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Definition of CFG

@ Variables A, B, C, (TERM), (EXPR)

@ Alphabet (of terminals) O, 1, #

A — OAl
(EXPR) — (TERM)
@ Start Variable A
(left-hand side of the first substitution rule)

@ Substitution Rules



Definition of CFG

DEFINITION 2.2

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of 7ules, with each rule being a variable and a
string of variables and terminals, and

4. S € V is the start variable.




Parse Tree

FIGURE 2.1
Parse tree for 000#111 in grammar G,




Definition of CFL

@ If u, v and w are strings of variables and

terminals, and A — w is a rule of the

grammar, we say that uAv vyields uwy, written
UAV=UWV.

@ We say that u derives v ( u=v ) if u=v or if

u=u;=u=..=ux=Vv, k0.

@ The language of G is { we3* | S=3w }.



Context-Free Grammars

@ Formally, grammar G; :

V = {A,B}

> = 10,1, #}

R ={A — OAl | B,
B — #;}

S =5

o L(G1) = { On#1n | n20 }.






Regular Operations :
Kleenes theorem (CFL)

THEOREM

The class of




Kleene’s
theorem (CFL)

o Let Ga=(Va,2,Ra,Sn) be a CFG generating La and
Gs=(Vs,2,Rs,Se) be a CFG generating Lg (VaNV3e=2).

® Consider

Gu=( {SufUVaU Vs,
2,
{Su — Sa | Ss}URAURg,

Su ).
@ Ly = La U Lg.



Regular Operations :
Kleenes theorem (CFL)

THEOREM

The class of - CFLs is closed under the concatenation operation.




Kleenes
theorem (CFL)

@ Let Ga=(Va,2,Rn,Sn) be a CFG generating La and
Gs=(Vs,2,Rs,S8) be a CFG generating Ls (VaNV3s=2).

@ Consider G¢=(
{Sc}UVaUVs,
2,
{Sc — SaSs}URAURS,
Sc ).

@ Lc = LaoLs.



Regular Operations :
Kleenes theorem (CFL)

THEOREM

The class of CFLs is closed under the star operation.



Kleenes
theorem (CFL)

o Let Ga=(Va,2,Ra,Sn) be a CFG generating La.

@ Consider Gs=(
1SstUVa ,
g
1Ss — €] SaSsURp,

Ss ).
o Ls = (La)*



Construction tools
(and Reductions)

CFLs are closed under union, concatenation and
star. If there exists a CFL C s. t. either A*=A,

AUC=A, AoC=A

(but neither complement nor intersection)
or any combinations of these operations then A is
a CFL as long as A is.

( If A is NON-CFL then so is A. )



*¥**Construction ***

A2.18 a. Let C be a context-free language and R be a regular language. Prove that
the language C' N R is context free.

2.18 (a) Let C be a context-free language and R be a regular language. Let P be the

PDA that recognizes C, and D be the DFA that recognizes R. If Q is the set of
states of P and Q' is the set of states of D, we construct a PDA P’ that recognizes
C N R with the set of states @ x Q. P’ will do what P does and also keep track of
the states of D. It accepts a string w if and only if it stops at a state ¢ € Fp X Fp,
where Fp is the set of accept states of P and Fp is the set of accept states of D.
Since C' N R is recognized by P’, it is context free.




Construction tools

@ Constructing a CFG for a regular language L:
M = (Q=190.91,---,9x},2,9,90,F) is converted to
G = (V={R0,R1,...,Rk},E,R,S=Ro) where

@ R contains rule Rj — aR; for each &(qgi,a) = q;

in M, and rule R; — & for each accept-state
qiEF.

® Ro is the start variable.



o M3z = (Q={q0,9,92{0.11.5,q0F) is converted to

Gs32 = (V={Ro,R1,R2},{0,1},R,S=Ro) where

@R: Rpo > 0Ro | IR; | £

R1 — OR2 | 1Ro
Rz — ORI | 1R>



extra EXAMPLE of CFG

EXAMPLE 2.4

Consider grammar G4 = (V, X, R, (EXPR)).
V is {(EXPR), (TERM), (FACTOR)} and X is {a, +, x, (, ) }. The rules are

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)x(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) | a




extra EXAMPLE of CFG

FIGURE 2.5
Parse trees for the strings a+axa and (a+a) xa







Ambigquity

@ A string w Is derived ambiguously by a CFG
G if it has two or more distinct leftmost
derivations. Grammar G is ambigious if it
generates some string ambiguously.




Ambiguous version of
example 2.4

G
5 (EXPR) — (EXPR)+(EXPR) | (EXPR)x(EXPR) | ((EXPR)) | a

(EXPR) (EXPR)

\ /) N\

(EXPR) (EXPR) (EXPR) (EXPR)

ANV
(EXPR) | (EXPR) (EXPR) | (EXPR)
( \ / \

a + a X a a + d X a

FIGURE 2.6
The two parse trees for the string a+axa in grammar Gj




Ambigquity

@ Ambiguity is not desirable in CFG because it
may lead to unexpected interpretations of a
string, for instance in the context of arithmetic
expressions or programming languages.

@ However, some languages are Iinherently
ambiguous, meaning that all grammars
generating this language must be ambiguous.

@ example : {aibick | i=j or j=k}






Chomsky Normal Form

DEFINITION 2.8

A context-free grammar is in Chomsky normal form if every rule is
of the form
A — BC

A—>a

where «a is any terminal and A, B, and C are any variables—except
that B and C may not be the start variable. In addition we permit
the rule S — &, where S is the start variable.




Chomsky Normal Form

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky
normal form.

2.26 Show that, if G is a CFG in Chomsky normal form, then for any string w € L(G)
of length n > 1, exactly 2n — 1 steps are required for any derivation of w.




Acrg = {(G,w)| G 1s a CFG that generates string w}.

THEOREM 4.7

Acgg 1s a decidable language.

PROOF IDEA For CFG G and string w we want to determine whether G
generates w. One idea is to use G to go through all derivations to determine
whether any is a derivation of w. This idea doesn’t work, as infinitely many
derivations may have to be tried. If G does not generate w, this algorithm would

never halt. This idea gives a Turing machine that is a recognizer, but not a
decider, for Acrg.

"To make this Turing machine into a decider we need to ensure that the al-
gorithm tries only finitely many derivations. In Problem 2.26 (page 157) we
showed that, if G were in Chomsky normal form, any derivation of w has 2n — 1
steps, where n is the length of w. In that case checking only derivations with
2n — 1 steps to determine whether G' generates w would be sufficient. Only
finitely many such derivations exist. We can convert G' to Chomsky normal

form by using the procedure given in Section 2.1.




THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky
normal form.

@ Proof:

® First we add a new start variable So and the

rule So — S, where S was the original start
variable.



Chomsky Normal Form

EXAMPLE 2.10

Let Gg be the following CFG and convert it to Chomsky normal form by using
the conversion procedure just given. The series of grammars presented illus-
trates the steps in the conversion. |[Rules shown in bold have just been added.

Rules shown in gray have just been removed

1. 'The original CFG G¢ is shown on the left. The result of applying the first
step to make a new start variable appears on the right.
S() — S
S — ASA|aB S ASA|aB
A— B|S
B ble A— B|S

B — ble




THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky
normal form.

® Second, we take care of all &-rules. We

remove an &-rule "A — &, where A is not
the start variable.

@ Then for each occurrence of A on the right-
hand side of a rule we add a new rule with
that occurrence deleted.

@ Accordingly, each rule "R — A" is replaced by
"R — € unless it has been already removed.



Chomsky Normal Form

SQ—)S

S — ASA|aB
A— B|S

B — ble

2. Remove e-rules B — €, shown on the left, and A — &, shown on the right.

So—)S S()—>S

S — ASA|aB| a| S — ASA|aB|a|SA|AS|S
A— B|S|e€ A— B|S| ¢

B — bl ¢ B =D




THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky
normal form.

@ Third, we handle all unit rules by removing
each unit rule A — B.

@ In consequence whenever B — u appears, we

add the rule A — u unless this is a unit rule
previously removed.



5 = 5 Chomsky

S — ASA|aB|a|SA|AS|S
A—B|S

5t Normal Form

3a. Remove unit rules S — S, shown on the left, and Sg — S, shown on the
right.

So — S So — ASA|aB|a|SA| AS
S — ASA|aB|a|SA|AS S — ASA|aB|a|SA|AS
A— B|S A— B|S

B — b B — b

3b. Remove unitrules A — Band A — S.

So - ASA|aB|a|SA|AS Sy — ASA|aB|a|SA|AS

S — ASA|aB|a|SA|AS S — ASA|aB|a|SA|AS

A — S|b A—|S |b| ASA|aB|a|SA|AS
B —b B —b




THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky
normal form.

@ Finally, we convert all remaining rules as
follows: A — uuz..ux for k>2, where each u
is a variable or tferminal with a series of
rules A — U1A1, &y U2A2,..., Ak-2 — Uk_1Uk
where each Ai is a new variable.

@ When k=2, and A — uuz, we may replace
any terminal u; by a variable U; and the rule

U — u



So - ASA|aB|a|SA| AS
S — ASA|aB|a|SA|AS

A—>b|ASA|aB|a|SA|AS

B — Db

Chomsky
Normal Form

4. Convert the remaining rules into the proper form by adding additional vari-
ables and rules. The final grammar in Chomsky normal form is equivalent to Gs.
(Actually the procedure given in Theorem 2.9 produces several variables U; and
several rules U; — a. We simplified the resulting grammar by using a single

variable U and rule U — a.)

