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12.1 Digital Signatures – 
An Overview

Digital signature schemes allow a signer S who has 
established a public key pk, to “sign” a message (using a 
secret key sk) in such a way that any other party who 
knows pk (and knows that this public key was 
established by S) can “verify” that the message 
originated from S and has not been modified in any way. 



Digital Signatures –  
An Overview

As an example of typical usage of a digital signature 
scheme, consider a software company that wants to 
disseminate software patches in an authenticated 
manner:
              that is, when the company needs to release a 
software patch it should be possible for any of its 
clients to recognize that the patch is authentic, and a 
malicious third party should never be able to fool a 
client into accepting a patch that was not actually 
released by the company. 



Digital Signatures –  
An Overview

To do this, the company can generate a public key pk 
along with a private key sk, and then distribute pk in 
some reliable manner to its clients while keeping sk 
secret.



Digital Signatures –  
An Overview

 A malicious party might try to issue a fake patch by 
sending (m′,σ′) to a client, where m′ represents a 
patch that was never released by the company. 

 This m′ might be a modified version of some 
previous patch m, or it might be completely new and 
unrelated to previous patches. However, if the 
signature scheme is “secure”, then when the client 
attempts to verify σ′ it will find that this is an invalid 
signature on m′ with respect to pk, and will 
therefore reject the signature.



Comparison to Message 
Authentication Codes 

 A qualitative advantage that digital signatures have as 
compared to message authentication codes is that 
signatures are publicly verifiable. 

 This means that if a receiver verifies the signature on 
a given message as being legitimate, then it is assured 
that all other parties who receive this signed 
message will also verify it as  legitimate. 



Comparison to Message 
Authentication Codes 

• This feature is not achieved by message authentication 
codes where a signer shares a separate key with each 
receiver: in such a setting a malicious sender might 
compute a correct MAC tag with respect to receiver 
A’s shared key but an incorrect MAC tag with respect 
to a different user B’s shared key. 

• In this case, A knows that he received an authentic 
message from the sender but has no guarantee that 
other recipients will agree.



Comparison to Message 
Authentication Codes 

 Public verifiability implies that signatures are 
transferable : a signature σ  on a message m by a 
particular signer S can be shown to a third party, who 
can then verify herself that σ is a legitimate signature 
on m with respect to S’s public key (here, we assume 
this third party also knows S’s public key). 

 By making a copy of the signature, this third party can 
then show the signature to another party and 
convince them that S authenticated m, and so on.

 Transferability and public verifiability are essential for 
the application of digital signatures to certificates and 
public-key infrastructures.



Comparison to Message 
Authentication Codes 

 Digital signature schemes also provide the very important 
property of non-repudiation. That is — assuming a signer S 
widely publicizes his public key in the first place — once S 
signs a message he cannot later deny having done so. 

 This aspect of digital signatures is crucial for situations 
where a recipient needs to prove to a third party (say, a 
judge) that a signer did indeed “certify” a particular 
message (e.g., a contract): assuming S’s public key is known 
to the judge, or is otherwise publicly available, a valid 
signature on a message is enough to convince the judge 
that S indeed signed this message.



Relation to Public-Key 
Encryption

• Digital signatures are often mistakenly viewed as the “inverse” of 
public-key encryption, with the roles of the sender and receiver 
interchanged. 

• Historically, in fact, it has been suggested that digital signatures can 
be obtained by “reversing” public-key encryption, i.e., signing a 
message m by decrypting it to obtain σ, and verifying a signature σ 
by encrypting it and checking whether the result is m. 

• The suggestion to construct signature schemes in this way is 
(inspired by the RSA schemes) but completely unfounded : in most 
cases, it is simply inapplicable, and in cases when it is applicable it 
results in signature schemes that are completely insecure.



12.2 Definitions



Definitions

It is required that for every n, every (pk,sk) output by 
Gen(1n), and every m ∈ {0,1}∗, it holds that 
 
                   Vrfypk(m,Signsk(m)) = 1.
 
