (where 
success is also well-defined) is negligible. 

Such a definition is asymptotic because it is 
possible that for small values of n an adversary can 
succeed with high probability. 
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Asymptotic Security:  
A Summary

In order to see this in more detail, we will use the 
full definition of “negligible” in the above 
statement:  
 
A scheme is secure if for every PPT adversary A 
carrying out an attack of some specified type, and 
for every polynomial p(·), there exists an integer 
N such that the probability that A succeeds is  
less than 1/p(n) for every n > N. 

Note that nothing is guaranteed for values n ≤ N.
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3.2 Defining Computationally 
Secure Encryption

DEFINITION 3.7 A private-key encryption 
scheme is a tuple of probabilistic polynomial-time 
algorithms (Gen, Enc, Dec) such that:  
 
1/3. The key-generation algorithm Gen takes as 
input the security parameter 1n and outputs a key k; 
we write this as k ← Gen(1n) (thus emphasizing the 
fact that Gen is a randomized algorithm). 
We will assume without loss of generality that any 
key k ← Gen(1n) satisfies |k| ≤ n.
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Defining Computationally 
Secure Encryption

DEFINITION 3.7 A private-key encryption 
scheme is a tuple of probabilistic polynomial-time 
algorithms (Gen, Enc, Dec) such that:  
 
2/3. The encryption algorithm Enc takes as input a 
key k and a plaintext message m ∈ {0,1}

∗
, and 

outputs a ciphertext c.  Since Enc may be 
randomized, we write c ← Enck(m).

37



DEFINITION 3.7 A private-key encryption 
scheme is a tuple of probabilistic polynomial-time 
algorithms (Gen, Enc, Dec) such that:  
 
3/3. The decryption algorithm Dec takes as input a 
key k and a ciphertext c, and outputs a message m. 
We assume that Dec is deterministic, and so write 
this as m ≔ Deck(c). 

Defining Computationally 
Secure Encryption
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Defining Computationally 
Secure Encryption

It is required that for every n, every key k output 
by Gen(1n), and every m ∈ {0,1}

∗
, it holds that 

Deck(Enck(m)) = m.  

If (Gen, Enc, Dec) is such that for k output by 
Gen(1n), algorithm Enck is only defined for  
m ∈ {0,1}ℓ (n), then we say that (Gen, Enc, Dec) 
is a fixed-length private-key encryption scheme for 
messages of  length ℓ (n). 

39



Indistinguishability in the 
presence of an eavesdropper

An experiment is defined for any private-key 
encryption scheme Π  = (Gen, Enc, Dec), any PPT 
adversary A and any value n for the security 
parameter. 
 

The eavesdropping indistinguishability experiment
 

                          PrivKe
A
a,vΠ(n) : 
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41

A

Pr[ b = b′ ]≤ ½ + negl(n)
computationally secretb b′

PrivKeAa,vΠ

m0, m1 ∈ M

cc ← Enck(mb)
b ← { 0, 1 }
k ← Gen(1n)

1n



PrivKeAa,vΠ(n)
1. The adversary A is given input 1n, and outputs a pair 
of messages m0 , m1 of the same length. 

2. A key k is generated by running Gen(1n), and a 
random bit b ←  {0,1} is chosen. A (challenge)  
ciphertext c ← Enck(mb) is computed and given to A. 
 
 

3.  A outputs a bit b′. 
 

4. The output of the experiment is defined to be 1 
if b′ = b, and 0 otherwise. 
           (If PrivKe

A
a,vΠ(n) = 1, we say that A succeeded.)
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PrivKeAa,vΠ(n)

If Π is a fixed-length scheme for messages of 
length ℓ (n), the previous experiment is modified 
by requiring m0, m1 ∈ {0,1} ℓ (n).
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Defining Computationally-
Secure Encryption

DEFINITION 3.8 A private-key encryption scheme    
Π  = (Gen, Enc, Dec) has indistinguishable 
encryptions in the presence of an eavesdropper if for all 
PPT adversaries A there exists a negligible function 
negl such that  
 

            Pr[ PrivKe
A
a,vΠ(n) = 1 ] ≤ ½ + negl(n),  

 
where the probability is taken over the random coins used by A, as well 
as the random coins used in the experiment (for choosing the key, the 
random bit b, and any random coins used in the encryption process). 
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Defining Computationally-
Secure Encryption

DEFINITION 3.9 A private-key encryption scheme  
Π  = (Gen, Enc, Dec) has indistinguishable encryptions in 
the presence of an eavesdropper if for all PPT adversaries A 
there exists a negligible function negl such that

| Pr[ output(PrivKe
A
a,vΠ(n, b=0)) = 1 ] −  

 Pr[ output(PrivKe
A
a,vΠ(n, b=1)) = 1 ] | ≤ negl(n).  