S() — AAl

UB]|

S-)AAl

UB

SA| AS
SA| AS

A — b |[AA]]]

al|SA|AS

A1—>SA
U — a
B — b




Chomsky
Normal Form

S — ASA|aB
A— B|S
B —ble

So —+ AA, |UB |a|SA| AS
S — AA, |UB|a|SA| AS
A—b|AA |UB|a|SA|AS
A1—>SA

U — a

B —b




Definition of PDA

® States

@ Alphabets
® Transition function

@ Start state

@ Accept states

J
ey e e — ya ey =



Definition of PDA

1

@ Accept states




Definition of PDA

DEFINITION 2.13

A pushdown automaton is a 6-tuple (Q, %, 1,4, qo, F'), where Q, X,
I, and F are all finite sets, and

1. Q is the set of states,

2. ¥ is the input alphabet,

3. ' is the stack alphabet,

4. 6: Q x X x I.— P(Q x I,) is the transition function,
5. gy € @ is the start state, and

6. F' C (@ is the set of accept states.




Definition of PDA

o Let M =(Q,2,I',5,q0,F) be a pushdown automaton and

let w=wiwz..w, (n20) be a string where each symbol
Wi€2.

@ M accepts w if Iam2n, 3ro,ry,....rm € Q, 350,51,...,5m € '™
and I VY1y2..Ym=W, With yie2¢ s.t.

1. ro=qo, So=€
2. Tis,b € 6(ri,yi+1,a) fori=0..m-1, s;=at, sj;1=bt
3:rieF for some terl* a,b el



EXAMPLE 2.14

The following is the formal description of the PDA (next slide) that recognizes
the language {0™1"| n > 0}. Let M; be (Q, %, T, 6, ¢1, F'), where

Q = {q1,92,93, 0},
¥ =1{0,1},

' ={0,8%},

F ={q1,q4}, and

§ is given by the following table, wherein blank entries signity .

Input: 0 1 €
Stack: 5 0 €

q1 {(C]2, $)}
Q2 {(g2,0)} {(a3,¢)}
d3 {(Q3)€)}

ga




Examples of PDA

FIGURE 2.15
State diagram for the PDA M, that recognizes {0"1™| n > 0}




Examples of PDA

s,s—)s@ e,e:—:»e@ e,$—>e

b,e—¢€ cC,a—&

FIGURE 2.17
State diagram for PDA M> that recognizes

{a'b/c*|i,j,k > 0and i = jori =k}




Examples of PDA

£,€—$ 0,€—0

E,EHE

0,0—¢€
s,$—>€ @1:1*5
FIGURE 2.19

State diagram for the PDA Mj that recognizes {ww™|w € {0,1}*}




PDA vs CFG

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

LEMMA 2.21

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.




CFG to PDA

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.217

The following is an informal description of P.

1. Place the marker symbol $ and the start variable on the stack.
2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol «a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.




CFG to PDA

@ Proof: Given a CFG G=(V.2,R,S), we now
construct a PDA P=(Q,2,TI',5,q0,F) for it.

@ We define a special notation to write an
entire string on the stack in one step.

@ We can simulate this action by adding extra
states to write the sfring one symbol at a
time.




CFG to PDA

@ Let q and r be states of the PDA and let
ac2, sel..

@ Starting in state q, say we want to read a
from the input and pop s from the stack.
Moreover we want to push string u=u;.ug
back onto the stack at the same time and
end in state -




CFG to PDA

@ We implement Tthis action (a,5—ui..uy) by

infroducing new states q,...,qi-1 and setting
the transition function as follows:

6(C|z0,5) = (CII,UE),
6(qllglg) = {(quUE-l)}z
S(qzlslg) = {(CIBIUE—Z)},

6(‘]!&-11515) = {(rlul)}‘

FIGURE 2.23
Implementing the shorthand (r, xyz) € d(q, a, s)




e, A—-w forrule A—»w CF ( f PDA
a,a—e€ for terminal a O

FIGURE 2.24
State diagram of P

The states of P are Q = {gstart, Qloops Gaccept } U E, where E is the set of states
we need for implementing the shorthand just described. The start state is gsare.
The only accept state is gaccept-

The transition function is defined as follows. We begin by initializing the
stack to contain the symbols $ and .S, implementing step 1 in the informal de-
scription: d(Gseart; €,€) = {(Qloop, 58)}. Then we put in transitions for the main
loop of step 2.




el CFG to PDA

FIGURE 2.24
State diagram of P

First, we handle case (a) wherein the top of the stack contains a variable. Let
5 Gloons €y A) = {(Goop, w)| Wwhere A — w is a rule in R}.

Second, we handle case (b) wherein the top of the stack contains a terminal.

Let 5(q100p,a,a) - {(QIOO})’S)}'

Finally, we handle case (c) wherein the empty stack marker $ is on the top of
the stack. Let §(qioop; €, $) = {(Gaccept, €) }-




CFG to PDA

EXAMPLE 2.25

We use the procedure developed in Lemma 2.21 to construct a PDA P; from the
following CFG G.

S — alb|b
T — Tale




PDA to CFG

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.



PDA to CFG

First, we simplify our task by modifying P slightly to give it the following
three features.

1. It has a single accept state, gaccept.
2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but it does not do both at the same time.

e (iving P features 1 and 2 1s easy.

e To give it feature 3, we replace
cach transition that sitmultaneously pops and pushes with a two-transition
sequence that goes through a new state,
each transition that neither pops nor pushes with a two-transition sequence that
pushes then pops an arbitrary stack symbol.




PDA to CFG

PROOF Saythat P = (Q,X, T, 4, go, {qaccept } ) and construct G. The variables
of G are {Apq| p,q € Q}. The start variable is Ay, g...... Now we describe G’s

rules.

e For each p,q,r,s € Q, t € ', and a,b € ¥, if §(p, a, ) contains (r,t) and
(s, b,t) contains (g, €), put the rule A,, — aA,:bin G.

« For each p,q,r € Q, put the rule A,, — A, A,, in G.

e Finally, for each p € @, put the rule A,, — € in G.

You may gain some insight for this construction from the following figures.



« For each p,q,r € Q, put the rule A,, — A, A,, in G.

T

Stack
height

— generated
by Apq

Input string

, D q

S —

generated generated
by A,y by Ayq

FIGURE 2.28
PDA computation corresponding to the rule A,, — A, A,




e For each p,q,r,s € Q, t € ', and a,b € ¥, if §(p, a, ) contains (r,t) and
d(s,b,t) contains (q, €), put the rule A,, — aA,bin G.

!

Stack

height generated

by Apq

Input string
—

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb




PDA to CFG

PROOF Saythat P = (Q,X, T, 4, go, {qaccept } ) and construct G. The variables
of G are {A,q| p,q € Q}. The start variable is 4, Now we describe G’s
rules.

yQaccept *

e For each p,q,r,s € Q, t € ', and a,b € ¥, if §(p, a, ) contains (r,t) and

(s, b,t) contains (g, €), put the rule A,, — aA,:bin G.

« For each p,q,r € Q, put the rule A,, — A, A,, in G.

e Finally, for each p € @, put the rule A,, — € in G.




PDA to CFG

cLAIM 2.30

If Ay, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

We prove this claim by induction on the number of steps in the derivation of
x from A,,.




Basis: The derivation has 1 step.

A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side
are A,, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where & > 1,
and prove true for derivations of length k + 1.

Suppose that A,, = x with k -+ 1 steps. The first step in this derivation is either
Ay = aA,sbor Ay, = A, Ay We handle these two cases separately.




If A,, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

In the first case, consider the portion y of z that A, ¢ generates, so z = ayb.
Because A, = y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because A,, — aA,sb is a rule of
(7, 6(p, a, €) contains (r,t) and (s, b, t) contains (g, €), for some stack symbol ¢.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push ¢ onto the stack. Then reading string y can bring it to s and leave ¢
on the stack. Then after reading b it can go to state ¢ and pop ¢ off the stack.
Therefore x can bring it from p with empty stack to g with empty stack.

T

Stack I I
height aH- 7 A b

generated
by Apq

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb



In the second case, consider the portions y and z of z that A, and A, re-
spectively generate, so z = yz. Because A,, = y in at most k steps and A,, = 2
in at most k steps, the induction hypothesis tells us that y can bring P from p
to r, and z can bring P from r to ¢, with empty stacks at the beginning and

end. Hence x can bring it from p with empty stack to ¢ with empty stack. This
completes the induction step.

T

Spack
height _— generated
by Apq

Input string

generated generated
by Apr by Arq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,




PDA to CFG

cLAlM 2.31

If x can bring P from a state p (with an empty stack) to a state g (with an empty
stack), then A,, generates x.

We prove this claim by induction on the number of steps in the computation
of P that goes from p to g with empty stacks on input z.




Basis: 'The computation has 0 steps.
If a computation has 0 steps, it starts and ends at the same state—say, p. So we

must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — €, so the basis is proved.

Induction step: Assume true for computations of length at most k, where & > 0,
and prove true for computations of length k& + 1.

Suppose that P has a computation wherein z brings p to ¢ with empty stacks

in k + 1 steps. Either the stack is empty only at the beginning and end of this
computation, or it becomes empty elsewhere, too.




If x can bring P from a state p (with an empty stack) to a state g (with an
empty stack), then 4,, generates x.

the stack is empty only at the beginning and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r,¢) and 6(s, b, t) contains (¢, €), and so rule A,, — aA,sbisin G.
Let y be the portlon of x w1thout a and b SO & = ayb Input y can brmg

» s ocna y oo 2 x y 3y o - s
3’ _ _ N g _ _ _ C ) o= » _ _ c . _ oS

;.' . For each P,q,T,8 € Q tel, and a,b € ZE, if J(p,a £) contains ('r t) and ;‘;
19 (s b ,t) contains (g, €), put the rule A,, — aA,bin G,

. S . = . ' A ".‘ = ,.,. , e .. e A R G 7 i- SN 6?;:;;' MRS SN -.'\. Y . .' = .- i
hypothesis tells us that A,s = y. Hence A,, = z.