If (Gen,Sign,Vrfy) is such that for every (pk,sk) output 
by Gen(1n), algorithm Signsk is only defined for messages 
m ∈ {0,1}ℓ(n), then we say that (Gen,Sign,Vrfy) is a 

signature scheme for messages of length ℓ(n). 



• A signature scheme is used in the following way. One party S , 
who acts as the sender, runs Gen(1n) to obtain keys (pk,sk). 

• The public key pk is then publicized as belonging to S ; e.g., S 
can put the public key on its webpage or place it in some public 
directory. 

• As in the case of public-key encryption, we assume that any 
other party is able to obtain a  legitimate copy of S’s public key. 

• When S wants to transmit a message m, it computes the 
signature σ ← Signsk(m) and sends (m,σ).

Definitions



Definitions

• Upon receipt of (m,σ), a receiver who knows pk can 
verify the authenticity of m by checking whether 
Vrfypk(m,σ) ?= 1. 

• This establishes both that S sent m, and also that m 
was not modified in transit. As in the case of message 
authentication codes, however, it does not say anything 
about when m was sent, and replay attacks are still 
possible. 



Security of signature 
schemes.

The signature experiment Sig-forgeA,Π(n):  
1. Gen(1n) is run to obtain keys (pk,sk). 
2. Adversary A is given pk and oracle access to Signsk(·). 
The adversary then outputs (m,σ).
Let Q denote the set of messages whose signatures were 
requested by A during its execution. 

3. The output of the experiment is defined to be 1 iff  
 

          (1) Vrfypk(m,σ) = 1,   and  (2) m ∉ Q.



Security of signature 
schemes.

DEFINITION 12.2 A signature scheme  
Π  = (Gen,Sign,Vrfy) is existentially unforgeable 
under an adaptive chosen-message attack if for all 
probabilistic polynomial-time adversaries A, there exists a 
negligible function negl such that: 

            Pr[Sig-forgeA,Π(n) = 1] ≤ negl(n).



10.3 RSA Signatures



12.3.1 “Plain RSA” and its 
Insecurity

It is easy to see that verification of a legitimately 
generated signature is always successful since 
 
σe = (md)e = m[ed mod φ(N )] = m1 = m mod N.

The plain RSA signature scheme is insecure, 
however, as the following examples demonstrate. 



A no-message attack

 It is trivial to output a forgery for the plain RSA 
signature scheme based on the public key alone, 
without even obtaining any signatures from the  
legitimate signer. 

 Given a public key pk = ⟨N,e⟩, choose an arbitrary  
σ ∈ Z*N and compute m ≔ [σe mod N ]. 

 Then output the forgery (m,σ). It is immediate that 
σ  is a valid signature on m, and this is obviously a 
forgery since no signature on m was generated by 
the owner of the public key.



Forging a signature on 
an arbitrary message

Say the adversary wants to forge a signature on the 
message m ∈ Z*N with respect to the public key  
pk = ⟨N,e⟩.  

 The adversary chooses a random m1 ∈ Z*N,  
sets m2 ≔ [m/m1 mod N ], and then obtains 
signatures σ1 and σ2 on m1 and m2 , respectively.

 We claim that σ  ≔ [σ1 · σ2 mod N] is a valid 
signature on m. This is because σe = (σ1·σ2)e = 
(m₁d·m₂d)e = m₁ed·m₂ed = m1 m2 = m mod N, using 
the fact that σ1,σ2 are valid signatures on m1,m2 .



12.3.2 Hashed RSA

The basic idea is to apply some function H to the message 
before signing it. 

 That is, the public and private keys are the same as before 
except that a description of some function H : {0,1}∗ → Z*N 

is now included as part of the public key. 

A message m ∈ {0,1}∗ is signed by computing 
                       σ ≔ [H(m)d mod N ]. 
Verification of the pair (m,σ) is carried out by checking 
whether    σe ?= H(m) mod N. 



