vn-vs L NI -

PEEZEEET \ODERN
i o 1 CRYPTOGRAPHY

Chapter 12 Digital
Apologies: all nana.l-ure SChemeS

bering still refers to first edition of book.
12. 1 Dlgltal Signatures — An Overview

12.2 Definitions

12.3 RSA Signatures
12.3.1 “Plain RSA” and its Insecurity
12.3.2 Hashed RSA

12.4 The “Hash-and-Sign” Paradigm

12.5 Lamport’s One-Time Signature Scheme

* .. 2 B ‘-. !- -1 az

I’) é | ‘(GI s B I” S' l

12.6.2 “Tree-Based™” Signatures
12.7 The Digital Signature Standard (DSS)
| 2.8 Certificates and Public-Key Infrastructures

&)

Asymmetric Authentication
_(Digital Signature Scheme) _

Authentlcatlon

Cﬁ@

Verification

Complexity Theoretical Security

.1

12.1 Digital Signatures -
An Overview

Digital signature schemes allow a signer § who has
established a public key pk, to “sign” a message (using a
secret key sk) in such a way that any other party who
knows Pk (and knows that this public key was
established by §) can “verify” that the message
originated from § and has not been modified in any way.

Digital Signatures -
An Overview

As an example of typical usage of a digital signature
scheme, consider a software company that wants to
disseminate software patches in an authenticated
manner:

that is, when the company needs to release a
software patch it should be possible for any of its
clients to recognize that the patch is authentic, and a
malicious third party should never be able to fool a
client into accepting a patch that was not actually
released by the company.

Digital Signatures -
An Overview

To do this, the company can generate a public key pk
along with a private key sk, and then distribute pk in

some reliable manner to its clients while keeping sk
secret.

Digital Signatures -
An Overview

A malicious party might try to issue a fake patch by
sending (m’,0") to a client, where m’ represents a
patch that was never released by the company.

This m’ might be a modified version of some
previous patch m, or it might be completely new and
unrelated to previous patches. However, if the
signature scheme is “secure”, then when the client
attempts to verify @’ it will find that this is an invalid
signature on m’ with respect to pk, and will
therefore reject the signature.

Comparison to Message
Authentication Codes

A qualitative advantage that digital signatures have as
compared to message authentication codes is that
signatures are publicly verifiable.

This means that if a receiver verifies the signature on
a given message as being legitimate, then it is assured
that all other parties who receive this signed
message will also verify it as legitimate.

Comparison to Message
Authentication Codes

* This feature is not achieved by message authentication
codes where a signer shares a separate key with each
receiver: in such a setting a malicious sender might
compute a correct MAC tag with respect to receiver
A’s shared key but an incorrect MAC tag with respect

to a different user B’s shared key.

* In this case, A knows that he received an authentic
message from the sender but has no guarantee that
other recipients will agree.

Comparison to Message
Authentication Codes

Public verifiability implies that signatures are
transferable : a signature O on a message m by a
particular signer § can be shown to a third party, who
can then verify herself that O is a legitimate signature
on m with respect to §’s public key (here, we assume
this third party also knows $’s public key).

By making a copy of the signature, this third party can
then show the signature to another party and
convince them that § authenticated m, and so on.

Transferability and public verifiability are essential for
the application of digital signatures to certificates and
public-key infrastructures.

Comparison to Message
Authentication Codes

Digital signature schemes also provide the very important
property of non-repudiation. That is — assuming a signer $
widely publicizes his public key in the first place — once §
signs a message he cannot later deny having done so.

This aspect of digital signatures is crucial for situations
where a recipient needs to prove to a third party (say, a
judge) that a signer did indeed “certify” a particular
message (e.g.,a contract): assuming 8’s public key is known
to the judge, or is otherwise publicly available, a valid
signature on a message is enough to convince the judge
that § indeed signed this message.

Relation to Public-Key
Encryption

e Digital signatures are often mistakenly viewed as the “inverse” of
public-key encryption, with the roles of the sender and receiver
interchanged.

e Historically, in fact, it has been suggested that digital signatures can
be obtained by “reversing” public-key encryption, i.e., signing a
message M by decrypting it to obtain O, and verifying a signature O
by encrypting it and checking whether the result is m.

* The suggestion to construct signature schemes in this way is
(inspired by the RSA schemes) but completely unfounded : in most
cases, it is simply inapplicable, and in cases when it is applicable it
results in signature schemes that are completely insecure.