StIck | /\X N\

: K7 7 \_—y
height ar 1D generated
_________________________________ by Apq
Input string D E
>
O\ Jb
Y
generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb



it becomes empty elsewhere, too.

In the second case, let r be a state where the stack becomes empty other than
at the beginning or end of the computation on z. Then the portions of the
computation from p to r and from r to ¢ each contain at most k steps. Say that

y is the input read during the first portion and z is the mput read durmg the
second portion. The induction hypothesxs tells us that A, = y and A, = 2.
Because rule A,, — A, A, isin G, A,, = z, and the proof is complete.

T

Stack

height _— generated
by Apq

Input string

generated generated
by Apr by Ayq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,




PDA vs CFG

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.
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Pumping Lemma for CFLs

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvxyz satistying the
conditions

1. foreach i > 0, uvizy'z € A,
2. |vy| > 0, and
3. lvzy| < p.




Pumping Lemma for CFLs

Yehoshua Bar-Hillel Micha A. Perles Eli Shamir



FIGURE 2.35
Surgery on parse trees
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Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvxyz satistying the
conditions

1. foreach i > 0, uvizy'z € A,
2. |vy] > 0, and
3. |oxy| < p.

3 pVSEA L
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Reductions
(& Construction tools)

CFLs are closed under union, concatenation and
star. If there exists a CFL C s. t. either A*=A,

AUC=A, AoC=A

(but neither complement nor intersection)
or any combinations of these operations then A is
a CFL as long as A is.

( If A is NON-CFL then so is A. )



*** Reduction example ***

A2.18 a. Let C be a context-free language and R be a regular language. Prove that
the language C' N R is context free.

2.18 (a) Let C be a context-free language and R be a regular language. Let P be the

PDA that recognizes C, and D be the DFA that recognizes R. If Q is the set of
states of P and Q' is the set of states of D, we construct a PDA P’ that recognizes
C N R with the set of states @ x Q. P’ will do what P does and also keep track of
the states of D. It accepts a string w if and only if it stops at a state ¢ € Fp X Fp,
where Fp is the set of accept states of P and Fp is the set of accept states of D.
Since C' N R is recognized by P’, it is context free.
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Turing MACHINES




Definition of TM

@ States | |
@ Input Alphabet
@ Tape Alphabet

@ Transition function
® Start state
@ Accept state qacc A

@ Reject state '

J
e e e a —— v wpn v ey T



Definition of TM
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@ Reject state




TM definition

DEFINITION 3.3

A Turing machine is a 7-tuple, (Q, X, I', 0, qo, Gaccept; Greject), Where
@, ¥, I" are all finite sets and

1. () 1s the set of states,

2. ¥ is the input alphabet not containing the blank symbol .,
3. I' is the tape alphabet, where u € I'and X C T,

4. 0: Q xI'—Q xT' x {L., R} is the transition function,

5. qo € @ 1s the start state,

6. Gaccepr € @ 1s the accept state, and

7. Greject € Q 15 the reject state, where greject 7 Gaccepr-




FIGURE 3.10
State diagram for Turing machine M,




TM Configuration

As a Turing machine computes, changes occur in the current state, the cur-
rent tape contents, and the current head location. A setting of these three items
is called a configuration of the Turing machine. Configurations often are rep-
resented in a special way. For a state ¢ and two strings u and v over the tape
alphabet I we write u g v for the configuration where the current state is g, the

current tape contents is uv, and the current head location is the first symbol
of v. The tape contains only blanks following the last symbol of v. For example,
1011¢701111 represents the configuration when the tape is 101101111, the cur-
rent state is g7, and the head is currently on the second 0. The following figure
depicts a Turing machine with that configuration.




TM Computation

FIGURE 3.4
A "luring machine with configuration 1011¢701111




TM definition

@ For all ab,cerl’, u,verl*, qi,qicQ

® Conhg. uaqibv vyields
config. ugqjacyv it 8(qi,b) = gj,c,L

® Config. uaqibv vVyields
config. uacq;v if 8(qi,b) =qgj,c,R

@ Special cases:
Config. qibv vyields qjcv if 8(qi,b) = qj.c,L
Config. qibv vyields cgq;v if 8(qgi,b) = gj,c,R



TM definition

5 ua qi bv

vields (L)

@ Cc

Cq e osd
Cormg. Tqioy_yreras TV 1T oq,0) = (;,C,R




TM definition

5 ua qi bv

vields (R)

@ Cq

Cq i osd i
Cormg. Tqioy_yreras TV 1T oq,0) = (;,C,R




TM definition

(" )

@ Fdg qi bV
@ C(
vields (L)

Cq

@ Cc

Cq
o j»C, L
Cormg. Tqioy_yreras TV 1T oq,0) = (;,C,R




TM definition

(- )

@ Fdg qi bV
@ C(
vields (R)

Cq

@ Cc

Cq
o j»C, L
Cormg. Tqioy_yreras TV 1T oq,0) = (;,C,R




TM Computation

@ Start configuration: qow (w = input string)
% ACCQPfII’Ig COnﬁguraﬁont S'|'Cl1'€ = qaccept

® Rejecting configuration: state = qreject



TM Computation

@ Turing Machine M accepts input w if there
exists configurations Co, Ci,..., Cnsuch that

@ (o is a start configuration
@ C; vyields Cis for O<i<m
@ Cn is an accepting configuration.

@ The collection of strings that M accepfts is

the language of M or the language
recognized by M, denoted L(M).




TM Computation

DEFINITION 3.5

Call a language Turing-recognizable if some Turing machine

recognizes it}

@ A TM decides a language if it recognizes it
and halts (reaches an accepting or rejecting
states) on all input strings.

DEFINITION 3.6

Call a language Turing-decidable or simply decidable if some

Turing machine decides it.’

l0ften named Recursively-Enumerable in the literature.
20ften named Recursive in the literature.




TM Examples

EXAMPLE 3.7

Here we describe a Turing machine (TM) My that decides A = {02"|n > 0}, the
language consisting of all strings of 0s whose length is a power of 2.

My = “On input string w:
Sweep left to right across the tape, crossing off every other 0.
. Ifin stage 1 the tape contained a single 0, accept.

. If in stage 1 the tape contained more than a single 0 and the
number of 0s was odd, reject.

Return the head to the left-hand end of the tape.
Go to stage 1.”




TM Examples

Now we give the formal description of My = (Q, 2, T, 4, 1, Qaccept;s Greject)

* @ =1{q1,92,93, 94, g5, Qaccept> Ireject | »

« ¥ = {0}, and

e ' = {0,x,u}.

* We describe § with a state diagram (see Figure 3.8).

* 'The start, accept, and reject states are g1, gaccept, ANd Greject-




||_1—>R|

FIGURE 3.8
State diagram for Turing machine M




TM Examples

EXAMPLE 3.11

Here, a TM M3 is doing some elementary arithmetic. It decides the language
C ={a'v/cF|ixj=kandi,j k> 1}.

M3 = “On input string w:
Scan the input from left to right to determine whether it is a
member of a*tb*c* and reject if it isn’t.
Return the head to the left-hand end of the tape.
Cross off an a and scan to the right until a b occurs. Shuttle
between the b’s and the ¢’s, crossing off one of each until all b’s
are gone. If all ¢’s have been crossed off and some b’s remain,
reject.
Restore the crossed off b’s and repeat stage 3 if there is another
a to cross off. If all a’s have been crossed off, determine whether

all c’s also have been crossed off. If yes, accept; otherwise,
reject.”




TM Examples

M4 = “On input w:
1. Place a mark on top of the leftmost tape symbol. If that symbol

was a blank, accept. If that symbol was a #, continue with the
next stage. Otherwise, reject.

Scan right to the next # and place a second mark on top of it. If
no # is encountered before a blank symbol, only x; was present,
SO accept.

By zig-zagging, compare the two strings to the right of the
marked #s. If they are equal, reject.

. Move the rightmost of the two marks to the next # symbol to
the right. If no # symbol is encountered before a blank sym-
bol, move the leftmost mark to the next # to its right and the
rightmost mark to the # after that. 'This time, if no # is available
for the rightmost mark, all the strings have been compared, so
accept.

(o to Stage 3.




More Turing MACHINES

@ Multitape Turing Machines
@ Non-Deterministic Turing Machines
@ Enumerator Turing Machines

@ Everything else..



Multitape TM

S

FIGURE 3.14
Representing three tapes with one




Multitape TM

§: Q xT*F—Q xT* x {L,R,S}*¥,

where £ is the number of tapes. The expression

5(Qiaa’17 "°aa'k) — (Qjabla °°°abk‘)L7R1 7L)

THEOREM 3.13

Every multitape "Turing machine has an equivalent single-tape Turing machine.




Multita

S =“Onmput w = wy -+ Wy:

1.

First S puts its tape into the format that represents all £ tapes
of M. The tformatted tape contains

® ® o
#wiweo - wy, HUHUE - #

To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way that M’s transition function dictates.

[f at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”



Multitape TM

COROLLARY 3.15

A language 1s "luring-recognizable if and only if some multitape Turing machine
recognizes it.

PROOF A’luring-recognizable language is recognized by an ordinary (single-
tape) Turing machine, which is a special case of a multitape Turing machine.
‘That proves one direction of this corollary. The other direction follows from

Theorem 3.13.