Hashed RSA
 An immediate observation is that a minimal 
requirement for the above scheme to be secure is 
that H must be collision-resistant (see Section 4.6): 
if it is not, and an adversary can find two different 
messages m1,m2 with H(m1) = H(m2), then forgery 
is trivial. 

 (Note, however, that H need not be compressing.) 

 Since H must be a collision-resistant hash function, 
this modified scheme described is sometimes called 
the hashed RSA signature scheme.



Hashed RSA

The no-message attack. The natural way to attempt 
the no-message attack shown previously is to 
choose an arbitrary σ ∈ Z*N, compute  
m′ ≔ [σe mod N ], and then try to find some 
m ∈ {0,1}∗ such that H(m) = m′.

If the function H is not efficiently invertible this 
appears difficult to do.



Hashed RSA

Forging a signature on an arbitrary message. The 
natural way to attempt the chosen-message attack 
shown previously requires the adversary to find 
three messages m, m1, m2 for which 
  
       H(m) = [H(m1) · H(m2) mod N ].  
 
Once again, if H is not efficiently invertible this 
seems difficult to do.
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4.6 Collision-Resistant 
Hash Functions



4.6.1 Defining Collision 
Resistance



Defining Collision 
Resistance

The collision-finding experiment Hash-collA,Π(n): 
1. A key s is generated by running Gen(1n).
 

2. The adversary A is given s and outputs x,x′ . (If Π is a 
fixed-length hash function for inputs of length ℓ′(n) then 
we require x,x′ ∈ {0,1}ℓ′(n).) 

3. The output of the experiment is defined to be 1 if and 
only if x≠x′ and Hs(x) = Hs(x′). In such a case we say 
that A has found a collision.



Defining Collision 
Resistance

DEFINITION 4.12 A hash function Π = (Gen,H ) is 
collision resistant if for all probabilistic polynomial-time 
adversaries A there exists a negligible function negl such 
that 
 
          Pr[Hash-collA,Π(n) = 1] ≤ negl(n). 



4.6.2 Weaker Notions of 
Secure Hash Functions
1. Collision resistance: This is the strongest 
notion and the one we have considered so far. 
 

2. Second pre-image resistance: Informally 
speaking, a hash function is second pre-image 
resistant if given s and x it is infeasible for a 
probabilistic polynomial-time adversary to find x′ ≠ 
x s.t. Hs(x′) = Hs(x). 
 

3. Pre-image resistance: Informally, a hash function is 
pre-image resistant if given s and y = Hs(x) (but not 
x itself ) for a randomly-chosen x, it is infeasible for a 
PPT adversary to find a value x′ s.t. Hs(x′) = y.



4.6.3 A Generic 
“Birthday” Attack

Assume we are given a hash function  
H : {0,1}∗ → {0,1}ℓ. The attack works as follows: Choose 

q arbitrary distinct inputs x1,...,xq ∈ {0,1}2ℓ, compute
yi ≔ H(xi), and check whether any of the two yi values 
are equal.
 
What is the probability that this algorithm finds a 
collision?



A Generic “Birthday” 
Attack

 When q = Θ(2ℓ/2), the probability of such a 
collision is roughly ½. 

 In the case of birthdays, it turns out that if there are 
23 people in a room, the probability that two have 
the same birthday is greater than ½.



10.4.2 Attacks on Plain 
RSA

 As an example, assume a hash function is designed 
with output length of 128 bits. 

 It is clearly infeasible to run 2128 steps in order to 
find a collision. However, running for 264 steps is 
within the realm of feasibility (though still rather 
difficult). 

 Thus, the existence of generic birthday attacks 
mandates that any collision-resistant hash function in 
practice needs to have output that is longer than 
128 bits.



4.6.4 The Merkle-
Damgård Transform

Ralph Merkle        Ivan Damgård                 



4.6.4 The Merkle-
Damgård Transform



The Merkle-Damgård 
Transform



The Merkle-Damgård 
Transform

The initialization vector.  
 