12.2 Dehnitions

DEFINITION 12.1 A signature scheme is a tuple of three probabilistic
polynomial-time algorithms (Gen, Sign, Vrfy) satisfying the following:

1. The key-generation algorithm Gen takes as input a security parameter 1™
and outputs a pair of keys (pk,sk). These are called the public key and
the private key, respectively. We assume for convenience that pk and sk
each have length at least n, and that n can be determined from pk, sk.

. The signing algorithm Sign takes as input a private key sk and a message?
m € {0,1}*. It outputs a signature o, denoted as o « Sign.(m).

. The deterministic verification algorithm Vrfy takes as input a public key
pk, a message m, and a signature o. It outputs a bit b, with b =1 mean-
ing valid and b = 0 meaning invalid. We write this as b := Vrfy,; (m, o).

Definitions

It is required that for every n, every (pk,sk) output by
Gen(I"), and every m € {0,1}’, it holds that

Vriyp(m,Sighg(m)) = |.

If (Gen,Sign,Vrfy) is such that for every (pk,sk) output
by Gen(1n), algorithm Signsk is only defined for messages
m € {0,1}¢(), then we say that (Gen,Sign,Vrfy) is a

signature scheme for messages of length 2(n).

Definitions

* A signature scheme is used in the following way. One party S,
who acts as the sender, runs Gen(1") to obtain keys (pk,sk).

* The public key pk is then publicized as belonging to § ; e.g., §
can put the public key on its webpage or place it in some public
directory.

* As in the case of public-key encryption, we assume that any
other party is able to obtain a legitimate copy of §’s public key.

* When § wants to transmit a message m, it computes the
signature O + Signhs(m) and sends (m,0).

. J

Definitions

* Upon receipt of (m,0), a receiver who knows pk can
verify the authenticity of m by checking whether
Vrfypk(m,O' = 1.

* This establishes both that § sent m, and also that m
was not modified in transit. As in the case of message
authentication codes, however, it does not say anything
about when m was sent, and replay attacks are still
possible.

Security of signature
schemes.

The signature experiment Sig-forgean(n):
I. Gen(1") is run to obtain keys (pk,sk).

2.Adversary A is given Pk and oracle access to Sighsk(*).

The adversary then outputs (m,0).
Let Q denote the set of messages whose signatures were
requested by A during its execution.

3.The output of the experiment is defined to be | iff
(1) Vrfyp(m,0) =1, and (2) m ¢ Q.

Security of signature
schemes.

DEFINITION 12.2 A signature scheme

[1 = (Gen,Sign,Vrfy) is existentially unforgeable
under an adaptive chosen-message attack if for all
probabilistic polynomial-time adversaries A, there exists a
negligible function negl such that:

Pr[Sig-forgea,n(n) = 1] < negl(n).

10.3 RSA Signatures

CONSTRUCTION 12.3

Let GenRSA be as in the text. Define a signature scheme as follows:

e Gen: on input 1™ run GenRSA(1"™) to obtain (IV,e,d). The public
key is (N, e) and the private key is (N, d).

e Sign: on input a private key sk = (N, d) and a message m € Zy,
compute the signature

o := [m* mod N].

e Vrfy: on input a public key pk = (N, e), a message m € Z}, and
a signature o € Zy, output 1 if and only if

m = [0 mod N].

The “textbook RSA” signature scheme.

12.3.1 "Plain RSA’ and its
Insecurity

It is easy to see that verification of a legitimately
generated signature is always successful since

o¢ = (m9)e = mled mod ¢(N)] = m! = m mod N.

The plain RSA signature scheme is insecure,
however, as the following examples demonstrate.

A no-message attack

It is trivial to output a forgery for the plain RSA

signature scheme based on the public key alone,
without even obtaining any signatures from the
legitimate signer.

Given a public key pk = (N,e), choose an arbitrary
O € /N and compute m = [0¢ mod N 1.

Then output the forgery (m,0). It is immediate that
O is a valid signature on m, and this is obviously a
forgery since no signature on m was generated by
the owner of the public key.

Forging a signature on
an arbitfrary message

Say the adversary wants to forge a signature on the
message m € /N with respect to the public key

pk = (N,e).
The adversary chooses a random m) € Zn,

sets my = [m/m; mod N], and then obtains
signatures O and 02 on m; and M2 , respectively.