Non-deterministic TM

The transition function for a nondeterministic Turing machine has the form

0: @ xTI'—P(Q x T x {L.,R}).

THEOREM 3.16

Every nondeterministic Turing machine has an equivalent deterministic Turing
machine.




Non-deterministic TM

. 1nput tape

. simulation tape

.. address ape

FIGURE 3.17
Deterministic TM D simulating nondeterministic TM N




Non-deterministic TM

I. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.

3. Use tape 2 to simulate /V with input w on one branch of its nondetermin-
istic computation. Before each step of N consult the next symbol on tape 3
to determine which choice to make among those allowed by N’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic,

«hoice is invalid, abort this branch by going to stage 4, Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the lexicographically next string. Simu-
late the next branch of N’s computation by going to stage 2.




Enumerator TM

control prmter

. work tape

FIGURE 3.20
Schematic of an enumerator




Enumerator TM

THEOREM 3.21

A language is Turing-recognizable if and only if some enumerator enumerates it.




Enumerator TM

PROOF First we show that if we have an enumerator F that enumerates a
language A, a TM M recognizes A. The TM M works in the following way.

M = *On input w:
1. Run E. Every time that ' outputs a string, compare it with w.
2. If w ever appears in the output of F, accept.”

Clearly, M accepts those strings that appear on E’s list.



Enumerator TM

Now we do the other direction. If TM M recognizes a language A, we can

construct the following enumerator F for A. Say that sy, s2, 53, ... isa list of all
possible strings in 2*.

E = “Ignore the input.
1. Repeat the following fori =1,2,3,...
2.  Run M for i steps on each input, s1, s2, ..., ;.
3. Ifany computations accept, print out the corresponding s;.”

If M accepts a particular string s, eventually it will appear on the list generated
by F. In fact, it will appear on the list infinitely many times because M runs
from the beginning on each string for each repetition of step 1. This procedure
gives the effect of running M in parallel on all possible input strings.




Everything Else

® Lambda-calculus
Alonzo Church

® Recursive Functions |y

@ Programming languages:

s FORTRAN, PASCAL, C, JAVA,.. e Kicsne

@ LISP, SCHEME,...

J. Barkley Rosser



Church-Turing Thesis

Alonzo Church Alan Turing



Church-Turing Thesis

FIGURE 3.22
'The Church~luring Thesis




Hilberts 10th problem

@ Let P be an integer-coefficient polynomial in

several variables:
P(x,Y,z)=24x2y3+17Xxz+5y+25

@ Is there a set of integers for x,y,z such that
P(x,y,z)=0 ?

@ This problem is undecidable...
but is Turing-Recognizable...

@ Needed a formal model of i it
computing to prove impossibility. Yuri Matiyasevich



Single variable Poly

Dy = {p| p is a polynomial over x with an integral root}.
Here is a TM M, that recognizes Ds:

M, = “The input is a polynomial p over the variable x.

1. Evaluate p with x set successively to the values 0, 1, —1, 2, —2,
3, =3, ... Ifatany point the polynomial evaluates to 0, accept.”

321 Letciz" +eax™ P4 4 epz+epi1 bea polynomial with a root at z = xo. Let
cmax De the largest absolute value of a ¢;. Show that

Cmax

|.’L'0| < (n_l'l) |Cl, .




All languages

eory

Context-free
Languages

UNdecidable UNdecidable
via Diagonalization via Reductions




Turing Decidability




Format & Notations

@ Represent objects as strings

@ (01, Oa,..., Ok) Is the string representing
objects O;, O,,..., Ok

@ Many encodings are possible.

@ Implicitly, at beginning of an algorithm,
check that input is in the correct format,
otherwise reject.



Format & Notations

EXAMPLE 3.23

Let A be the language consisting of all strings representing undirected graphs
that are connected. Recall that a graph is connected if every node can be reached
from every other node by traveling along the edges of the graph. We write

A = {{G)| G is a connected undirected graph}.

The following is a high-level description of a TM M that decides A.




Format & Notations

M = “On input (G), the encoding of a graph G:
1. Select the first node of G and mark it.

2. Repeat the following stage until no new nodes are marked:

3.  For each node in G, mark it if it is attached by an edge to a
node that is already marked.
4. Scan all the nodes of G to determine whether they all are
marked. If they are, accept; otherwise, reject.”




Decidable Languages

Decidable Undecidable

ADFA
ANFA
AREX

Ebpra



Decidable Languages
about DFA

Apra = {(B,w)| B is a DFA that accepts input string w}.

THEOREM 4.1

Apra 1s a decidable language.

PROOF IDEA We simply need to present a TM M that decides Apfa.

M = “On input (B, w), where B is a DFA and w 1s a string:
1. Simulate B on input w.

2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”




Decidable Languages
about DFA

We can prove a similar theorem for nondeterministic finite automata. Let

Anea = {(B,w)| B is an NFA that accepts input string w}.

THEOREM 4.2

Anra is a decidable language.

N = “On input (B, w) where B is an NFA, and w is a string:
1. Convert NFA B to an equivalent DFA C| using the procedure for
this conversion given in Theorem 1.39.

2. Run TM M from Theorem 4.1 on input {C, w).
3. It M accepts, accept; otherwise, reject.”




Decidable Languages
about DFA

Similarly, we can determine whether a regular expression generates a given
string. Let Arex = {(R, w)| R is a regular expression that generates string w}.

THEOREM 4.3

Arex 1s a decidable language.
PROOF 'The following TM P decides Arex.

P = “On input (R, w) where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using
the procedure for this conversion given in Theorem 1.54.
2. Run TM N on input (A, w).

3. It N accepts, accept; it N rejects, reject.”




Decidable Languages
about DFA

EDFA = {<A>| A is a DFA and L(A) — @}

THEOREM 4.4

Ebea is a decidable language.

PROOF A DFA accepts some string iff reaching an accept state from the start
state by traveling along the arrows of the DFA is possible. To test this condition
we can design a TM T that uses a marking algorithm similar to that used in

Example 3.23.

T = “On input (A) where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3.  Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state 1s marked, accept; otherwise, reject.”




Decidable Languages
about DFA

EQpra = {{(A, B)| Aand B are DFAsand L(A) =
THEOREM 4.5

EQpea 1s a decidable language.

PROOF 'lo prove this theorem we use Theorem 4.4. We construct a new DFA
(" from A and B, where C accepts only those strings that are accepted by either
A or B but not by both. Thus, if A and B recognize the same language, C' will

accept nothing. The language of C' 1s
L(C) = (L(A)NL(B)) U (L(A) N L(B)).

Once we have constructed C' we can use Theorem 4.4 to test whether L(C) is
empty. If it is empty, L(A) and L(B) must be equal.

I’ =“On input (A, B), where A and B are DFAs:
1. Construct DFA ' as described.
2. Run TM T from Theorem 4.4 on input (C).
3. If T accepts, accept. If T rejects, reject.”




Decidable Languages
about CFG

Acrg = {{(G,w)| G 1s a CFG that generates string w}.

THEOREM 4.7

Ackg 1s a decidable language.

PROOF The TM S for Acgc follows.

S = “On input (G, w), where G is a CFG and w is a string:
Convert GG to an equivalent grammar in Chomsky normal form.

. List all derivations with 2n — 1 steps, where n is the length of
w, except if n = 0, then instead list all derivations with 1 step.
If any of these derivations generate w, accept; if not, reject.”




Decidable Languages
about CFG

Ecrc = {(G)| Gisa CFG and L(G) = 0}.

THEOREM 4.8

Eckc is a decidable language.

PROOF

R = “On input (G), where G is a CFG:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:

3. Mark any variable A where G hasarule A — UU; - - - Ug and
each symbol Uy, ..., U has already been marked.

4. If the start variable is not marked, accept; otherwise, reject.”




Decidable Languages
about CFG

THEOREM 4.9

Every context-free language is decidable.

PROOF Let GG be a CFG for A and design a TM M that decides A. We build

a copy of G into M¢. It works as follows.

Mg = “On input w:
1. Run TM S on input (G, w)
2. If this machine accepts, accept; if it rejects, reject.”




Decidable Languages

Decidable Undecidable

ADFA
ANFA
AREX

Ebpra



Undecidable Languages
about CFG

Next we consider the problem of determining whether two context-free
grammars generate the same language. Let

EQcec = {(G, H)| G and H are CFGs and L(G) = L(H)}.




Undecidable Languages
about TM

Apra and Acpg were decidable, A1y is not. Let

Atm = {{M,w)| M isa TM and M accepts w}.

THEOREM 4.11

Atm 1s undecidable.

Atwm is Turing-recognizable.

U = “On input (M, w), where M is a TM and w is a string:
1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its
reject state, reject.”




Comparing Cardinalities
All languages

languages
— that we can <
describe

languages
that we
can recognize
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|
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Comparing Cardinalities
All languages

languages
— that we can <
describe




Undecidable Language
about TM

THE ACCEPTANCE PROBLEM IS UNDECIDABLE

Now we are ready to prove Theorem 4.11, the undecidability of the language

Atm = {{M,w)| M isa TM and M accepts w}.



Undecidable Language
about TM

Assumption: H exists

accept 1f M accepts w
H((M,w)) = { ’

reject it M does not accept w.



Undecidable Language
about TM

H exists = D exists

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).

2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”




Undecidable Language
about TM

Properties of D

co N{FR AEDIQTJ@



Undecidable Language
about TM

accept 1t M accepts w
reject it M does not accept w.