The fact that this definition is equivalent to Definition 3.8 is  
left as an exercise.
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3.2.2 *Semantic Security
DEFINITION 3.12   A  private-key  encryption  scheme 
(Gen, Enc, Dec) is semantically secure in the presence of an 
eavesdropper if for every PPT algorithm A there exists a 
PPT algorithm A′ such that for all efficiently-sampleable 
distributions X = (X1,...) and all polynomial-time computable 
functions f and h, there exists a negligible function negl s.t. 
 
       | Pr[ A(1n, Enck(m), h(m)) = f(m) ] − 
                        Pr[ A′(1n, |m|, h(m)) = f(m) ] | ≤ negl(n),  
 
where m is chosen according to distribution Xn , and the 
probabilities are taken over the choice of m and the key k, and 
any random coins used by A, A′, and the encryption process.
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 z′

 z

Ac
c ← Enck(m)

k ← Gen(1n) 1n

h(m)

1n

h(m)

A′

| Pr[z = f(m)] − Pr[z′ = f(m)] | ≤ negl(n),  

|m|
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Semantic Security
THEOREM 3.13 A private-key encryption scheme 
has indistinguishable encryptions in the presence of 
an eavesdropper 
 

                             if and only if 
 

it is semantically secure in the presence of an 
eavesdropper.

Shafi Goldwasser Silvio Micali48
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3.3 Constructing Secure 
Encryption Schemes

Loosely speaking, a pseudorandom string is a string 
that looks like a uniformly distributed string, as 
long as the entity that is “looking” runs in 
polynomial time.

Just as indistinguishability can be viewed as a 
computational relaxation of perfect secrecy, 
pseudorandomness is a computational relaxation 
of true randomness.
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3.3.1 Pseudorandom Generators 
and Stream Ciphers

An important conceptual point is that, technically 
speaking, no fixed string can be said to be 
“pseudorandom” (in the same way that it does not make 
much sense to refer to any fixed string as “random”).

Pseudorandomness actually refers to a distribution over 
strings, and when we say that a distribution D over 
strings of length ℓ is pseudorandom this means that D is 
indistinguishable from the uniform distribution over 
strings of  length ℓ.
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Pseudorandomness

Strictly speaking, since we are in an asymptotic setting we 
actually need to speak of the pseudorandomness of a 
sequence of distributions D = {Dn}, where distribution Dn is 
associated with security parameter n. 
         We ignore this point in our current discussion.

More precisely, it is infeasible for any PPT algorithm to tell 
whether it is given a string sampled according to D or an  
ℓ-bit string chosen uniformly at random.
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A pseudorandom generator is a deterministic 
algorithm that receives a short truly random seed 
and stretches it into a long string that is 
pseudorandom.

Stated differently, a pseudorandom generator uses 
a small amount of true randomness in order to 
generate a large amount of pseudorandomness.

Pseudorandom 
Generators
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SEEMS

RANDOM
RANDOM x g(x)g

  PPsseeuuddoo--rraannddoomm BBiitt GGeenneerraattoorr  

÷÷
÷÷
÷÷
÷÷
÷÷
÷
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Pseudorandom 
Generators

In the definition that follows, we set n to be the  
length of the seed that is input to the generator and 
ℓ    (n) to be the output length.

The generator is only interesting if ℓ    (n) > n. 

Otherwise, it doesn’t generate any new (apparent) 
randomness
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Pseudorandom 
Generators
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Pseudorandom 
Generators

DEFINITION 3.14 Let ℓ  (·) be a polynomial and let 
G be a deterministic polynomial-time algorithm such that 
for any input s ∈ {0,1}n, algorithm G outputs a string of  
length ℓ (n). (The function ℓ   is called the expansion 
factor of G). We say that G is a pseudorandom 
generator if the following two conditions hold:  

Silvio MicaliManuel Blum

57



1. (Expansion:) For every n it holds that ℓ(n) > n.  
 
2. (Pseudorandomness:) For all PPT distinguishers D, 
there exists a negligible function negl such that: 
 

                  | Pr[ D(r) = 1 ] − Pr[ D(G(s)) = 1 ] | ≤ negl(n),  
  

where r is chosen uniformly at random from {0,1}ℓ    (n), 
the seed s is chosen uniformly at random from {0,1}n, 
and the probabilities are taken over the random coins 
used by D and the choice of r and s.

Pseudorandom 
Generators
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Pseudorandom Generators

÷÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷

÷ ÷ ÷ ÷ ÷

G

computational indistinguishability

s ← { 0, 1 }n

1n

ℓ (n)÷÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷

| Pr[D(G(s)) = 1] − Pr[D(r) = 1] | ≤ negl(n)

r ← { 0, 1 }ℓ (n)

G(s)

1n

D
G(s) r
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Pseudorandom 
Generators: Discussion.

It is trivial to distinguish between a random string 
and a pseudorandom string given an unlimited 
amount of time.

Upon input some string w, distinguisher D outputs 
1 if and only if there exists a string s ∈ {0,1}n such 
that G(s) = w. 
 
       | Pr[ D(r) = 1] − Pr[ D(G(s)) = 1] | = 1− 2−n
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The seed and its length
The seed for a pseudorandom generator must be chosen 
uniformly at random, and be kept entirely secret from 
the distinguisher.