We claim that 0 := [0)°* 02 mod N] is a valid
signature on m. This is because 0¢ = (0,°02)¢ =
(md-md)e = med-med = m; ma = m mod N, using
the fact that 0,02 are valid signatures on m;,ma .

12.3.2 Hashed RSA

The basic idea is to apply some function H to the message\
before signing it.

That is, the public and private keys are the same as before
except that a description of some function H : {0,1}" = ZN

is now included as part of the public key.

A message m € {0,1} is signed by computing

O = [H(m)? mod N].
Verification of the pair (Mm,0) is carried out by checking
whether o€ = H(m) mod N.)

Hashed RSA

An immediate observation is that a minimal
requirement for the above scheme to be secure is
that H must be collision-resistant (see Section 4.6):

if it is not, and an adversary can find two different

messages mi,mz with H(m,;) = H(m.2), then forgery
is trivial.

(Note, however, that H need not be compressing.)

Since H must be a collision-resistant hash function,

this modified scheme described is sometimes called
the hashed RSA signature scheme.

Hashed RSA

@ The no-message attack. The natural way to attempt
the no-message attack shown previously is to
choose an arbitrary O € ZN, compute

m’ := [0 mod N], and then try to find some
m < {0,1}" such that H(m) = m’.

o If the function H is not efficiently invertible this
appears difficult to do.

Hashed RSA

@ Forging a signature on an arbitrary message. The
natural way to attempt the chosen-message attack
shown previously requires the adversary to find
three messages m, m;, mz2 for which

H(m) = [H(m,) - H(m2) mod N].

Once again, if H is not efficiently invertible this
seems difficult to do.

CRYPTOGRAPHY

4.6 Collision-Resistant
Hash Functions

4.6.1 Defining Collision
Resistance

DEFINITION 4.11 A hash function s a pair of probabilistic polynomial-
time algorithms (Gen, H) fulfilling the following:

e Gen is a probabilistic algorithm which takes as input a security parameter
1™ and outputs a key s. We assume that 1™ is implicit in s.

e There exists a polynomial £ such that H takes as input a key s and a
string € {0,1}* and outputs a string H*(z) € {0,1}*™) (where n is
the value of the security parameter implicit in s).

If H® is defined only for inputs € {0,1}¢ (™) and ¢ (n) > £(n), then we say
that (Gen, H) is a fixed-length hash function for inputs of length ¢'(n).

Defining Collision
Resistance

The collision-finding experiment Hash=colla,n(n):

|.A key s is generated by running Gen(l1").

2.The adversary A is given s and outputs x,x . (If Il is a
fixed-length hash function for inputs of length €' (n) then
we require x,x' € {0,1}2'(),)

3. The output of the experiment is defined to be 1 if and

only if x+x" and Hs(x) = Hs(x"). In such a case we say
that A has found a collision.

Defining Collision
Resistance

DEFINITION 4.12 A hash function Il = (Gen,H) is
collision resistant if for all probabilistic polynomial-time
adversaries A there exists a negligible function negl such
that

Pr[Hash-colla,n(n) = 1] < negi(n).

4.6.2 Weaker Notions of
Secure Hash Functions

|. Collision resistance: This is the strongest

notion and the one we have considered so far.

2. Second pre-image resistance: Informally
speaking, a hash function is second pre-image
resistant if given § and X it is infeasible for a

probabilistic polynomial-time adversary to find x' +#

x s.t. Hs(x") = Hs(x).

3. Pre-image resistance: Informally, a hash function is
pre-image resistant if given s and y = Hs(x) (but not
X itself) for a randomly-chosen X, it is infeasible for a

PPT adversary to find a value X’ s.t. HS(x') = y.

J

4.6.3 A Generic
"Birthday” Attack

Assume we are given a hash function
H:{0,1}" = {0,1}2.The attack works as follows: Choose

q arbitrary distinct inputs Xi,...,.Xq € {0,1}2¢, compute
yi = H(X;), and check whether any of the two Yyi values
are equal.

What is the probability that this algorithm finds a
collision?

A Generic "Birthday”
Attack

When q = 0O(2%2), the probability of such a
collision is roughly %a.

In the case of birthdays, it turns out that if there are
23 people in a room, the probability that two have
the same birthday is greater than ’A.

10.4.2 Attacks on Plain
RSA

As an example, assume a hash function is designed
with output length of 128 bits.

It is clearly infeasible to run 2128 steps in order to

find a collision. However, running for 264 steps is
within the realm of feasibility (though still rather
difficult).