CONTRADICTION

CONTRADICTION

CONTRABDIGTION
D = “On input (M), where M is a TM:

1. Run H on input (M, (M)).

2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

H (M) = {




Undecidable Language
about TM

(My) (M) (Ms) (My)
accept accept
accept accept accept accept

accept accept

FIGURE 4.19
Entry i, j is accept if M; accepts (M)




Undecidable Language
about TM

(My)  (Mz) (Ms) (My)
accept reject accept reject
accepl accept accept accepl
reject reject reject  reject

accept accept reject  reject

FIGURE 4.20
Entry 1, j is the value of H on input (M;, (M;))




Undecidable Language
about TM

(M)  (Mp) (M)
accept reject accepl
accept accepl accept
reject  reject  reject
accept accept reject

reject  reject accept

FIGURE 4.21
[f D is in the table, a contradiction occurs at

“: »




Diagonalization

Decidable Undecidable

ATm



Unrecognizable
Language about TM

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Let M; and M, be TMs respectively
recognizing L and its complement L .

M = *“On input w:

1. Run both M; and M; on input w in parallel.
2. If M, accepts, accept; if Mo accepts, reject.”




Unrecognizable
Language about TM

COROLLARY 4.23

Avwm is not Turing-recognizable.

PROOF We know that Aty is Turing-recognizable. If Aty also were Turing-
recognizable, Atm would be decidable. Theorem 4.11 tells us that Aty is not
decidable, so Aym must not be Turing-recognizable.




All languages

eory

Context-free
Languages

UNdecidable UNdecidable
via Diagonalization via Reductions




Reducibility

Decidable Undecidable

ATm

PCP



Reducibility

Reducibility always involves two problems, which we call A and B. If A re-
duces to B, we can use a solution to B to solve A. So in our example, A is the
problem of finding your way around the city and B is the problem of obtaining

a map. Note that reducibility says nothing about solving A or B alone, but only
about the solvability of A in the presence of a solution to B.

HALTtm = {{M,w)| M is a TM and M halts on input w}.

THEOREM 5.1
HALTtm 1s undecidable.




Reducibility

Evm = {{M)| M isaTM and L(M) = 0}.

THEOREM 5.2

ETM is undecidable.

PROOF Let’s write the modified machine described in the proof idea using
our standard notation. We call it M;.

M, = “On mnput z:
1. Ifx # w, reject.
2. Ifx =w, run M on input w and accept if M does.”

"This machine has the string w as part of its description. It conducts the test
of whether x = w in the obvious way, by scanning the input and comparing it
character by character with w to determine whether they are the same.




Reducibility

Putting all this together, we assume that TM R decides £Etm and construct TM
S that decides Atm as follows.

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M; just
described.

2. Run R on input (M).
3. If R accepts, reject; if R rejects, accept.”

Note that § must actually be able to compute a description of M; from a
description of M and w. It is able to do so because it needs only add extra states
to M that perform the z = w test.

If R were a decider for Etm, S would be a decider for Atm. A decider for
Atm cannot exist, so we know that Fry must be undecidable.




Reducibility

REGULARtm = {(M)| M isaTM and L(M) is a regular language}.

THEOREM 5.3
REG’ULARTM s undecidable.




Reducibility

PROOF We let R be a TM that decides REGULA Rty and construct TM S to

decide Atm. Then S works in the following manner.

S = “On input (M, w), where M isa TM and w is a string:
1. Construct the following TM M.
M, = “On input z:
1. If x has the form 0™1", accept.
2. If x does not have this form, run M on input w and
accept it M accepts w.”

2. Run R on input (Ms).
3. If R accepts, accept; it R rejects, reject.”

{OnIn| Nn20} if M rejects w

L(M2)=
Dk if M accepts w




Reducibility

EQym = {{(M1, M2)| M; and My are TMs and L(M;) = L(M>)}.

THEOREM 5.4
E Q-+ 1s undecidable.




Reducibility

PROOF We let TM R decide F(Q)+\ and construct TM S to decide Etm as
tollows.

S = “On input (M), where M is a TM:
1. Run R on input (M, M), where M is a TM that rejects all in-
puts.
2. If R accepts, accept; it R rejects, reject.”

If R decides EQ+y, S decides Etry. But Ery is undecidable by Theorem 5.2,
so EQ1\ also must be undecidable.




Reducibility

ALLcrc

Decidable Undecidable
EQcrac
ATtm
HALT ™

Etm
REGULARTM

EQ™™
PCP

MPCP
AMBIGcrg






Post Correspondence
Problem
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@ An instance of PCP with 6 dominos.

@ A soluftion to PCP
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Post Correspondence
Problem

® Theorem:

The Post Correspondence Problem cannot be

decided by any algorithm (or computer
program). In particular, no algorithm can
identify in a finite amount of time some

instances that have a No outcome. However, if

a solution exists, we can find it. PCP is Turing-
recognizable.



Reducing Atm TO N\PCP ‘
a (mostly) complete example




Post Correspondence
Problem

@ Proof ldea:

Reduction - if PCP was decidable then the
ACCEPTANCE problem would be decidable as well.



Computation History

DEFINITION 5.5

Let M be a Turing machine and w an input string. An accepting
computation bistory for M on w is a sequence of configurations,
Cy, Cy,...,Cy, where C] is the start configuration of M on w, Cj is

an accepting configuration of M, and each C; legally follows from
C;—1 according to the rules of M. A rejecting computation hbis-
tory tor M on w is defined similarly, except that C; is a rejecting
configuration.




ATM .
a Reduction

A story
In Seven
parts

@ Qaccept

_—

(accept

Gaccept 4

S —

Gaccept



Reducing MPCP to PCP

We now show how to convert P’ to P, an instance of the PCP that still simu-
lates M on w. We do so with a somewhat technical trick. 'The idea is to build the
requirement of starting with the first domino directly into the problem so that
stating the explicit requirement becomes unnecessary. We need to introduce
some notation for this purpose.

Let u = uwjuz - - - uy, be any string of length n. Define xu, ux, and xux to be
the three strings

*U UL ¥ U2 XkUI X 0 XUy
U*k Up U *UI k) XUy ¥
*UX U kU2 RUI X 0 XU X,

Here, xu adds the symbol * before every character in u, ux adds one after each
character in u, and xux adds one both before and after each character in w.




Reducing MPCP to PCP

To convert P’ to P, an instance of the PCP, we do the following. If P’ were

) )G G

the collection

we let P be the collection

s G el 53] Bl (1)




Reducing MPCP to PCP

Considering P as an instance of the PCP, we see that the only domino that
could possibly start a match is the first one,

[ *11 ]
*bl* ’
because it is the only one where both the top and the bottom start with the same

symbol—namely, . Besides forcing the match to start with the first domino, the

presence of the *s doesn’t affect possible matches because they simply interleave
with the original symbols. The original symbols now occur in the even positions

is there to allow the top to add the extra x at the end of the match.

.......................................................................................................................................................................




Reducibility

AlLLcrc

Decidable Undecidable
EQcrFG

PCP

MPCP
AMBIGcrc



Reducibility

ALLcrg = {(G)| GisaCFGand L(G) = ¥*}.

THEOREM 5.13
ALLcgg is undecidable.

EQcrc decidable = ALLcrc decidable
EQcrc = { {G1,G2) | G1,G;2 are CFGs and L(G))=L(Gy)}

Let (G2) be such that L(G2)=>* (G2 R— g|OR| IR)
( € ) CALLcrc & ( G, Gy ) EEQCFG



ALLcrg decidable = AT1mMm decidable

We now describe how to use a decision procedure for AL Lcgg to decide Atpm.
For a TM M and an input w, we construct a CFG G that generates all strings if
and only if M does not accept w. So if M does accept w, G does not generate
some particular string. This string is—guess what—the accepting computation
history for M on w. That is, G is designed to generate all strings that are not
accepting computation histories for M on w.

'To make the CFG G generate all strings that fail to be an accepting computa-
tion history for M on w, we utilize the following strategy. A string may fail to be
an accepting computation history for several reasons. An accepting computation
history for M on w appears as #C 1 #Co# - - - #C)#, where C; 1s the configuration
of M on the ith step of the computation on w. Then, G generates all strings

1. that do not start with (1,
2. that do not end with an accepting configuration, or
3. in which some C; does not properly yield C;11 under the rules of M.

It M does not accept w, no accepting computation history exists, so #// strings
fail in one way or another. Therefore, G would generate all strings, as desired.




PDA D(eG) for
M does not accept w

FIGURE 5.14
Every other configuration written in reverse order




® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

@ The third branch is supposed to accept if some C; does not properly
Y|eld Ci+1:

It works by scanning the input until it nondeterministically decides that it
has come to Ci.

Next, it pushes C; onto the stack until it comes to the end as marked by the
# symbol.

Then D pops the stack to compare with Ci,..

They are supposed to match except around the head position, where the
difference is dictated by the transition function of M.

Finally, D accepts if it discovers a mismatch or an improper update.



PDA D(eG) for
(M) does not accept w

accepting

Z*\{ SR } if M accepts w
L(D)=

2 * if M rejects w

@ On input (M,w) generate (G) s.t.
L(G)=3* « M rejects w

@ If Allcs is decidable, then so is Atm.






Computable Functions

A 'Turing machine computes a function by starting with the input to the function
on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function f: ¥*—— 3" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

EXAMPLE 5.18

All usual arithmetic operations on integers are computable functions. For exam-
ple, we can make a machine that takes input (m, n) and returns m + n, the sum
of m and n. We don’t give any details here, leaving them as exercises.




Mapping Reducibility

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational prob-
lems by languages.

DEFINITION 5.20

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥*— ¥*, where for every w,

w e A<= f(w) € B.