Another important point, evident from the above 
discussion of brute-force attacks, is that s must be  long 
enough so that no “efficient algorithm” has time to 
traverse all possible seeds. 

Technically, this is taken care of by the fact that all 
algorithms are assumed to run in polynomial time and 
thus cannot search through all 2n possible seeds when n 
is  large enough.
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Existence of 
Pseudorandom Generators

The first question one should ask is whether any 
entity satisfying Definition 3.14 exists.  

Unfortunately, we do not know how to unequivocally 
prove the existence of pseudorandom generators.
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Existence of 
Pseudorandom Generators

We believe that pseudorandom generators exist, 
and this belief is based on the fact that they can be 
constructed under the rather weak assumption 
that one-way functions exist. 

In practice, various constructions believed to act as 
pseudorandom generators are known.
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Stream Ciphers

Formally, we view a stream cipher as a pair of 
deterministic algorithms (Init, GetBits) where: 

Init takes as input a seed s and an optional 
initialization vector IV , and outputs an initial state 
st0. 

GetBits takes as input state information sti, and 
outputs a bit y and updated state sti+1. (In practice, 
y is a block of several bits; we treat y as a single bit 
here for generality and simplicity.)
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Stream Ciphers
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Stream Ciphers

A stream cipher is secure:

In the basic sense if it takes no IV and for any 
polynomial ℓ with ℓ (n) > n, the function Gℓ is a 
pseudorandom generator with expansion factor ℓ      .

One possible security notion for stream ciphers 
that use an IV is discussed in Section 3.6.1. 
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3.3.3 Secure Fixed-Length 
Encryption Schemes

Pseudorandom
generator

k

pad

plaintext ciphertext
67



A Secure Fixed-Length 
Encryption Scheme

68



A Secure Fixed-Length 
Encryption Scheme

THEOREM 3.18 If G is a pseudorandom 
generator, then Construction 3.17 is a fixed-
length private-key encryption scheme that has 
indistinguishable encryptions in the presence of an 
eavesdropper. 
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A Secure Fixed-Length 
Encryption Scheme

PROOF IDEA 

Let Π denote Construction 3.17.

We show that if there exists a PPT adversary A for 
which Definition 3.8 does not hold, then we can 
construct a probabilistic polynomial-time algorithm 
that distinguishes the output of G from a truly 
random string. 
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A Secure Fixed-Length 
Encryption Scheme

The intuition behind this claim is that if Π  used a truly 
random string in place of the pseudorandom string G(k), 
then the resulting scheme would be identical to the one-
time pad encryption scheme and A would be unable to 
correctly guess which message was encrypted with 
probability any better than ½.

So, if Definition 3.8 does not hold then A must be 
distinguishing the output of G from a random string.      
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A Secure Fixed-Length 
Encryption Scheme

It is easy to get lost in the details of the proof and 
wonder whether anything has been gained as 
compared to the one-time pad; after all, the one-
time pad also encrypts an ℓ-bit message by XORing 
it with an ℓ-bit string!

The point of the construction, of course, is that the 
ℓ-bit string G(k) can be much longer than the key k.
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3.4 Stronger Security 
Notions

Security for Multiple Encryptions

Security Against (CPA) Chosen-Plaintext Attacks
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3.4.1 Security for 
Multiple Encryptions

A

Pr[ b = b′ ] ≤ ½ + negl(n)
computationally secretb b′

Cci ← Enck(mib) 
C ≔ (c1,c2,...,ct)

b ← { 0, 1 }
k ← Gen(1n)

1n

M0, M1 ∈ M

(         )M0 ≔ (m10,...,mt0) 
M1 ≔ (m11,...,mt1) 
with |mi0| = |mi1| for all i
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Security for Multiple 
Encryptions: PrivKmAu, lΠ t(n)

1. The adversary A is given input 1n, and outputs a pair of 
vectors of messages M0 ≔ (m10,...,mt0) and  
M1 ≔ (m11,...,mt1) with |mi0| = |mi1| for all 1≤ i ≤ t. 

2. A key k is generated by running Gen(1n), and a random 
bit b ← {0, 1} is chosen. For all i, the ciphertext 
ci ← Enck(mib) is computed and the vector of 
ciphertexts C ≔ (c1,...,ct) is given to A. 

3. A outputs a bit b′. 

4. The output of the experiment is defined  
to be 1 if b′ = b, and 0 otherwise. 
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Security for Multiple 
Encryptions

DEFINITION 3.19 A private-key encryption scheme      
Π  = (Gen, Enc, Dec) has indistinguishable multiple 
encryptions in the presence of an eavesdropper if for all 
PPT adversaries A there exists a negligible function negl 
s.t.  
          Pr[ PrivKm

A
u, lΠ t(n) = 1] ≤ ½ + negl(n),  

 
where the probability is taken over the random coins used by A, as well 
as the random coins used in the experiment (for choosing the key and 
the random bit b, as well as for the encryption itself).