Thus, the existence of generic birthday attacks
mandates that any collision-resistant hash function in

practice needs to have output that is longer than
128 bits.

4.6.4 The Merkle-

Ralph Merkle

Damgard Transform

. Q.. %
o4
Ivan Damgard

#
‘l

4.6.4 The Merkle-
Damgard Transform

$1 332 wb’ ',L‘B‘*'1=L
- N_’DTID . ‘DTBD?H (x)

FIGURE 4.2: The Merkle-Damgard transform.

The Merkle-Damgard
Transform

CONSTRUCTION 4.13

Let (Gen, h) be a fixed-length collision-resistant hash function for inputs
of length 24(n) and with output length £(n). Construct a variable-length
hash function (Gen, H) as follows:

e Gen: remains unchanged.

e H: on input a key s and a string z € {0,1}* of length L < 2",
do the following (set £ = £(n) in what follows):

1. Set B := [£] (i.e., the number of blocks in z). Pad z with
zeroes so its length is a multiple of £. Parse the padded result
as the sequence of ¢-bit blocks z1,...,x5. Set zp+1 = L,
where L is encoded using exactly £ bits.

. Set zp = 0°.
3. Fori=1,...,B+1, compute z; := h®(zi—1]|x:).

. Output zB+1.

The Merkle-Damgard transform.

The Merkle-Damgard
Transform

The initialization vector.

The value zo used in step 2 of Construction 4.13 is
arbitrary and can be replaced by any constant.

This value is typically called the IV or initialization vector.

The Merkle-Damgard
Transform

The security of the Merkle-Damgard transform.

The intuition behind the security of the Merkle-
Damgard transform is that if two different strings x and
x" collide in Hs, then there must be distinct intermediate
values zi-1 | Xj and zi-; I Xi'in the computation of Hs(x)

and Hs(x"), respectively, s. t. hs(zi-1 | X;) = hs(zi-1 | X7).

The Merkle-Damgard
Tra ns forgp -~ WL

4.6.5 Collision-Resistant
Hash Functions In Practice

Two popular hash functions are MD5 and SHA-1.
Both MD5 and SHA-I first define a compression
function that compresses fixed-length inputs by a
relatively small amount (in our terms, this
compression function is a fixed-length collision-
resistant hash function).

Then the Merkle-Damgard transform (or something
very similar) is applied to the compression function
in order to obtain a collision-resistant hash function
for arbitrary-length inputs.

Collision-Resistant Hash
Functions in Practice

@ The output length of MDS5 is 128 bits and that
of SHA-=1 is 160 bits. The longer output
length of SHA=1 makes the generic “birthday

attack” more difficult:

@ for MDS5, a birthday attack requires
~ 2128/2 = 264 hash computations,

@ for SHA-=1 such an attack requires
~ 216072 = 280 hash computations.

Collision-Resistant Hash
Functions in Practice

In 2004, a team of Chinese cryptanalysts presented
a breakthrough attack on MD5 and a number of
related hash functions.

Their technique for finding collisions gives little
control over the collisions that are found;
nevertheless, it was later shown that their method
(and in fact any method that finds “random
collisions”) can be used to find collisions between,
for example, two postscript files generating whatever
viewable content is desired.

Collision-Resistant Hash
Functions in Practice

* A year later, the Chinese team showed (theoretical)
attacks on SHA-=1 that would find collisions using

less time than that required by a generic birthday
attack.

* The attack on SHA-=1 requires time 262 which lies
outside the current range of feasibility; as of yet, no
explicit collision in SHA=1 has been found. (This is
in contrast to the attack on MDJ5, which finds
collisions in minutes.)

Collision-Resistant Hash
Functions in Practice

These attacks have motivated a shift toward stronger
hash functions with larger outputs lengths which are

less susceptible to the known set of attacks on MD5
and SHA-I.

Notable in this regard is the SHA=2 family, which
extends SHA-=1 and includes hash functions with
256- and 51 2-bit output lengths.

