Minimization of DFAs:

This machine accepts binary strings that represent numbers which are divisible by 3. But it keeps track of remainders mod 6. Thus it has twice as many states as it needs.

If we start with the above machine, can we "shrink" it down to the 3-state machine we had earlier? Well, do we need both s0 and s3? Once the DFA is in state s3 any transition takes it to the same state as the same transition from s0:

\[
\delta(s_0, 0) = s_0 = \delta(s_3, 0) \]
\[
\delta(s_0, 1) = s_1 = \delta(s_3, 1).
\]

So nothing in the subsequent behaviour of the machine can tell the difference between s0 and s3. Furthermore s0, s3 are both accept states. Thus as far as language recognition is concerned they are equivalent. We should try to define an equivalence relation based on this idea. The key insight: we can build a smaller machine by using equivalence classes of states.
Given a DFA $M = (S, \delta_0, \delta, F)$ over alphabet Σ, we say $p, q \in S$ are equivalent, and write $p \equiv q$, if

$$\forall x \in \Sigma^* \delta^*(p, x) \in F \iff \delta^*(q, x) \in F.$$

Intuition: If we made p the start state but otherwise kept the same, we would recognize (accept) the same language as if we made q the start state.

Remark: When are p, q not equivalent?

$p \not\equiv q$ means $\exists x \in \Sigma^*, s.t. (\delta^*(p, x) \notin F \land \delta^*(q, x) \notin F)$

or $\delta^*(p, x) \notin F \land \delta^*(q, x) \in F$.

Observation \equiv is an equivalence relation (check it!).

We write $[p]$ for the equivalence class of p.

Lemma A: $p \equiv q \Rightarrow \forall x \in \Sigma \delta(p, x) \equiv \delta(q, x)$

Proof: Suppose $\delta^*(\delta(p, x), x) \in F$.

Then $\delta^*(p, ax) \in F$.

By assumption $p \equiv q$, we know $\delta^*(q, ax) \in F$ or $\delta^*(\delta(q, a), x) \in F$.

Similarly for the case $\delta^*(\delta(p, a), x) \notin F$.

Since nothing was assumed about x, this holds for all x. Thus $\delta(p, x) \equiv \delta(q, x)$.

Remark: $p \equiv q$ can be written $[p] = [q]$. So the lemma says if $[p] = [q] \Rightarrow [\delta(p, a)] = [\delta(q, a)]$.

We define a new machine $M' = (S', \delta_0', \delta', F')$

$S' = \text{equivalence classes of } S$ ($S' =$)

$\delta_0' = [S_0]$

$\delta'(p, a) = [\delta(p, a)]$ [well defined]

$F' = \{[S] | S \in F \}$
Lemma B \hspace{1em} \forall F \& p \in F \Rightarrow q \in F \hspace{1em} [\text{Do it yourself}].

Lemma C \hspace{1em} \forall w \in \Sigma^* \hspace{1em} \delta^*([p], w) = [\delta^*(p, w)].

Proof \hspace{1em} \text{Induction on } \omega

\text{BASE } \omega = \epsilon \hspace{1em} \delta^*([p], \epsilon) = [p] = [\delta^*(p, \epsilon)]

\text{INDUCTION STEP}

\text{Hypothesis } \delta^*([p], \omega) = [\delta^*(p, \omega)]

\text{Want to show } \forall w \in \Sigma^* \hspace{1em} \delta^*([p], \omega) \alpha) = [\delta^*(p, \omega) \alpha)]

\# Calculate as follows:

\delta^*([p], \omega) \alpha) = \delta'(\delta^*([p], \omega), \alpha) \hspace{1em} [\text{Def of } \delta^*]

\delta'(\delta^*([p], \omega), \alpha) \hspace{1em} [\text{Ind. hyp}]

\delta^*(\delta^*([p], \omega), \alpha) \hspace{1em} [\text{Def of } \delta^*]

\delta^*(p, \omega) \alpha) \hspace{1em} \text{Done.}

Thus \hspace{1em} L(M') = L(M)

Proof \hspace{1em} x \in L(M') \iff \delta^*([s_0], x) \in F'

\iff [\delta^*(s_0, x)] \in F'

\iff \delta^*(s_0, x) \in F

\iff x \in L(M).

Thus the "collapsed" machine recognizes the same language as the original machine and it has fewer states. Later (Myhill-Nerode) we will see that this is the best possible machine.

Our next task is design an algorithm to minimize DFA. The basic idea is called "splitting": we put all the states into 2 clusters: the accept states & the reject states. Then we keep splitting them by looking at the transitions.
Write \(p \not\equiv q \) if \(\exists e \in \Sigma^* \) s.t.
\[
S^* (p, e) \in \mathcal{F} \land S^* (q, e) \in \mathcal{F}
\]
or
\[
S^* (p, e) \in \mathcal{F} \land S^* (q, e) \in \mathcal{F}.
\]
We say "\(p \) and \(q \) are distinguishable."

FACT If \(\exists e \in \Sigma \) s.t. \(S(p, e) \not\equiv S(q, e) \) then \(p \not\equiv q \).

ALGORITHM Define an \(S \times S \) array of booleans.

1. For every pair \((p, q) \) s.t. \(p \in \mathcal{F} \land q \not\in \mathcal{F} \) put a 0 in the \((p, q) \) cell of the matrix.
2. Repeat until no more changes:
 - For each pair \((p, q) \) that are not marked 0 check if \(\exists e \in \Sigma \) s.t. \(S(p, e), S(q, e) \) is marked 0.
 - If yes then mark \((p, q) \) with a 0.
3. Mark everything else with a 1.

Terminates in 2 phases.
If two states are not labelled 0 by the algorithm, they are equivalent.

Proof. Suppose the machine is $M = (S, S_0, S, F)$.

Assume the theorem is false so there is a pair of states (s, t) such that $s \neq t$ but the algorithm does not label them. We call this a BAD PAIR.

Among all bad pairs choose the one with the shortest distinguishing string $x = x_1 \ldots x_n$, $x \in E$.

So $S^*(s, x) \notin F$ and $S^*(t, x) \notin F$. Note x cannot be empty [why not?]

Now consider $S(s, x_1)$ and $S(t, x_1)$. This pair of states is not equivalent since

$S^*(S(s, x_1), x_2 \ldots x_n) \notin F$

$\neq S^*(S(t, x_1), x_2 \ldots x_n) \notin F$.

This cannot be a bad pair since their distinguishing string is shorter than x. So the algorithm must have marked $(S(s, x_1), S(t, x_1))$ at some stage. But then at the next stage it will mark (s, t) with 0. Thus there cannot be any bad pairs. \Box

Running Time

(a) $O(n^2)$ pairs in an n-state machine.

Every round takes $O(n^2) = O(n^4)$.

(b) Improvement: Maintain lists of dependencies.

For each pair (s, t) we maintain a list of pairs that are distinguishable if (s, t) turn out to be distinct.

For each pair (s, t) and each $a \in E$ we put (s, t) on the list for $(S(s, a), S(t, a))$. Each pair is on $k = 1\leq l$ lists.

$c(n) = O(n \log n)$

(d) Hopcroft's algorithm: $O(n \log n)$

(d) Broyerson's algorithm $O(2^n)$.