76



Security for Multiple 
Encryptions

PROPOSITION 3.20 There exist private-key 
encryption schemes that have indistinguishable 
encryptions in the presence of an eavesdropper but do 
not have indistinguishable multiple encryptions in the 
presence of an eavesdropper.
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Necessity of probabilistic 
encryption

In the proof of Proposition 3.20 we show that 
Construction 3.17 is not secure for multiple 
encryptions.  
 

The only feature of that construction used in the 
proof [is] that encrypting a message always yields 
the same ciphertext, and so we actually obtain that 
any deterministic scheme must be insecure for 
multiple encryptions.
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Necessity of probabilistic 
encryption

THEOREM 3.21 Let Π  = (Gen, Enc, Dec) be an 
encryption scheme for which Enc is a deterministic function 
of the key and the message. Then Π  does not have 
indistinguishable multiple encryptions in the presence of an 
eavesdropper.
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3.4.2 Security Against (CPA) 
Chosen-Plaintext Attacks

 We formally introduce a more powerful type of 
adversarial attack, called a chosen-plaintext attack 
(CPA). 

 The definition of security under CPA is the same as 
in Definition 3.8, except that the adversary’s 
attack capabilities are strengthened. 
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Security Against CPA

The basic idea behind a chosen-plaintext attack is 
that the adversary A is allowed to ask for 
encryptions of multiple messages chosen adaptively. 
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Security Against CPA

This is formalized by allowing A to interact freely 
with an encryption oracle, viewed as a “black-box” 
that encrypts messages of A’s choice using the 
secret key k.

We denote by AO(·) the computation of A given 
access to an oracle O.

We denote the computation of A with access to 
an encryption oracle that uses key k by AEnck(·).
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Security Against CPA

When A queries its oracle by providing it with a 
plaintext message m as input, the oracle returns a 
ciphertext  c ← Enck(m) as the reply.

When Enc is randomized, the oracle uses fresh 
random coins each time it answers a query.
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Security Against CPA

The definition of security requires that A should not 
be able to distinguish the encryption of two arbitrary 
messages, even when A is given access to an encryption 
oracle.
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CPA Indistinguishability 
Experiment: PrivKcAp, 

aΠ(n)

A

Pr[ b = b′ ] ≤ ½ + negl(n)
computationally secretb b′

w0 ∈ M

cc ← Enck(mb)
b ← { 0, 1 }

k ← Gen(1n) 1n

m0, m1 ∈ M

vi ← Enck(wi)
v0 ∈ C

yi ← Enck(xi)

w1 ∈ M

v1 ∈ C
. . .

x0 ∈ M

y0 ∈ C

x1 ∈ M

y1 ∈ C
. . .
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PrivKcAp, aΠ(n)
1. A key k is generated by running Gen(1n). 

2. The adversary A is given input 1n and oracle access to 
Enck(·), and outputs a pair of messages m0, m1 of the 
same  length. 

3. A random bit b ← {0,1} is chosen, and then a  
ciphertext c ← Enck(mb) is created and given to A. 
We call c the challenge ciphertext. 

4.The adversary A continues to have oracle access to 
Enck(·), and outputs a bit b′.

5.The output of the experiment is defined to be 1 if 
b′=b, and 0 otherwise. 
 

(When PrivKc
A
p,aΠ(n) = 1, we say that A succeeded.) 86



indistinguishable 
encryptions under CPA
DEFINITION 3.22 A private-key encryption scheme  
Π  = (Gen, Enc, Dec) has indistinguishable 
encryptions under a chosen-plaintext attack (or is 
CPA-secure) if for all probabilistic polynomial-time 
adversaries A there exists a negligible function negl s.t. 
 
          Pr[ PrivKc

A
p, aΠ(n) = 1] ≤ ½ + negl(n),  

 
where the probability is over the random coins used by A, 
as well as the random coins used in the experiment.
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indistinguishable 
encryptions under CPA

  Any scheme that has indistinguishable encryptions 
under a chosen-plaintext attack clearly also has 
indistinguishable encryptions in the presence of an 
eavesdropper. 

  This holds because PrivKeav is a special case of 
PrivKcpa where the adversary doesn’t use its oracle 
at all. 
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indistinguishable 
encryptions under CPA

It may appear that Definition 3.22 is impossible 
to achieve. 

Consider an adversary that outputs (m0, m1) and 
then receives the ciphertext c ← Enck(mb). 

Since the adversary A has oracle access to Enck, it 
can request that this oracle encrypts the messages 
m0 and m1 and thus obtain ci ← Enck(mi).
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indistinguishable 
encryptions under CPA

Adversary A can then compare c0 and c1 to c:  
if c = c0 then, seemingly, A knows that b = 0, and  
if c = c1 then it knows that b = 1. 

Why doesn’t this strategy allow A to determine b 
with probability one ? 

90



indistinguishable 
encryptions under CPA

The answer is that such an attack would indeed 
work if the encryption scheme was deterministic. 