Another ramification of the attacks is that there is
now great interest in designing new hash functions
and developing a new hash standard.

ler National Institute of Standards and Technology SEARCH CSRC: _

Information Technology Laboratory

- W ¥ B r | ABOUT MISSION CONTACT STAFF SITE MAP

" Computer Security Division |
Computer Securlty Resource Center

CSRC HOME GROUPS PUBLICATIONS DRIVERS NEWS & EVENTS ARCHIVE

)) CSRC HOME > GROUPS > ST > HASH PROJECT
Cryptographic Hash Project

Cryptographic Hash Algorithm R CRYPTOGRAPHIC HASH ALGORITHM COMPETITION
Competition e m e mm & w8 n mmE =

NIST has opened a public competition to develop a new cryptographic hash
Timeline for Hash Algorithm algorithm, which converts a variable length message into a short “message digest”
Competition that can be used for digital signatures, message authentication and other

Federal Register Notices applications. The competition is NIST’s response to recent advances in the
cryptanalysis of hash functions. The new hash algorithm will be called “SHA-3" and
will augment the hash algorithms currently specified in FIPS 180-2, Secure Hash

Submission Requirements

Round 1 Standard. Entries for the competition must be received by October 31, 2008. The
NEW! Round 2 competition is announced in the Federal Register Notice published on November 2,
Hash Forum 2007, further details of the competition will be available at the specific sites

indicated in the menu on the left.
Contacts

Other Links

Hash Project Webmaster, Disclaimer Notice & Privacy Policy Last updated: July 21, 2009
. W .. NISTis an Agency of the U.S. Department of Commerce Page created: April 15, 2005

Cryptographic Hash
Algorithm Competition

NIST noted some factors that figured into its selection as it announced the finalists:

= Performance: "A couple of algorithms were wounded or eliminated by very
large [hardware gate] area requirement — it seemed that the area they
required precluded their use in too much of the potential application
space."

= Security: "We preferred to be conservative about security, and in some
cases did not select algorithms with exceptional performance, largely
because something about them made us 'nervous,' even though we knew
of no clear attack against the full algorithm."

= Analysis: "NIST eliminated several algorithms because of the extent of
their second-round tweaks or because of a relative lack of reported
cryptanalysis — either tended to create the suspicion that the design might
not yet be fully tested and mature."

= Diversity: The finalists included hashes based on different constructions,
including the HAIFA and sponge hash constructions, and hashes with
different sources of nonlinearity, including S-boxes and the interaction
between addition and XOR.

NIST has released a report explaining its evaluation algorithm-by-algorithm.

http://en.wikipedia.org/w/index.php?title=Sponge_hash&action=edit&redlink=1
http://en.wikipedia.org/wiki/S-Box

Cryptographic Hash
Algorithm Competition

NIST selected 51 entries for the Round 1.
14 of them advanced to Round 2,
from which 5 finalists were selected.

Finalists

NIST has selected five SHA-3 candidate algorithms to advance to the third
(and final) round :

= BLAKE

= Grgstl (Knudsen et al.)

= JH

m Keccak (Keccak team, Daemen et al.)

= Skein (Schneier et al.)

http://en.wikipedia.org/wiki/BLAKE_(hash_function)
http://en.wikipedia.org/wiki/Gr%C3%B8stl
http://en.wikipedia.org/wiki/Lars_Knudsen
http://en.wikipedia.org/wiki/JH_(hash_function)
http://en.wikipedia.org/wiki/Keccak
http://en.wikipedia.org/wiki/Joan_Daemen
http://en.wikipedia.org/wiki/Skein_(hash_function)
http://en.wikipedia.org/wiki/Bruce_Schneier

sd/sha-100212.cfm

NS"‘ NISTTime | NISTHome | About NIST | Contact Us | A-Z Site Index

Information Technology Laboratory 14 C¥ Ci o f{ W

About ITL ¥ Publications Topic/Subject Areas ¥ Products/Services ¥ News/Multimedia Programs/Projects

NIST Home > ITL > Computer Security Division > NIST Seclects Winner of Secure Mash Algorithm (SHA-3) Competition

NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition
From NIST Tech Beat: October 2, 2012

Select Language $ O sHARe EKiviE
Powered by Google Translate

Contact: Chad Boutin
301-975-4261

The National Institute of Standards and Technology (NIST) today announced the winner of its five-year competition to select a new cryptographic hash
algorithm, one of the fundamental tools of modern information security.

The winning algorithm, Keccak (pronounced “catch-ack™), was created by Guido Bertoni, Joan
Daemen and Gilles Van Assche of STMicroelectronics and Michaél Peeters of NXP
Semiconductors. The team’s entry beat out 63 other submissions that NIST received after its
open call for candidate algorithms in 2007, when it was thought that SHA-2, the standard
secure hash algorithm, might be threatened. Keccak will now become NIST's SHA-3 hash

algorithm.