The function f is called the reduction of A to B.




Mapping Reducibility

The following figure illustrates mapping reducibility.




THEOREM 5.22
If A <., B and B is decidable, then A is decidable.
PROOF We let M be the decider for B and f be the reduction from A to B.

We describe a decider N for A as follows.

N = “On input w:
1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs.”

Clearly, if w € A, then f(w) € B because f is a reduction from A to B. Thus
M accepts f(w) whenever w € A. Therefore N works as desired.

COROLLARY 5.23
If A <,, B and A is undecidable, then B is undecidable.




EXAMPLE 5.24

In Theorem 5.1 we used a reduction from Aty to prove that HALT 1ty is un-
decidable. This reduction showed how a decider for HALT v could be used to
give a decider for Atym. We can demonstrate a mapping reducibility from Aty
to HALTt\ as follows. To do so we must present a computable function f that
takes input of the form (M, w) and returns output of the form (M’ w'), where

(M,w) € Atm if and only if (M’ w') € HALT tm.
The following machine F' computes a reduction f.

F =“On mput (M, w):
1. Construct the following machine M’.
M’ = “On input z:
I. Run M on z.
2. If M accepts, accept.
3. If M rejects, enter a loop.”

2. Output (M’ w).”




Mapping Reducibility

EXAMPLE 5.25

The proof of the undecidability of the Post correspondence problem in Theo-
rem 5.15 contains two mapping reductions. First, it shows that Aty <,, MPCP

and then it shows that MPCP <, PCP. In both cases we can easily obtain
the actual reduction function and show that it is a mapping reduction. As Ex-
ercise 5.6 shows, mapping reducibility is transitive, so these two reductions to-
gether imply that Aty <, PCP.




Mapping Reducibility

THEOREM 5.28

If A <, B and B is Turing-recognizable, then A is Turing-recognizable.

The proof is the same as that of Theorem 5.22, except that M and NV are recog-
nizers instead of deciders.

COROLLARY 5.29

It A <,, B and A is not luring-recognizable, then B is not Turing-recognizable.




Mapping Reducibility

In a typical application of this corollary, we let A be Atm, the complement
of Atm. We know that Aty 1s not ‘Turing-recognizable from Corollary 4.23.
The definition of mapping reducibility implies that A <., B means the same

as A <., B. To prove that B isn’t recognizable we may show that Atm <. B.
We can also use mapping reducibility to show that certain problems are neither
Turing-recognizable nor co-Turing-recognizable, as in the following theorem.




THEOREM 5.30

EQ+y 1s neither Turing-recognizable nor co-Turing-recognizable.

PROOF First we show that Q) is not Turing-recognizable. We
showing that Atym is reducible to EQ+ty. The reducing function f works as
follows.

F' = “On input (M, w) where M is a TM and w a string:
1. Construct the following two machines M, and M.
M; = “On any input:
1. Reject.”
M5 = “On any input:
I. Run M on w. If it accepts, accept.”
2. Output (M7, M5).”

Here, M; accepts nothing. It M accepts w, M2 accepts everything, and so the
two machines are not equivalent. Conversely, if M doesn’t accept w, M, accepts
nothing, and they are equivalent. Thus f reduces Aty to EQ+y, as desired.




THEOREM 5.30

EQ+y 1s neither Turing-recognizable nor co-Turing-recognizable.

To show that FQ+), is not Turing-recognizable we give a reduction from Atm
to the complement of EQty—namely, EQ1y,. Hence we show that Aty <p,
EQ+p- The following TM G computes the reducing function g.

G = “The inputis (M, w) where M is a TM and w a string:

1. Construct the following two machines M; and M,.
M; = “On any input:
1. Accept.”
My = “On any 1input:
1. Run M on w.
2. Ifitaccepts, accept.”

2. Output (Ml, M2>.”

The only difference between f and g is in machine M;. In f, machine M,
always rejects, whereas in g it always accepts. In both f and g, M accepts w iff
M, always accepts. In g, M accepts w iff My and M; are equivalent. That is why

g is a reduction from Atm to EQ 1.




Turlng Reduablln‘y



Turing Reducibility

DEFINITION 6.18

An oracle for a language B is an external device that is capable of
reporting whether any string w is a member of B. An oracle Turing

machine is a modified Turing machine that has the additional ca-
pability of querying an oracle. We write M® to describe an oracle
‘Turing machine that has an oracle for language B.




Turing Reducibility

EXAMPLE 6.19

Consider an oracle for Atm. An oracle Turing machine with an oracle for Atm
can decide more languages than an ordinary Turing machine . Such a ma-

chine can (obviously) decide Aty itself, by querying the oracle about the input.
[t can also decide Ety, the emptiness testing problem for TMs with the following

procedure called T4™,

TA™ = “On input (M), where M is a TM:
1. Construct the following TM N.
N = “On any input:
1. Run M in parallel on all strings in 2*.
2. If M accepts any of these strings, accept.”
2. Query the oracle to determine whether (V,0) € Atm.

3. 1If the oracle answers NO, accept; if YES, reject.”




Turing Reducibility

DEFINITION 6.20

Language A is Turing reducible to language B, written A <1 B, if
A is decidable relative to B.




Turing Reducibility

THEOREM 6.2]
If A <t B and B is decidable, then A is decidable.

PROOF If B is decidable, then we may replace the oracle for B by an actual
procedure that decides B. Thus we may replace the oracle Turing machine that
decides A by an ordinary Turing machine that decides A.
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Tractable Problems
(P)
3 2*«&0{01’&&{&&3 of maps.

o Primalily testing,
(but probably not factoring)

3 $<;>Lvi;s¢9 NxNxN Rubilk’s cube.
o Finding a word i a dic&ov\o\r:}.

o Sorting elements..



Tractable Problems

\9

= ﬁor&uma&etj, many Fr&&&wat probt&ms
are tractable. The name P stands for
‘Pcwtvmommlm’ﬂme ﬂompuhbw_.

© More formally, there exists a TM to
compute solutions to the probtam and
there exists a polynomial @ such that
the number of steps on each input x
before halking is no more than Q([x]).



Tractable Problems

\9

o Fortunately, many practical problems are
tractable. The name P stands for
Polynomial-Time computable.

o Computer Science studies mostly
techniques to approach and find efficient
solutions to tractable problems.

o Some problems may be efficiently solvable
but we might ot be able to prove Ehatk...



Tractable Problems

\9

o The name P stands for Polynomial-Time
computable.

o Q Why choose this level of granularity ?
Why not choose Linear-time for instance ?

o A: because P is the same for all bypes of
Turing machines and any reasonable
model. This is not ktrue of Linear-time for
instance...



Tractable Problems

\9

THEOREM 7.8

Let t(n) be a function, where ¢(n) > n. Then every t(n) time multitape Turing
machine has an equivalent O(t%(n)) time single-tape Turing machine.
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D

D

K-colouring of
Maps (planar graphs)

K=1 omt:j the maps with zero or owhe region

are l-colourable.

K=2 easy to decide. lmpcssibi& as Soon as 3
regions touch each other.

K=3 No known efficient alqorithm to
decide. It is easy to verify a solution.

Kz4 all maps are 4-colourable, (long Fraoaf)
Does not imply easy to find a 4-colouring.



3-colour E&r\g Oﬂf
Ma ps
o Seems hard to solve i general,

@ 1s easy to verbﬁj whei a solution is given,
(is in NP : quess a solution and verify it)

o Is a special type of probi.em (N‘P*«r:c;mpt@_&e)
because an efficient solution to it would
:ﬁ,etd efficient solubtions ko ALL probi.ems
i NP



Examples of NP-
Complete Problems

o SAT: given a boolean formula, is there an
assignment of the variables making the
formula evaluate to krue ?

o Travelling Salesman: given a set of cities
and distances between them, what is the
shortest route bto visit each ai&v once.

o KnapSack: given items with various weights,
is there of subset of them of tokal weiqght K.



COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson




N‘P*Com[pi.e%@.
Problems

Appendix: A List of NP-Complete Problems
Al Graph Theory ¥

Al.1 Covering and Partitioning
AL2 Subgraphs and Supergraphs COUPLTERS A0 NTRACTISLTY
A1.3 Vertex Ordering S
Al.4 Iso- and Other Morphisms Michael R. Garey
Al.5 Miscellaneous
Network Design
A2.1 Spanning Trees
A2.2 Cuts and Connectivity
A2.3 Routing Problems
A2.4 Flow Problems
A2.5 Miscellaneous
A3 Sets and Partitions
A3.1 Covering, Hitting, and Splitting
A3.2 Weighted Set Problems
A4 Storage and Retrieval
A4.1 Data Storage
A4.2 Compression and Representation
A4.3 Database Problems




N‘P*Com[pi.e%@.
Problems

Sequencing and Scheduling

s e ot A S S I

AS5.2 Multiprocessor Scheduling
A3.3 Shop Scheduling COMPUTERS AND INTRACTABILITY
AS5.4 Miscellaneous A Guide to the Theory of NP-Completeness
Mathemaltical Programming

Algebra and Number Theory

A7.1 Divisibility Problems

A7.2 Solvability of Equations

A7.3 Miscellaneous

GRS NG POFRIBN . - o o0 2 2 i 0 F R ARG GBS S B s S 254

A9.1 Propositional Logic
A9.2 Miscellaneous

Automata and Language Theory
Al10.1 Automata Theory

A10.2 Formal Languages
Program Optimization

All.l Code Generation

All.2 Programs and Schemes 100 F&SQS

Miscellaneous

Open Problems 19“79 ! ! !
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P=NP?