The value z0 used in step 2 of Construction 4.13 is 
arbitrary and can be replaced by any constant.  
 
This value is typically called the IV or initialization vector.



The Merkle-Damgård 
Transform

The security of the Merkle-Damgård transform.
  
The intuition behind the security of the Merkle-
Damgård transform is that if two different strings x and 
x′ collide in Hs, then there must be distinct intermediate 
values zi-1 ∥ xi and z′i-1 ∥ x′i in the computation of Hs(x) 
and Hs(x′), respectively, s. t. hs(zi-1 ∥ xi) = hs(z′i-1 ∥ x′i ).



The Merkle-Damgård 
Transform

THEOREM 4.14 If (Gen,h) is a fixed-length collision-
resistant hash function, then (Gen,H) is a collision-
resistant hash function.



4.6.5 Collision-Resistant 
Hash Functions in Practice

Two popular hash functions are MD5 and SHA-1. 
Both MD5 and SHA-1 first define a compression 
function that compresses fixed-length inputs by a 
relatively small amount (in our terms, this 
compression function is a fixed-length collision-
resistant hash function).  

 Then the Merkle-Damgård transform (or something 
very similar) is applied to the compression function 
in order to obtain a collision-resistant hash function 
for arbitrary-length inputs.



Collision-Resistant Hash 
Functions in Practice

The output length of MD5 is 128 bits and that 
of SHA-1 is 160 bits. The longer output  
length of SHA-1 makes the generic “birthday 
attack” more difficult: 

for MD5, a birthday attack requires 
                 ≈ 2128/2 = 264 hash computations, 

for SHA-1 such an attack requires 
                 ≈ 2160/2 = 280 hash computations.



Collision-Resistant Hash 
Functions in Practice

In 2004, a team of Chinese cryptanalysts presented 
a breakthrough attack on MD5 and a number of 
related hash functions.  

 Their technique for finding collisions gives little 
control over the collisions that are found; 
nevertheless, it was later shown that their method 
(and in fact any method that finds “random 
collisions”) can be used to find collisions between, 
for example, two postscript files generating whatever 
viewable content is desired. 



Collision-Resistant Hash 
Functions in Practice

• A year later, the Chinese team showed (theoretical) 
attacks on SHA-1 that would find collisions using 
less time than that required by a generic birthday 
attack. 

• The attack on SHA-1 requires time 269 which  lies 
outside the current range of feasibility; as of yet, no 
explicit collision in SHA-1 has been found. (This is 
in contrast to the attack on MD5, which finds 
collisions in minutes.)



Collision-Resistant Hash 
Functions in Practice

These attacks have motivated a shift toward stronger 
hash functions with larger outputs  lengths which are  
less susceptible to the known set of attacks on MD5 
and SHA-1.  

 Notable in this regard is the SHA-2 family, which 
extends SHA-1 and includes hash functions with 
256- and 512-bit output  lengths. 

 Another ramification of the attacks is that there is 
now great interest in designing new hash functions 
and developing a new hash standard.





■ Performance: "A couple of algorithms were wounded or eliminated by very 
large [hardware gate] area requirement – it seemed that the area they 
required precluded their use in too much of the potential application 
space." 

■ Security: "We preferred to be conservative about security, and in some 
cases did not select algorithms with exceptional performance, largely 
because something about them made us 'nervous,' even though we knew 
of no clear attack against the full algorithm."  

■ Analysis: "NIST eliminated several algorithms because of the extent of 
their second-round tweaks or because of a relative lack of reported 
cryptanalysis – either tended to create the suspicion that the design might 
not yet be fully tested and mature."  

■ Diversity: The finalists included hashes based on different constructions, 
including the HAIFA and sponge hash constructions, and hashes with 
different sources of nonlinearity, including S-boxes and the interaction 
between addition and XOR.  