Hash algorithms are used widely for cryptographic applications that ensure the authenticity of
digital documents, such as digital signatures and message authentication codes. These
algorithms take an electronic file and generate a short "digest,” a sort of digital fingerprint of the
content. A good hash algorithm has a few vital characteristics. Any change in the original
message, however small, must cause a change in the digest, and for any given file and digest, it
must be infeasible for a forger to create a different file with the same digest.

The NIST team praised the Keccak algorithm for ts many admirable qualities, induding its
elegant design and its ability to run well on many different computing devices, The darity of
Keccak’s construction lends itself to easy analysis (during the competition all submitted
algorithms were made available for public examination and criticism), and Keccak has higher
performance in hardware implementations than SHA-2 or any of the other finalists,

"Keccak has the added advantage of not being vulnerable in the same ways SHA-2 might be,”
says NIST computer security expert Tim Polk. "An attack that could work on SHA-2 most likely

Credit: K. Talbott/NIST with Shutterstock |
would not work on Keccak because the two algorithms are designed so differently.” SROON/NDT W e mages

View hi-rresowution image

Polk says that the two algorithms will offer secunity designers more flexibility. Despite the

vn-vs L NI -

PEEZEEET \ODERN
i o 1 CRYPTOGRAPHY

12.4 The "Hash-and-Sign”
Paradigm

CONSTRUCTION 12.4

Let II = (Geng, Sign, Vrfy) and IIy = (Geng, H) be as in the text. Con-
struct a signature scheme II' for arbitrary-length messages as follows:

e Gen': on input 1", run Gens(1™) to obtain (pk,sk), and run
Geny (1™) to obtain s. The public key is pk’ = (pk,s) and the
private key is sk’ = (sk, s).

e Sign’: on input a private key (sk,s) and a message m € {0,1}",
compute o’ « Sign, (H*(m)).

e Vrfy': on input a public key (pk, s), a message m € {0,1}*, and a

signature o, output 1 if and only if Vrfy , (H*(m), o) = 1.

The hash-and-sign paradigm.

The "Hash- and Slgn
Pa radigm

12.7 The Digital
Signature Standard(DSS)

CONSTRUCTION 12.15

Let G be as in the text. Define a signature scheme as follows:

e Gen: on input 1™, run the algorithm G(1") to obtain (p, g, g). Let
H : {0,1}* — Z, be function. Choose =z « Z, uniformly at
random and set y := [¢” mod p]. The public key is (H,p,q, g,y)
and the private key is (H,p,q, g, z).

Sign: on input a private key (H,p,q,g,z) and a message m €
{0,1}", choose k «— Z;, uniformly at random and set r := [[g* mod
p] mod g]. Compute s := [(H(m) + zr) - k' mod g|, and output
the signature (r, s).

Vrfy: on input a public key (H,p,q,9,y), a message m € {0,1}",
and a signature (r,s) with r € Z, and s € Z, compute the values
wy := [H(m)-s ' mod q] and uz := [r-s ' mod g]. Output 1 if
and only if

r = [[g"'y"* mod p] mod g].

The Digital Signature Standard (DSS).

Digital Signature Standard

Another (vs RSA) important example is the Digital
Signature Standard (DSS), sometimes also known as
the Digital Signature Algorithm (DSA).

This scheme was proposed by the National Institute
of Standards and Technology (NIST) in 1991, and
has since become a US government standard.

The security of DSS relies on the hardness of the
discrete logarithm problem, and has been used for
many years without any serious attacks being found.

Digital Signature Standard

* However, there is no known proof of security for
DSS based on the discrete logarithm (or any other)
assumption.

* Moreover, DSS has no proof of security even in this
idealized model.

e For these reasons, we must content ourselves with
only giving a description of the scheme.

Digital Signature Standard

@ Let G be a probabilistic polynomial-time algorithm
that, on input 1™ outputs (P,q.8) where, except
with negligible probability:

(|) P and q are primes with Iql = n;

(2) q | (p - 1) but g2} (p-1);and
(3) g is a generator of the order q subgroup of Zp.

Digital Signature Standard

Let us see that the scheme is correct. Letting
m’ = H(m), the signature (r, s) output by the signer
satisfies

r=[[g«mod p] mod q].
s = [(m’ + xr) - k-! mod q] and we check

r=[gu y:2mod p] mod g with
uy=m’-s-!
U =r-s-|

Digital Signature Standard

Assume s * O (this occurs with only negligible
probability). Using the fact that y = gX and recalling that
we can work “in the exponent” modulo q, we have

gu| yu2= gm'S" (gX)rS"
— gm’(m’+xr)"k g-xr-(m’+xr)‘I k mod p

Thus = g(m'+xr)(m'+xr)"' k mod p = gk mod p.