As with security under multiple encryptions, no 
deterministic encryption scheme can be secure 
against chosen-plaintext attacks. 

Any CPA-secure encryption scheme must be 
probabilistic.
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CPA Indistinguishability 
Experiment: PrivKLAR, 

−Πc pa(n)

A

Pr[ b = b′ ] ≤ ½ + negl(n)
computationally secretb b′

m01 ∈ M

ci ← Enck(mib)

b ← { 0, 1 }
k ← Gen(1n) 1n

c1 ∈ C
. . .
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m11 ∈ M

m02 ∈ M

c2 ∈ C

m12 ∈ M



PrivKL
A
R, 
−Πc pa(n)

1. A key k is generated by running Gen(1n). 

2. A random bit b ← {0,1} is chosen. 
3.The adversary A is given input 1n and oracle access to 
LRk,b such that LRk,b(m0,m1) := Enck(mb). 

4.The adversary A outputs a bit b′.
5.The output of the experiment is defined to be 1 if 
b′=b, and 0 otherwise. 
 

(When PrivKL
A
R
,
−Πcpa(n) = 1, we say that A 

succeeded.)
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DEFINITION 3.23 A private-key encryption scheme  
Π  = (Gen, Enc, Dec) has indistinguishable multiple 
encryptions under a chosen-plaintext attack (or is 
CPA-secure) if for all probabilistic polynomial-time 
adversaries A there exists a negligible function negl s.t. 
 
          Pr[ PrivKLAR, −Πc pa(n) = 1] ≤ ½ + negl(n),  
 
where the probability is over the random coins used by A, 
as well as the random coins used in the experiment.
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CPA security for 
multiple encryptions 

PROPOSITION 3.24 Any private-key encryption 
scheme that has indistinguishable encryptions under a 
chosen-plaintext attack also has indistinguishable 
multiple encryptions under a chosen-plaintext attack. 
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Fixed-length vs. 
arbitrary-length

Given any CPA-secure fixed-length encryption 
scheme Π  = (Gen, Enc, Dec), it is possible to 
construct a CPA-secure encryption scheme  
                    Π′ = (Gen′, Enc′, Dec′) 
for arbitrary-length messages quite easily:

             Enck′(m) ≔ Enck(m1), ... , Enck(m ℓ)
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3.5 Constructing CPA-
Secure Encryption Schemes

We will construct encryption schemes that are 
secure against chosen-plaintext attacks. 

We begin by introducing the important notion of 
Pseudorandom Functions.

98



3.5.1 Pseudorandom 
Functions

Instead of considering Pseudorandom Strings, we 
consider Pseudorandom Functions. 

We will specifically be interested in Pseudorandom 
Functions mapping n-bit strings to n-bit strings. 

It does not make much sense to say that any fixed 
Function f : {0, 1}n → {0, 1}n is Pseudorandom. 

We must technically refer to the 
 Pseudorandomness of a distribution over functions.
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Pseudorandom Functions

A keyed function F is a two-input function  
F : {0,1}

∗
 × {0,1}

∗
 → {0,1}

∗
, where the first input 

is called the key and denoted k, and the second 
input is just called the input. 

In general the key k will be chosen and then fixed, 
and we will then be interested in the single-input 
function Fk : {0,1}

∗
 → {0,1}

∗
 defined by  

 

                       Fk(x) def= F(k,x).
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Pseudorandom Functions

We assume that the function F is only defined 
when the key k and the input x have the same 
length, in which case |Fk(x)| = |x| = |k|. 

By fixing a key k ∈ {0,1}n we obtain a function 
Fk(·) mapping n-bit strings to n-bit strings.
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Pseudorandom Functions

Intuitively, we call F pseudorandom if the function Fk 
(for a randomly-chosen key k) is indistinguishable 
from a function chosen uniformly at random from 
the set of all functions having the same domain and 
range.

That is, if no polynomial-time adversary can 
distinguish whether it is interacting with Fk (for 
randomly-chosen key k) or f (where f is chosen at 
random from the set of all functions mapping n-bit 
strings to n-bit strings). 
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Pseudorandom Functions

A function f is fully specified by giving its value on 
each point in its domain. 

In fact, we can view any function (over a finite 
domain) as a  large  look-up table that stores f(x) 
in the row of the table labeled by x. 
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Pseudorandom Functions

For f : {0, 1}n → {0, 1}n the look-up table for f 
has 2n rows and each row contains an n-bit 
string. 