NIST has released a report explaining its evaluation algorithm-by-algorithm.

NIST noted some factors that figured into its selection as it announced the finalists:

Cryptographic Hash 
Algorithm Competition

http://en.wikipedia.org/w/index.php?title=Sponge_hash&action=edit&redlink=1
http://en.wikipedia.org/wiki/S-Box


Cryptographic Hash 
Algorithm Competition

NIST selected 51 entries for the Round 1.
14 of them advanced to Round 2,
from which 5 finalists were selected.

Finalists
NIST has selected five SHA-3 candidate algorithms to advance to the third 
(and final) round :
■ BLAKE
■ Grøstl (Knudsen et al.)
■ JH
■ Keccak (Keccak team, Daemen et al.)
■ Skein (Schneier et al.)

http://en.wikipedia.org/wiki/BLAKE_(hash_function)
http://en.wikipedia.org/wiki/Gr%C3%B8stl
http://en.wikipedia.org/wiki/Lars_Knudsen
http://en.wikipedia.org/wiki/JH_(hash_function)
http://en.wikipedia.org/wiki/Keccak
http://en.wikipedia.org/wiki/Joan_Daemen
http://en.wikipedia.org/wiki/Skein_(hash_function)
http://en.wikipedia.org/wiki/Bruce_Schneier
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12.4 The “Hash-and-Sign” 
Paradigm



The “Hash-and-Sign” 
Paradigm

THEOREM 12.5 If Π  is existentially unforgeable 
under an adaptive chosen-message attack and ΠH is 
collision resistant, then Construction 12.4 is 
existentially unforgeable under an adaptive chosen-
message attack.



12.7 The Digital 
Signature Standard(DSS)



Digital Signature Standard

 Another (vs RSA) important example is the Digital 
Signature Standard (DSS), sometimes also known as 
the Digital Signature Algorithm (DSA). 

 This scheme was proposed by the National Institute 
of Standards and Technology (NIST) in 1991, and 
has since become a US government standard. 

 The security of DSS relies on the hardness of the 
discrete logarithm problem, and has been used for 
many years without any serious attacks being found. 



•  However, there is no known proof of security for 
DSS based on the discrete logarithm (or any other) 
assumption.

•  Moreover, DSS has no proof of security even in this 
idealized model. 

•  For these reasons, we must content ourselves with 
only giving a description of the scheme. 

Digital Signature Standard



Let G be a probabilistic polynomial-time algorithm 
that, on input 1n, outputs (p,q,g) where, except 
with negligible probability: 

(1) p and q are primes with ∥q∥ = n; 

(2) q | (p − 1) but q2 | (p-1); and 

(3) g is a generator of the order q subgroup of Z*p.

/

Digital Signature Standard



Let us see that the scheme is correct. Letting  
m′ = H(m), the signature (r, s) output by the signer 
satisfies
 

              r = [ [gk mod p ] mod q], 
              s = [(m′ + xr) · k−1 mod q] and we check

             r = [ gu1 yu2 mod p ] mod q with
              u1 = m′ · s−1

              u2 = r · s−1

Digital Signature Standard



Assume s ≠  0 (this occurs with only negligible 
probability). Using the fact that y = gx and recalling that 
we can work “in the exponent” modulo q, we have  
 
          gu1 yu2 = gm′s⁻¹ (gx)rs⁻¹

                   = gm′(m′+xr)⁻¹k gxr·(m′+xr)⁻¹ k mod p 
Thus             = g(m′+xr)·(m′+xr)⁻¹ k mod p = gk mod p.      
 
 [[gu1 yu2 mod p ] mod q] 
                                 = [[gk mod p ] mod q] = r, 
and verification succeeds.

Digital Signature Standard
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12.8 Certificates and P-K 
Infrastructures

The key idea is the notion of a digital certificate, which is 
simply a signature binding some entity to some public key. 

To be concrete, say a party Charlie has generated a key-
pair (pkC,skC) for a secure digital signature scheme. 