[[g"' y»» mod p] mod q]
=[[gkmodp] modq]=r,
and verification succeeds.

vn-vs L NI -

PEEZEEET \ODERN
i o 1 CRYPTOGRAPHY

12.8 Certificates and P-K
Infrastructures

@ The key idea is the notion of a digital certificate, which is
simply a signature binding some entity to some public key.

@ To be concrete, say a party Charlie has generated a key-
pair (Pkc,skc) for a secure digital sighature scheme.

@ Assume further that another party Bob has also
generated a key-pair (pks,skg) (in the present discussion,
these may be keys for either a signature scheme or a
public-key encryption scheme), and that Charlie knows

that pkg is Bob’s public key.

Certificates and Public-
Key Infrastructures

@ Then Charlie can compute the signature
certc-p 9¢f= Signsk(‘Bob’s key is pks ’)
and give this signature to Bob.

@ This signature certc-s is called a certificate for
Bob’s key issued by Charlie.

@ In practice a certificate should unambiguously

identify the party holding a particular public key
and so a more uniquely descriptive term than
“Bob” would be used, for example, Bob’s full

name and email address.

Certificates and Public-
Key Infrastructures

@ Now say Bob wants to communicate with some
other party Alice who already knows pkc .

@ What Bob can do is to send (pks , certc-p) to
Alice, who can then verify the validity of the
signature on the message ‘Bob’s key is pkg’ with
respect to pkc.

@ Assuming verification succeeds, Alice now knows
that Charlie has signed the indicated message.

o If Alice trusts Charlie, then she might now
accept pkg as Bob’s legitimate public key.

Certificates and Public-
Key Infrastructures

® Note that all communication between Bob and
Alice can occur over an insecure and
unauthenticated channel.

@ If an active adversary interferes with the

communication of (pks,certc-g) from Bob to
Alice, that adversary will be unable to generate a
valid certificate linking Bob to any other public key

pks unless Charlie had previously done so.

@ This all assumes that Charlie is not dishonest and
that his private signing key has not been
compromised.

A single certificate
authority

@ The simplest PKI assumes a single certificate
authority (CA) who is completely trusted by
everybody and who issues certificates for
everyone’s public key.

@ A certificate authority would not typically be a
person, but would more likely be a company
whose business it is to certify public keys, a
governmental agency, or perhaps a department
within an organization.

@ Anyone who wants to rely on the services of the
CA would have to obtain a legitimate copy of the
CA’s public key pkca.

Multiple certificate
authorities

@ Outside of a single organization it is highly unlikely
for everyone to trust the same CA.

@ This need not imply that anyone thinks the CA is
corrupt; it could simply be the case that someone

finds the CA’s verification process to be insufficient.

@ Moreover, the CA is a single point of failure for the
entire system. If the CA is corrupt, or can be bribed,
or even if the CA is merely lax with the way it
protects its private signing key, the legitimacy of
issued certificates may be called into question.

Multiple certificate
authorities

Reliance on a single CA is also a problem even in non-
adversarial environments:

e if the CA is unreachable then no new certificates can
be issued, and

* the load on the CA may be very high if many parties
want to obtain certificates at once (although this is still
better than the KDC model because the CA does not
need to be online once certificates are issued).

Multiple certificate
authorities

@ A party Bob who wants to obtain a certificate on
his public key can choose which CA(s) it wants to
issue a certificate, and a party Alice who is
presented with a certificate, or even multiple

certificates issued by different CAs, can choose
which CA'’s certificates she trusts.

@ There is no harm in having Bob obtain a
certificate from every CA (apart from some
inconvenience and expense for Bob), but Alice
must be more careful since the security of her
communications is ultimately only as good as the
least-secure CA that she trusts.

Delegation and
certificate chains

@ Say Charlie, acting as a CA, issues a certificate
for Bob as in our original discussion.

@ Bob, in turn, can issue his own certificates for
other parties. For example, Bob may issue a
certificate for Alice of the form

certg-a 9¢f= Signsks(‘Alice’s key is pka’).

@ Now, if Alice wants to communicate with some
fourth party Dave who knows Charlie’s public
key (but not Bob’s), then Alice can send

pka, certs-a, pks, certc-pg, to Dave.