Any such table can thus be represented using 
exactly n · 2n bits.
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Pseudorandom Functions

DEFINITION 3.25 Let F:{0,1}
∗

 × {0,1}
∗

 → {0,1}
∗
 be 

an efficient, length-preserving, keyed function. We say that F 
is a Pseudorandom Function if for all PPT distinguishers 
D, there exists a negligible function negl such that:  
 
        | Pr[ DFk(·)(1n) = 1] − Pr[ Df(·)(1n) = 1] | ≤ negl(n)  
 
where k ←  {0,1}n is chosen uniformly at random and f is chosen 
uniformly at random from the set of functions mapping n-bit strings to 
n-bit string.
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Pseudorandom Function Generators

computational indistinguishability

s ← { 0, 1 }n

1n

| Pr[ DFs(·)(1n) = 1] − Pr[ Df(·)(1n) = 1] | ≤ negl(n)

f ← { 0, 1 }ℓ     (n)xn

Fs(·)

1n
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D
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x1

y1
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yi ← f(xi)

x0

y0
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On the Existence of 
Pseudorandom Functions

As with Pseudorandom Generators, it is important 
to ask whether Pseudorandom Functions exist and, 
if so, under what assumptions.

In practice, very efficient primitives called block 
ciphers are used and are widely believed to act as 
Pseudorandom Functions. 

This is discussed further in Chapter 6.
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On the Existence of 
Pseudorandom Functions
From a theoretical point of view, it is known that 
pseudorandom functions exist if and only if 
pseudorandom generators exist.

Pseudorandom functions can be constructed based 
on any of the hard problems that allow the 
construction of pseudorandom generators. (This is 
discussed at length in Chapter 7 if you are curious). 

The existence of pseudorandom functions based on 
these hard problems represents one of the surprising 
and amazing contributions of modern cryptography. 
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On the Existence of 
Pseudorandom Functions

k

G0(k)

G1(G0(k))
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On the Existence of 
Pseudorandom Functions

THEOREM 7.22 If G is a Pseudorandom 
Generator with expansion factor ℓ (n) = 2n, then 
Construction 7.21 is a Pseudorandom Function.

Oded Goldreich Shafi Goldwasser Silvio Micali
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Pseudorandom Permutations 
and Block Ciphers

Let F : {0,1}
∗

 × {0,1}
∗

 →  {0,1}
∗
 be an efficient, 

length-preserving, keyed function. 

We call F a keyed permutation if for every k, the 
function Fk(·) is a bijection.

We say that a keyed permutation is efficient if 
there is a PPT algorithm computing Fk(x) given k 
and x, as well as a PPT algorithm computing  
Fk−1(x) given k and x. 
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Pseudorandom Permutations 
and Block Ciphers

We define what it means for an efficient keyed 
permutation F to be a pseudorandom permutation 
in a manner exactly analogous to Definition 
3.25. 

The only change is that we now require that Fk 
(for a randomly-chosen k) be indistinguishable 
from a randomly-chosen permutation rather than a 
randomly-chosen function.
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Pseudorandom Permutations 
and Block Ciphers

Actually, this is merely an aesthetic decision since 
random permutations and (length-preserving) random 
functions are anyway indistinguishable using 
polynomially-many queries.

Intuitively this is due to the fact that a random 
function f looks identical to a random permutation 
unless a distinct pair of values x and y are found for 
which f(x) = f(y) (since in such a case the function 
cannot be a permutation). However, the probability of 
finding such points x, y using a polynomial number of 
queries is negligible. 
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Pseudorandom Permutations 
and Block Ciphers

PROPOSITION 3.27 If F is a Pseudorandom 
Permutation then it is also a Pseudorandom Function.
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On the existence of 
Pseudorandom Permutations

Fk1

Fk2

Fk3

Michael Luby Charles Rackoff
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On the existence of 
Pseudorandom Permutations

THEOREM 7.23

If F is a length-preserving Pseudorandom Function, 
then F(3) is a Pseudorandom Permutation that maps 
2n-bit strings to 2n-bit strings (and uses a key of 
length 3n).
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Pseudorandom Permutations 
and Block Ciphers

If F is an efficient pseudorandom permutation 
then cryptographic schemes based on F might 
require honest parties to compute the inverse 
Fk−1 in addition to the permutation Fk itself. 

This potentially introduces new security concerns 
that are not covered by the fact that F is 
pseudorandom.
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Pseudorandom Permutations 
and Block Ciphers

We may need to impose the stronger requirement 
that Fk be indistinguishable from a random 
permutation even if the distinguisher is additionally 
given oracle access to the inverse of the permutation. 

If F has this property, we call it a 
 
          Strong Pseudorandom Permutation.
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DEFINITION 3.28 Let F : {0,1}
∗

 × {0,1} 
∗

 → {0,1}
∗
 

be an efficient, keyed permutation. We say that F is a 
strong pseudorandom permutation if for all 
probabilistic polynomial-time distinguishers D, there exists 
a negligible function negl such that:

                                      −1                                                                        −1 | Pr[ DFk(·),Fk  (·)(1n) = 1] − Pr[ Df(·),f   (·)(1n) = 1] | ≤ negl(n), 
 
where k ←  {0,1}n is chosen uniformly at random and f is chosen 
uniformly at random from the set of permutations on n-bit strings.

Pseudorandom Permutations 
and Block Ciphers
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Pseudorandom Permutations 
and Block Ciphers

Unfortunately, it is often not stated in the literature 
that a block cipher is actually assumed to be a strong 
pseudorandom permutation. 