DEFINITION 7.7

Let t: N—R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(¢(n)) time Turing machine.

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P =| | TIME(n*).
k




Y vs NT

DEFINITION 7.9

Let NV be a nondeterministic Turing machine that is a decider. The
running time of N is the function f: N— N, where f(n) is the

maximum number of steps that /V uses on any branch of its com-
putation on any input of length n, as shown in the following figure.




Deterministic
®

}

5 accept/reject

FIGURE 7.10
Measuring deterministic and nondeterministic time




Y vs NT

DEFINITION 7.21

NTIME(t(n)) = {L| L is a language decided by a O(¢(n)) time

nondeterministic Turing machine }.

COROLLARY 7.22
NP = |J, NTIME(n*).




Y vs NT

THEOREM 7.11

Let t(n) be a function, where t(n) > n. Then every t(n) time nondeterministic

single-tape Turing machine has an equivalent 2°(¢(")) time deterministic single-
tape Turing machine.




A clique in an undirected graph is a subgraph, wherein every two nodes are
connected by an edge. A k-clique is a clique that contains k¥ nodes. Figure 7.23
illustrates a graph having a 5-clique

ol

FIGURE 7.23
A graph with a S-clique




Y vs NT

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}.
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THEOREM Z24 ittt sttt st s s ssassatsonssansnasasssesses
CLIQUE 1s in NP.

PROOF IDEA The clique is the certificate.

PROOF 'The following is a verifier V for CLIQUE.

V =%“On input ((G, k), ¢):
1. Test whether cis a set of £ nodes in G
2. ’lest whether GG contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input (G, k), where G is a graph:
1. Nondeterministically select a subset ¢ of k£ nodes of G.
2. ’Test whether G contains all edges connecting nodes in c.
3. Ifyes, accept; otherwise, reject.”




A Boolean formula is an expression involving Boolean variables and opera-
tions. For example,

¢=(TAy)V (zAZ)

is a Boolean formula. A Boolean formula is satisfiable if some assignment of Os
and 1s to the variables makes the formula evaluate to 1. The preceding formula is

satisfiable because the assignmentjz = | kes ¢ | 3
We say the assignment satisfies ¢. T he satujﬁabzlzty problem is to test whether 2
Boolean formula is satisfiable. Let

SAT = {{(¢)| ¢ is a satisfiable Boolean formula}.

Now we state the Cook-Levin theorem, which links the complexity of the
SAT problem to the complexities of all problems in NP.

THEOREM 7.27
Cook-Levin theorem SAT € P iff P = NP.




?Qijmﬁme
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DEFINITION 7.28

A function f: X" —— X" is a polynomial time computable function

if some polynomial time Turing machine M exists that halts with
just f(w) on its tape, when started on any input w.




?Qijmﬁme
ucibil &v

Language A is polynomial time mapping reducible,' or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: £*-—— ¥* exists, where for every

w,

r!
('

DEFINITION 7.29

w e A<= f(w) € B.

The function f is called the polynomial time reduction of A to B.




Poly-time
Reducibility

|

R,

—_—

FIGURE 7.30
Polynomial time function f reducing A to B




THEOREM 7.31

If A<p Band B € P, then A € P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w € A whenever f(w) € B because f is a reduction from A to B.
Thus M accepts f(w) whenever w € A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in

polynomial time because the composition of two polynomials is a polynomial.




N‘Pw:cwmgl&emess

~ DEFINITION 7.34

A language B 1s NP-complete it it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 7.35
If B is NP-complete and B € P, then P = NP.

PROOF 'This theorem follows directly from the definition of polynomial time
reducibility.




N‘Pw:c;:»m[pi&eness

THEOREM 7.36

It B is NP-complete and B <p C for C in NP, then C is NP-complete.

PROOF We already know that C is in NP, so we must show that every A in
NP is polynomial time reducible to C'. Because B is NP-complete, every lan-

guage in NP is polynomial time reducible to B, and B in turn is polynomial
time reducible to C'. Polynomial time reductions compose; that is, if A is poly-
nomial time reducible to B and B is polynomial time reducible to C, then A
is polynomial time reducible to C. Hence every language in NP is polynomial
time reducible to C.




Theorem




Coole~Levin
Theorem

THEOREM 7.37
SAT is NP-complete.?

This theorem restates Theorem 7.27, the Cook-Levin theorem, in another
form.




Coole~Levin
Theorem

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula ¢ and accept if the
assignment satisfies ¢.

Next, we take any language®*A in NP and show that A is polynomial time
reducible to SAT. Let N be a nondeterministic Turing machine that decides A
in n* time for some constant k. (For convenience we actually assume that NV
runs in time n* — 3, but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

*"any language A in NP~ really means:

"any language A provably 1n NP'".




A tableau for N on w is an n” x n” table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.

do

w1

Wo

FIGURE 7.38

A tableauis an n

k

x n¥ table of configurations

start configuration

second configuration

window

nkth configuration




Coolk-Levin

Every accepting tableau for IV on w corresponds to an accepting computation
branch of N on w. Thus, the problem of determining whether N accepts w is
equivalent to the problem of determining whether an accepting tableau for N

On w exists.

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢.

= QPeell U @start U

¢a&tep% U $move




turning variable z; ; ; on corresponds to placing

symbol s in celllt, j]. The first thing we must guarantee in order to obtain a cor-
respondence between an assignment and a tableau is that the assignment turns
on exactly one variable for each cell. Formula ¢, ensures this requirement by
expressing it in terms of Boolean operations:

Peell = /\ {(\/ :ri,j,s) A ( /\ (a::,;,j,sv:cz-,j,t))}

1<4,5<nk - s€C s, tcC
sF#t




Coolk-Levin
Theorem: ¢

The symbols A and \/ stand for iterated AND and OR. For example, the
expression in the preceding formula

is shorthand for

:Bi)j’sl v :L'?;,j,SQ v S \/ xi,j,S;

where C' = {s1, 82, ...,s;}. Hence ¢ 1s actually a large expression that con-

tains a fragment for each cell in the tableau because 7 and j range from 1 to n”.




Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

(ﬁ’Start — xl,l 581,2/\
fL‘1,3, AN 561’4, AN AN .’E1,n.|_2,@/\
xl,n+3/\ VAN le,n’“-—l/\ .lenk.




Cook-Levin
Theorem: ¢accep&

Formula ¢,ccepe guarantees that an accepting configuration occurs in the
tableau. It ensures that g,ccepr, the symbol for the accept state, appears in one
of the cells of the tableau, by stipulating that one of the corresponding variables
1S on:

‘fpaccept —




Coolk-Levin
Theorem: Pmove

(d)

FIGURE 7.39
Examples of legal windows




B Cook-Levin
H}} I Theorem: Pmove

R FEE oBER
q1 72 g2

8(q1,b)=(q1,¢,L)

FIGURE 7.40
Examples of illegal windows




Cook-lLevi
Theorem: ¢nove

cLAIM 7.41

If the top row of the table is the start configuration and every window in the

table is legal, each row of the table is a configuration that legally follows the
preceding one.




Cook-lLevi
Theorem: ¢nove

Now we return to the construction of ¢poyve. It stipulates that all the windows
in the tableau are legal. Each window contains six cells, which may be set in
a fixed number of ways to yield a legal window. Formula ¢yove says that the

settings of those six cells must be one of these ways, or

Pmove = /\ (the (4, j) window is legal)

1<i<nk, 1<j<nk




Cook-lLevi
Theorem: ¢nove

We replace the text “the (i, j) window is legal” in this formula with the following
formula. We write the contents of six cells of a window as a4, ..., as.

\/ (Tij—1,01 N Tijias A Tij41,as N Tielj—1,a5 N Tig1jias N Titl,j41,a0)
al,...,ae6
is a legal window




Coolk-Levin

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢.

(@) € SAT

4t
N accep%s w
within nk steps.






3SAT s
NP-Complete

literal is a Boolean variable or a negated Boolean variable, as in z or Z. A clause
is several literals connected with Vs, as in (z; VT3 VT3 V 24). A Boolean for-
mula is in conjunctive normal form, called a cnf-formula, if it comprises several

clauses connected with As, as in

(1 VT2 VT3V xg) A (x3VT5Vixg) N\ (23V Tg).

It is a 3cnf-formula if all the clauses have three literals, as in

(1 VZ2VZ3) AN (23 VT5 Vag) A (3 VTg V) N (x4 VsV xg).

Let 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula}. In a satisfiable cnf-formula,
each clause must contain at least one literal that is assigned 1.




2ISAT s
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COROLLARY 7.42
3SAT is NP-complete.

PROOF Obviously 3847 is in NP, so we only need to prove that all languages

in NP reduce to 3547 in polynomial time. One way to do so is by showing
that SAT polynomial time reduces to 3S47. Instead, we modity the proof of
Theorem 7.37 so that it directly produces a formula in conjunctive normal form
with three literals per clause.




Coole~Levin
Theorem

Qbstart — L1,1.% A ml,2,€10/\
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Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already
in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

Peell Pmove = /\ (the (4, j) window is legal) +))}

1<i<nk, 1<j<nk




Coole~Levin
Theorem

Omove = /\ (the (z, 7) window is legal)

1<i<nk, l<j<nk

V (Tij—1,01 A Tijias A Tij41,as N Tielj—1,a5 A Tit1jias N Titl,j41,a0)
al,...,a6
is a legal window
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/\ (the (i, ) window is legal)

1<i<nk, 1<j<nk

* PV(QAR)equals(PVQ)A(PVR).