Assume further that another party Bob has also 
generated a key-pair (pkB,skB) (in the present discussion, 
these may be keys for either a signature scheme or a 
public-key encryption scheme), and that Charlie knows 
that pkB is Bob’s public key.



Certificates and Public-
Key Infrastructures

Then Charlie can compute the signature  
      certC→B def= SignskC(‘Bob’s key is pkB ’)  
and give this signature to Bob. 

This signature certC→B is called a certificate for 
Bob’s key issued by Charlie. 

In practice a certificate should unambiguously 
identify the party holding a particular public key 
and so a more uniquely descriptive term than 
“Bob” would be used, for example, Bob’s full 
name and email address.



Certificates and Public-
Key Infrastructures

Now say Bob wants to communicate with some 
other party Alice who already knows pkC . 

What Bob can do is to send (pkB , certC→B) to 
Alice, who can then verify the validity of the 
signature on the message ‘Bob’s key is pkB’ with 
respect to pkC. 

Assuming verification succeeds, Alice now knows 
that Charlie has signed the indicated message. 

If Alice trusts Charlie, then she might now 
accept pkB as Bob’s legitimate public key. 



Certificates and Public-
Key Infrastructures

Note that all communication between Bob and 
Alice can occur over an insecure and 
unauthenticated channel.

If an active adversary interferes with the 
communication of (pkB,certC→B) from Bob to 
Alice, that adversary will be unable to generate a 
valid certificate linking Bob to any other public key 
pk′B unless Charlie had previously done so.

This all assumes that Charlie is not dishonest and 
that his private signing key has not been 
compromised.



A single certificate 
authority

The simplest PKI assumes a single certificate 
authority (CA) who is completely trusted by 
everybody and who issues certificates for 
everyone’s public key. 

A certificate authority would not typically be a 
person, but would more likely be a company 
whose business it is to certify public keys, a 
governmental agency, or perhaps a department 
within an organization. 

Anyone who wants to rely on the services of the 
CA would have to obtain a legitimate copy of the 
CA’s public key pkCA. 



Multiple certificate 
authorities

Outside of a single organization it is highly unlikely 
for everyone to trust the same CA. 

This need not imply that anyone thinks the CA is 
corrupt; it could simply be the case that someone 
finds the CA’s verification process to be insufficient.

Moreover, the CA is a single point of failure for the 
entire system. If the CA is corrupt, or can be bribed, 
or even if the CA is merely lax with the way it 
protects its private signing key, the legitimacy of 
issued certificates may be called into question.



Multiple certificate 
authorities

Reliance on a single CA is also a problem even in non-
adversarial environments:  
 
• if the CA is unreachable then no new certificates can 
be issued, and  
 
• the  load on the CA may be very high if many parties 
want to obtain certificates at once (although this is still 
better than the KDC model because the CA does not 
need to be online once certificates are issued).



Multiple certificate 
authorities

A party Bob who wants to obtain a certificate on 
his public key can choose which CA(s) it wants to 
issue a certificate, and a party Alice who is 
presented with a certificate, or even multiple 
certificates issued by different CAs, can choose 
which CA’s certificates she trusts. 

There is no harm in having Bob obtain a 
certificate from every CA (apart from some 
inconvenience and expense for Bob), but Alice 
must be more careful since the security of her 
communications is ultimately only as good as the  
least-secure CA that she trusts.



Delegation and 
certificate chains

Say Charlie, acting as a CA, issues a certificate 
for Bob as in our original discussion.

Bob, in turn, can issue his own certificates for 
other parties. For example, Bob may issue a 
certificate for Alice of the form 
 certB→A def= SignskB(‘Alice’s key is pkA’). 

Now, if Alice wants to communicate with some 
fourth party Dave who knows Charlie’s public 
key (but not Bob’s), then Alice can send  
        pkA, certB→A, pkB, certC→B,      to Dave.