Delegation and
certificate chains

@ Dave can first verify that Charlie, whom he trusts
and whose public key is already in his possession,

has signed a certificate certc-p indicating that pkeg
indeed belongs to someone named Bob.

@ Dave can also verify that this person named Bob

has signed a certificate certg-a indicating that pka
indeed belongs to Alice.

o If Dave trusts Charlie to only issue certificates to
trustworthy people, then Dave may accept pka as
being the authentic key of Alice.

The “"web of trust”
model

@ In the “web of trust” model, anyone can issue
certificates to anyone else and each user has to
make their own decision about how much trust to
place in certificates issued by other users.

@ As an example of how this might work, say a user
Alice is already in possession of public keys pki,
pka, pks for some users Cy,C2,Cs.

@ Another user Bob who wants to communicate with
Alice might have certificates certc.-s , certc.-s ,

and certc.-B , and will send these certificates (along
with his public key pkg) to Alice.

The “"web of trust”
model

@ Alice cannot verify certc.~p (she doesn’'t have C4’s
public key), but she can verify the other two certificates

@ Now she has to decide how much she trusts C; and Cs.

@ She may decide to accept pks if she unequivocally trusts
C\, or if she trusts both €; and C3 to a lesser extent.

@ (She may, for example, consider it likely that either Cy or
Cs is corrupt, but consider it unlikely for them both to be
corrupt.)

Invalidating Certificates:
Expiration

@ One method for preventing certificates from being
used indefinitely is to include an expiry date as part
of the certificate.

@ A certificate issued by a CA Charlie for Bob’s
public key might now have the form
certc-p 9¢f= Signsikc(‘Bob’s key is pkg’, date),
where “date” is some date in the future at which
point the certificate becomes invalid. (For example,
it may be one year from the day the certificate is
issued.)

Invalidating Certificates:
Expiration

@ When another user verifies this certificate, they
need to know not only pks but also the expiry
date, and they now need to check not only that
the signature is valid, but also that the expiry date
has not passed.

@ A user who holds a certificate must contact the
CA to get a new certificate issued whenever their
current one expires; at this point, the CA verifies
the identity/credentials of the user again before
issuing another certificate.

Invalidating Certificates:
Revocation

@ When an employee leaves an organization, or a
user’s private key is stolen, we would like the
certificates that have been issued for their public
keys to become invalid immediately, or at least as
soon as possible.

@ This can be achieved by having the CA explicitly
revoke the certificate. Of course, everything we say
applies more generally if the user had certificates
issued by multiple CAS; for simplicity we assume a

single CA.

Invalidating Certificates:
Revocation

@ There are many different ways revocation can be
handled. One possibility is for the CA to include a
serial number in every certificate it issues; that is, a
certificate will now have the form

certc-p 9¢f= Signsk(‘Bob’s key is pkp’, H###),
where “H###’ represents its serial number.
@ Each certificate should have a unique serial humber,

and the CA will store the information
(Bob,pks ###) for each certificate it generates.

Invalidating Certificates:
Revocation

@ If a user Bob’s private key corresponding to the
public key pksg is stolen, then Bob can alert the CA.

@ The CA will then search its database to find the serial
number of the certificate issued for Bob and pks .

@ At the end of each day, say, the CA will generate a
certificate revocation list (or CRL) containing the serial
numbers of all revoked certificates, and sign this entire
ist along with the current date. The signed list is then
widely distributed, perhaps by posting it on the CA’s
public webpage.

Invalidating Certificates:
Revocation

@ To verify a certificate issued as above, another user
now needs Ppks and also the serial number of the
certificate (this can be forwarded by Bob along
with everything else).

@ Verification now requires checking that the
signature is valid, checking that the serial number
does not appear on the most recent revocation
list, and verifying the CA’s signature on the
revocation list itself.

12.5 Lamports One-Time
Signature Scheme

Leslie Lamport

12.5 Lamports One-Time
Signature Scheme

Signing m = 011:

o (B e |
SK = = 0 = 1,0, 2,1, T3,1

Verifying for m = 011 and o = (1, x2,3):

= f-’Bz)—yzl

)_ysl

f(z1) =
pk—(Y2,0 yso)} (z1) ~ Y10

FIGURE 12.1: The Lamport scheme used to sign the messag

vn-vs L NI -

PEEZEEET \ODERN
i o 1 CRYPTOGRAPHY