Explicitly modeling block ciphers in this way enables a 
formal analysis of many practical constructions that 
rely on block ciphers. 

These constructions include encryption schemes (as 
studied here), message authentication codes (to be 
studied in Chapter 4), authentication protocols, 
and more.
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Pseudorandom Permutations 
and Block Ciphers

As with stream ciphers, block ciphers themselves 
are not secure encryption schemes. 

Rather, they are building blocks that can be used to 
construct secure encryption schemes.

For examp le , u s i ng a b lock c i pher i n 
Construction 3.30 yields a CPA-secure 
private-key encryption scheme.
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Pseudorandom Permutations 
and Block Ciphers

In contrast, an encryption scheme that works 
by just computing c ≔ Fk(m), where Fk is a 
strong pseudorandom permutation, is not CPA 
secure. 

This distinction between block ciphers as 
building blocks and encryption schemes that 
use block ciphers is of great importance and 
one that is too often missed. 
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On the existence of Strong 
Pseudorandom Permutations

Fk1

Fk2

Fk3

Fk4
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On the existence of Strong 
Pseudorandom Permutations

THEOREM 7.25

If F is a length-preserving Pseudorandom Function, 
then F(4) is a Strong Pseudorandom Permutation that 
maps 2n-bit strings to 2n-bit strings (and uses a key 
of length 4n).
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3.5.2 CPA-Secure Encryption 
from Pseudorandom Functions

Pseudorandom
function generator

k

pad

plaintext

ciphertext

Fresh random string r
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Using a Pseudorandom 
Function in Cryptography

Pseudorandom functions turn out to be a very 
useful building block for a number of different 
cryptographic constructions.

We use them below to obtain CPA-secure 
encryption and in Chapter 4 to construct 
message authentication codes. 
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Using a Pseudorandom 
Function in Cryptography

Given a scheme that is based on a pseudorandom 
function, a general way of analyzing the scheme is 
to first prove its security under the assumption 
that a truly random function is used instead. 

Next, the security of the original scheme is derived 
by proving that if an adversary can break the 
scheme when a pseudorandom function is used, 
then it must implicitly be distinguishing the 
function from random. 
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CPA-Secure Encryption from 
Pseudorandom Functions
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CPA-Secure Encryption from 
Pseudorandom Functions

Intuitively, security holds because Fk(r) looks 
completely random to an adversary who observes 
a ciphertext ‹r,s› as  long as the value r was not 
used in some previous encryption.

Moreover, this “bad event” (namely, a repeating 
value of r) occurs with only negligible probability. 
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CPA-Secure Encryption from 
Pseudorandom Functions

THEOREM 3.31 If F is a pseudorandom function, 
then Construction 3.30 is a fixed-length private-key 
encryption scheme for messages of length n that has 
indistinguishable encryptions under CPA. 
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Efficiency of 
Construction 3.30

Construction 3.30 has the drawback that the  
length of the ciphertext is (at least) double the  
length of the plaintext.

This is because each block of size n is encrypted 
using an n-bit random string which must be 
included as part of the ciphertext.

In Section 3.6.2 we will show how the 
ciphertext  length can be significantly reduced. 
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3.6 Modes of Operation

Fk F kF k
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Note that arbitrary-length messages can be 
unambiguously padded to a total length that is a 
multiple of any desired block size by appending a 1 
followed by sufficiently-many 0s. 

We will therefore just assume that the length of the 
plaintext message is an exact multiple of the block size. 

Throughout this section, we will refer to a 
pseudorandom permutation/block cipher F with block 
length n, and will consider the encryption of messages 
consisting of ℓ blocks each of length n.
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Mode 1 — (ECB)

Electronic Code Book mode

F k F kF k
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Electronic Code Book 
(ECB) mode

This is the most naive mode of operation possible. 

Given a plaintext message m ≔ m1, m2, ..., mℓ, the 
ciphertext is obtained by “encrypting” each block 
separately.
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Electronic Code Book 
(ECB) mode

“Encryption” here means a direct application of the 
pseudorandom permutation to the plaintext block: 
 
          c ≔ Fk(m1), Fk(m2), ..., Fk(mℓ)

Decryption is carried in the obvious way, using the 
fact that Fk−1 is efficiently computable.

The encryption process here is deterministic and 
therefore this mode of operation cannot be  
CPA-secure. 
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Electronic Code Book 
(ECB) mode

Even worse, ECB-mode encryption does not have 
indistinguishable encryptions in the presence of an 
eavesdropper.  
(This is due to the fact that if the same block is 
repeated twice in the plaintext, this can be 
detected as a repeating block in the ciphertext.) 

It is easy to distinguish an encryption of a plaintext 
that consists of two identical blocks from an 
encryption of a plaintext that consists of two 
different blocks.
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Mode 2 — (CBC) 

Cipher Block Chaining mode

F k F kF k
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Cipher Block Chaining 
(CBC) mode

In this mode, a random initial vector (IV) of length 
n is first chosen.