Recall that ¢pove 1s 2 big AND of subformulas, each of which is an OR of ANDs

A mi+1,j+1,f16)
Al,y,...,08
is a legal window

that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of
ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of @meve by a constant factor because the size of each
subformula depends only on N. The result 1s a formula that 1s in conjunctive

normal form.
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Now that we have written the formula in cnf, we convert it to one with three
literals per clause. In each clause that currently has one or two literals, we repli-

cate one of the literals until the total number is three. In each clause that has
more than three literals, we split it into several clauses and add additional vari-
ables to preserve the satisfiability or nonsatisfiability of the original.
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For example, we replace clause (a1 V as Vag V as), wherein each q; is a literal,
with the two-clause expression (a1 V as V 2) A (Z V a3 V aq), wherein z 1s a new
variable. If some setting of the a;’s satisfies the original clause, we can find some
setting of z so that the two new clauses are satisfied. In general, if the clause

contains [ literals,
(a1 Vag V---Vap),
we can replace it with the [ — 2 clauses

(a1 VasVz1)AN(ZTVazsVz)A(ZzVasVz3) A --A(Zi3Va_1Va).

We may easily verify that the new formula is satisfiable iff the original formula
was, so the proof is complete.
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THEOREM 7.32
3SAT is polynomial time reducible to CLIQUE.

PROOF IDEA 'The polynomial time reduction f that we demonstrate from
3SAT to CLIQUE converts formulas to graphs. In the constructed graphs,
cliques of a specified size correspond to satisfying assignments of the formula.
Structures within the graph are designed to mimic the behavior of the variables
and clauses.
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PROOF Let¢ 1th k& clauses such as

d=(a1 Vb Ver) AN(aaVbaVe) A -+ A (ak Vb V)

The reduction f generates the string (G, k), where G is an undirected graph

defined as follows.

The nodes in G are organized into k groups of three nodes each called the
triples, t,, ..., tr. Each triple corresponds to one of the clauses in ¢, and each
node in a triple corresponds to a literal in the associated clause. Label each node
of G with its corresponding literal in ¢.

The edges of G connect all but two types of pairs of nodes in GG. No edge
is present between nodes in the same triple and no edge is present between two
nodes with contradictory labels, as in z2 and Z3. The following figure illustrates
this construction when ¢ = (1 Va3 Vas) A (Z7VZ2VZ2) A (T1 Va2 V22).
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FIGURE 7.33
'The graph that the reduction produces from
p={(rrVei V) N (@TIVT2VT2) A (T1 V2V T3)
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(¢ )EBSAT =>» (G,k) ECLIQUN

Suppose that ¢ has a satisfying assignment. In that satisfying assignment, at
least one literal is true in every clause. In each triple of G, we select one node
corresponding to a true literal in the satisfying assignment. If more than one
literal is true in a particular clause, we choose one of the true literals arbitrarily.
The nodes just selected form a k-clique. The number of nodes selected is &,

because we chose one for each of the & triples. Fach pair of selected nodes is
joined by an edge because no pair fits one of the exceptions described previously.
They could not be from the same triple because we selected only one node per
triple. They could not have contradictory labels because the associated literals
were both true in the satistying assignment. Therefore G contains a k-clique.




CLIQUE € N‘P-"CQMPLQ%@.:
(Gr,le) ECLIQUE -> (¢)E3SAT

Suppose that G has a k-clique. No two of the clique’s nodes occur in the same
triple because nodes in the same triple aren’t connected by edges. Therefore
each of the k triples contains exactly one of the k clique nodes. We assign truth
values to the variables of ¢ so that each literal labeling a clique node is made
true. Doing so is always possible because two nodes labeled in a contradictory

way are not connected by an edge and hence both can’t be in the clique. This
assignment to the variables satisfies ¢ because each triple contains a clique node
and hence each clause contains a literal that is assigned TRUE. Therefore ¢ is
satisfiable.
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THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where
every edge of GG touches one of those nodes. The vertex cover problem asks

whether a graph contains a vertex cover of a specified size:

VERTEX-COVER = {(G, k)| G 1s an undirected graph that
has a k-node vertex cover}.

THEOREM 7.44
VERTEX-COVER is NP-complete.
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PROOF Here are the details of a reduction from 3SAT to VERTEX-COVER
that operates in polynomial time. The reduction maps a Boolean formula ¢ to a
graph G and a value k. For each variable x in ¢, we produce an edge connecting
two nodes. We label the two nodes in this gadget z and Z. Setting z to be
TRUE corresponds to selecting the left node for the vertex cover, whereas FALSE
corresponds to the right node.




Verbtex—-Cover is
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The gadgets for the clauses are a bit more complex. Each clause gadget is a
triple of three nodes that are labeled with the three literals of the clause. These
three nodes are connected to each other and to the nodes in the variables gadgets
that have the identical labels. Thus the total number of nodes that appear in G
is 2m + 3l, where ¢ has m variables and [ clauses. Let & be m + 2.




For example, if ¢ = (zy Vo, Vae) A (TT VI3 VIZ) A (T1 Vo V xy), the
reduction produces (G, k) from ¢, where k = 8 and G takes the form shown in
the following figure.

FIGURE 7.45
The graph that the reduction produces from
d=(x1VziVz) A (FTVEVE:) A (FTTV x2 V Zo
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(¢ )€ 3SAT —» (G, ) € V-C

To prove that this reduction works, we need to show that ¢ is satisfiable if and
only if G’ has a vertex cover with &£ nodes. We start with a satisfying assignment.
We first put the nodes of the variable gadgets that correspond to the true literals
in the assignment into the vertex cover. Then, we select one true literal in every
clause and put the remaining two nodes from every clause gadget into the vertex
cover. Now, we have a total of k nodes. They cover all edges because every vari-
able gadget edge is clearly covered, all three edges within every clause gadget are
covered, and all edges between variable and clause gadgets are covered. Hence
(7 has a vertex cover with £ nodes.




Vertex—-Cover € NP-Complete:

(G, i) EV-C -> (¢)E 3SAT

Second, if G has a vertex cover with k nodes, we show that ¢ is satisfiable
by constructing the satisfying assignment. The vertex cover must contain one
node in each variable gadget and two in every clause gadget in order to cover
the edges of the variable gadgets and the three edges within the clause gadgets.
That accounts for all the nodes, so none are left over. We take the nodes of the

variable gadgets that are in the vertex cover and assign the corresponding literals
TRUE. That assignment satisfies ¢ because each of the three edges connecting
the variable gadgets with each clause gadget is covered and only two nodes of
the clause gadget are in the vertex cover. Therefore one of the edges must be
covered by a node from a variable ot 2 At assignment satisfies the
corresponding clausq (2=
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o PSpace Completeness: problems that
require a reasonable (Poly) amount of
space to be solved but May use very
long time though,

o Many such Farc;)bi.ems‘ if any of them
moay be solved within reasonable (Poly)
amount of time, then all of them can,
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DEFINITION 8.1

Let M be a deterministic Turing machine that halts on all inputs.
The space complexity of M is the function f: N— N, where f(n)
is the maximum number of tape cells that M scans on any input of
length n. If the space complexity of M is f(n), we also say that M

runs in space f(n).
If M is a nondeterministic Turing machine wherein all branches

halt on all inputs, we define its space complexity f(n) to be the
maximum number of tape cells that M scans on any branch of its

computation for any input of length n.




Space Complexity

DEFINITION 8.2

Let f: N—R™ be a function. The space complexity classes,
SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

SPACE(f(n)) = {L| L is a language decided by an O(f(n)) space
deterministic Turing machine}.
NSPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

nondeterministic Turing machine}.

THEOREM 8.5

Savitch’s theorem For any! function f: N— R, where f(n) > n,
NSPACE(f(n)) C SPACE(f*(n)).
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DEFINITION 8.6

PSPACE is the class of languages that are decidable in polynomial
space on a deterministic Turing machine. In other words,

PSPACE = | |SPACE(n*).

We define NPSPACE, the nondeterministic counterpart to PSPACE, in

terms of the NSPACE classes. However, PSPACE = NPSPACE by virtue of
Savitch’s theorem, because the square of any polynomial is still a polynomial.

P C NP C PSPACE = NPSPACE C EXPTIME = |J, TIME(2"




Sp&t:@./ Time C.Qmpt@.x&v
Decidable
Languages ' ,




Sp&ae/Time C’.Qmpt@.xi&v
Decidable
Languages ' »

®

PSpace=EXPTime ?




Decidable
Languages

Spa&@./“f&me Comptexiiv

P2EXPTime
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DEFINITION 8.8
A language B is PSPACE-complete if it satisfies two conditions:
1. B is in PSPACE, and

2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-bard.
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o Geography Game:

Griven a set of country names: Aruba, Cuba,
Canada, Equador, France, Italy, Japan, Korea,
Nigeria, Russia, Viebham, Yemen,

o A two Ftaj@.r game: Ohe F?Lajer chooses a
name and crosses it out. The other ptaver
must choose a name that starts with the Last
letter of the previous name and so on. A
Ptaver wins when his OPPOMEME cannot F’mj
any name.



Generalized Geography

o Criven al cxrbi&r&ry set onf narmes:
W31 ey WG

o Is there a winning strateqgy for the
first player to the previous game ?



Theoretical
Compu&er Sclence

o Challenges of TCS:

o FIND efficient solutions to many problems.
(Algorithms and Data Structures)

o PROVE Ehal certain probtems are NOT
compuﬁabte within a certain time or space.

o Consider new models of tampu&o\&cw
(Such as o Quantum Computber)



Computability Theory

All languages

Languages
we can describe
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https://www.math.ucdavis.edu/~greg/zoology/diagram.pdf
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https://www.math.ucdavis.edu/~greg/zoology/diagram.pdf
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