Delegation and 
certificate chains

Dave can first verify that Charlie, whom he trusts 
and whose public key is already in his possession, 
has signed a certificate certC→B indicating that pkB 
indeed belongs to someone named Bob.

Dave can also verify that this person named Bob 
has signed a certificate certB→A indicating that pkA 
indeed belongs to Alice. 

If Dave trusts Charlie to only issue certificates to 
trustworthy people, then Dave may accept pkA as 
being the authentic key of Alice.



The “web of trust” 
model

In the “web of trust” model, anyone can issue 
certificates to anyone else and each user has to 
make their own decision about how much trust to 
place in certificates issued by other users. 

As an example of how this might work, say a user 
Alice is already in possession of public keys pk1, 
pk2, pk3 for some users C1,C2,C3. 

Another user Bob who wants to communicate with 
Alice might have certificates certC1→B , certC3→B , 
and certC4→B , and will send these certificates (along 
with his public key pkB ) to Alice. 



The “web of trust” 
model

Alice cannot verify certC4→B (she doesn’t have C4’s 
public key), but she can verify the other two certificates

Now she has to decide how much she trusts C1 and C3. 

She may decide to accept pkB if she unequivocally trusts 
C1, or if she trusts both C1 and C3 to a lesser extent. 

(She may, for example, consider it likely that either C1 or 
C3 is corrupt, but consider it unlikely for them both to be 
corrupt.)



Invalidating Certificates: 
Expiration

One method for preventing certificates from being 
used indefinitely is to include an expiry date as part 
of the certificate. 

A certificate issued by a CA Charlie for Bob’s 
public key might now have the form  
  certC→B def= SignskC(‘Bob’s key is pkB’, date), 
where “date” is some date in the future at which 
point the certificate becomes invalid. (For example, 
it may be one year from the day the certificate is 
issued.)



Invalidating Certificates: 
Expiration

When another user verifies this certificate, they 
need to know not only pkB but also the expiry 
date, and they now need to check not only that 
the signature is valid, but also that the expiry date 
has not passed. 

A user who holds a certificate must contact the 
CA to get a new certificate issued whenever their 
current one expires; at this point, the CA verifies 
the identity/credentials of the user again before 
issuing another certificate. 



Invalidating Certificates: 
Revocation

When an employee leaves an organization, or a 
user’s private key is stolen, we would like the 
certificates that have been issued for their public 
keys to become invalid immediately, or at least as 
soon as possible. 

This can be achieved by having the CA explicitly 
revoke the certificate. Of course, everything we say 
applies more generally if the user had certificates 
issued by multiple CAs; for simplicity we assume a 
single CA. 



Invalidating Certificates: 
Revocation

There are many different ways revocation can be 
handled. One possibility is for the CA to include a 
serial number in every certificate it issues; that is, a 
certificate will now have the form 
  

certC→B def= SignskC(‘Bob’s key is pkB’,###), 
  

where “###” represents its serial number. 

Each certificate should have a unique serial number, 
and   the   CA   will   store   the   information  
(Bob,pkB,###) for each certificate it generates.



Invalidating Certificates: 
Revocation

If a user Bob’s private key corresponding to the 
public key pkB is stolen, then Bob can alert the CA. 

The CA will then search its database to find the serial 
number of the certificate issued for Bob and pkB .

At the end of each day, say, the CA will generate a 
certificate revocation list (or CRL) containing the serial 
numbers of all revoked certificates, and sign this entire 
list along with the current date. The signed  list is then 
widely distributed, perhaps by posting it on the CA’s 
public webpage.



Invalidating Certificates: 
Revocation

To verify a certificate issued as above, another user 
now needs pkB and also the serial number of the 
certificate (this can be forwarded by Bob along 
with everything else). 

Verification now requires checking that the 
signature is valid, checking that the serial number 
does not appear on the most recent revocation  
list, and verifying the CA’s signature on the 
revocation list itself. 
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