Each of the remaining ciphertext blocks is 
generated by applying the pseudorandom 
permutation to the XOR of the current plaintext 
block and the previous ciphertext block.
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Cipher Block Chaining 
(CBC) mode

Set c0 ≔ IV and then,  
for i ≔ 1 to ℓ,  
       set ci ≔ Fk(ci-1 ⊕ mi).

The final ciphertext is c0, c1, ..., cℓ.

We stress that the IV is sent in the clear as part of 
the ciphertext; this is crucial so that decryption 
can be carried out. 
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Cipher Block Chaining 
(CBC) mode

Importantly, encryption in CBC mode is probabilistic 
and it has been proven that if F is a pseudorandom 
permutation then CBC-mode encryption is CPA-
secure. 

Mihir Bellare Phil Rogaway
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Cipher Block Chaining 
(CBC) mode

The main drawback of this mode is that encryption 
must be carried out sequentially because the 
ciphertext block ci-1 is needed in order to encrypt 
the plaintext block mi.

If parallel processing is available, CBC-mode 
encryption may not be the most efficient choice. 
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Mode 3 — (OFB) 

Output Feedback mode

F k F kF k
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Output Feedback (OFB) 
mode

The third mode we present here is called OFB. 

Essentially, this mode is a way of using a block 
cipher to generate a pseudorandom stream that is 
then XORed with the message. 
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Output Feedback (OFB) 
mode

First, a random IV ← {0,1}n is chosen and a stream 
is generated from IV (independently of the 
plaintext message) in the following way: 

Define r0 ≔ IV , and set the ith block ri of the 
stream to ri ≔ Fk(ri-1). 

Then, each block of the plaintext is encrypted by 
XORing it with the appropriate block of the 
stream; that is, c ≔ m ⊕ r.
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Output Feedback (OFB) 
mode

This mode is also probabilistic, and it can be shown 
that it too is a CPA-secure encryption scheme if F is 
a pseudorandom function. 

Encryption and decryption are Sequential.

149



Output Feedback (OFB) 
mode

This mode has the advantage that the bulk of the 
computation can be done independently of the actual 
message to be encrypted. Using pre-processing, 
encryption of the plaintext (once it is known) is 
incredibly fast.

In contrast to CBC mode, here it is not required that 
F be invertible (in fact, it need not even be a 
permutation)
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Mode 4 — (CTR) 

Counter mode

F k F kF k

c

c

c c c
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Counter (CTR) mode

There are different variants of CTR-mode 
encryption; we describe the randomized counter 
mode here. 

As with OFB, counter mode can be viewed as a 
way of generating a pseudorandom stream from a 
block cipher.
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Counter (CTR) mode

First, a random ctr ← {0,1}n is chosen.

A stream is generated as ri ≔ Fk(ctr + i) 
(where ctr and i are viewed as integers and 
addition is performed modulo 2n). 

Finally, the ith block is computed as ci ≔ ri ⊕ mi , 
and the ctr is again sent as part of the ciphertext. 

Note once again that decryption does not require 
F to be invertible, or even a permutation.
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Counter (CTR) mode

First and foremost, randomized counter mode is 
CPA-secure. 

Second, both encryption and decryption can be 
fully parallelized and, as with OFB mode, it is 
possible to generate the pseudorandom stream 
ahead of time, independently of the message. 

Finally, it is possible to (en- &) de-crypt the ith 
block of the ciphertext without (en- &) decrypting 
anything else; this property is called random access.
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Block length and 
security

Most of the above modes use a random IV. 

The IV has the effect of randomizing the 
encryption process, and ensures that (with high 
probability) the block cipher is always evaluated on 
a new input that was never used before.
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Block length and 
security

This is important because, if an input to the block 
cipher is used more than once then security can 
be violated. (E.g., in the case of counter mode, the 
same pseudorandom string will be XORed with 
two different plaintext blocks.)
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Block length and 
security

Interestingly, this shows that it is not only the key 
length of a block cipher that is important in 
evaluating its security, but also its block  length. For 
example, say we use a block cipher with a 64-bit 
block  length. 

In randomized counter mode, even if a completely 
random function with this block length is used (i.e., 
even if the block cipher is “perfect”), an adversary 
can achieve success probability roughly ½ + q2/263 
in a chosen-plaintext attack when it makes q 
queries to its encryption oracle, each q blocks  
long. 
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Block length and 
security

Although this is asymptotically negligible (when the 
block  length grows as a function of the security 
parameter n), security no longer holds in any 
practical sense (for this particular block length) 
when q ≈ 230. 

Depending on the application, one may want to 
switch to a block cipher having a  larger block 
length (230 is only one gigabyte, which is not much 
considering today’s storage needs).

158



3.7 Security Against Chosen-
Ciphertext Attacks (CCA)

We need the tools of Chapter 4 (Message 
Authentication Codes) to address this issue.


We will return to it in due time...
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