Pumping Lemma

Michael Rabin

Dana Scott
NON-Regular Languages

THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Application: any language that does not satisfy the pumping lemma is non-regular.

Note however that some non-regular languages DO satisfy the Pumping Lemma...
Pumping Lemma

\[xyz = 101101110 \]
Pumping Lemma

\[xyz = 101101110 \]
Pumping Lemma

\[x_{yz} = 10110110 \]
Pumping Lemma

\[x^{yz} = 101101110 \]
Pumping Lemma

\[xyz = 101101110 \]
Pumping Lemma

\[xyz = 101101110 \]
Pumping Lemma

\[x y z = 101101110 \]
Pumping Lemma

\[xy = 10110110 \]
Pumping Lemma

\[xyz = 101101110 \]
Pumping Lemma

\[xyz = 101101110 \]
Pumping Lemma

\[xyz = 101101110 \]
Pumping Lemma

$\text{xz} = 101110$
Pumping Lemma

\[xyyz = 101101101110 \]
Pumping Lemma

\[xyyyyz = 101101101101110 \]
Pumping Lemma

If $|xyz| > \text{number-of-states}$ then q_9 exists...

Figure 1.72
Example showing how the strings x, y, and z affect M
Pumping Lemma

Proof: Let M be an automaton accepting A.

Let n be the number of states of M.

Consider setting $p = n + 1$ as the pumping length. By the fact that $p > n$, any sequence of states $s_0 ... s_m$ accepting a string w of length $m \geq p$ must contain two identical states $s_i = s_j$ with $j > i$. Let j be the least index so that $s_j = s_i$ for some $i < j$ as above.
Pumping Lemma

Define x to be the string digested by M from s_0 to s_i, y be the string digested by M from s_i to s_j and z be the string digested by M from s_j to s_m.

Since $j>i$ we have $|y|>0$ (2.).

Because our choice of y produces a closed loop it is clear that zero, one, or many repetitions of y will make no difference to being a member of A or not (1.).
Define x to be the string digested by M from s_0 to s_i, y be the string digested by M from s_i to s_j and z be the string digested by M from s_j to s_m.

We obtain:

$$S_0 \times_1 S_1 \times_2 S_2 \ldots S_{i-1} \times_i S_i Y_1 S_{i+1} Y_2 S_{i+2} \ldots S_{j-1} Y_{j-i} S_j Z_1 \ldots$$

where all states upto s_{j-1} are distinct by the assumptions above. Thus $|xy| = i+j-i = j \leq p$ (3.).

QED
Theorem 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| < p$.
THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| < p$.
Theorem 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| < p$.

\[A \in \text{REG} \implies \exists p \forall s \in A, |s| \geq p, \exists xyz = s \text{ st } 1, 2, 3 = \text{true}. \]

\[\forall p \exists s \in A, |s| \geq p, \forall xyz = s \text{ [1 or 2 or 3 = false].} \]

\[\implies A \notin \text{REG} \]
Theorem 1.70

Pumping Lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| < p$.

\[A \in \text{REG} \implies \exists p \forall s \in A, |s| \geq p, \exists xyz = s \text{ s.t. } 1, 2, 3 = \text{true}. \]

\[\forall p \exists s \in A, |s| \geq p, \forall xyz = s \text{ s.t. } 2, 3 = \text{true} \text{ [1=false]}. \]

\[\implies A \notin \text{REG} \]
Theorem 1.70

Pumping lemma: If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| < p$.

\[A \in \text{REG} \implies \exists p \forall s \in A, \ |s| \geq p, \ \exists xyz = s \text{ s.t. } 1,2,3 = \text{true}. \]

\[\forall p \exists s \in A, \ |s| \geq p, \ \forall xyz = s \text{ s.t. } 2,3 = \text{true} \ [1 = \text{false}] . \]

\[\implies A \notin \text{REG} \]

\[\forall p \exists s \in A, \ |s| \geq p, \ \forall xyz = s \text{ s.t. } |y| > 0, |xy| < p, \] then \[\exists i \geq 0 \text{ s.t. } s' = xy^iz \notin A. \]

\[\implies A \notin \text{REG} \]
Application of the Pumping Lemma

\[B = \{ 0^n1^n \mid n \geq 0 \} \text{ is NON-Regular.} \]

Assume \(B \) is regular. Then by the pumping Lemma there exists a pumping length \(p \) with properties 1., 2. and 3. satisfied. Take \(n=p \) and set \(s = 0^p1^p \in B \). Then by 3. \(xy \) contains only zeros. Therefore if we pump even once to obtain \(s' = xyyz = 0^q1^p \) it will contain more zeros than ones \((q>p)\) : a string \(s' \) not in \(B \). Thus \(B \) is non-regular.
∀p∃s∈B, |s|≥p, ∀xyz=s s.t. |y|>0,|xy|<p, then ∃i≥0 s.t. s′=xy^iz∉B.

⇒ B∉REG

B = \{ 0^n1^n | n≥0 \} is NON-Regular.

Assume B is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take n=p and set s = 0^p1^p∈B. Then by 3. xy contains only zeros. Therefore if we pump even once to obtain s′ = xy^iz = 0^q1^p it will contain more zeros than ones (q>p) : a string s′ not in B. Thus B is non-regular.
Application of the Pumping Lemma

\[F = \{ \, ww \mid w \in \Sigma^* \, \} \text{ is NON-Regular.} \]

Assume \(F \) is regular. Then by the pumping Lemma there exists a pumping length \(p \) with properties 1., 2. and 3. satisfied. Take \(s = 0^p10^p1 \in F \). Then by 3. \(xy \) contains only zeros. Therefore if we pump even once to obtain \(s' = xyyz \) it will contain more zeros before the first one than after the first one: a string \(s' \) not in \(F \). Thus \(F \) is non-regular.
\[\forall p \exists s \in F, \ |s| \geq p, \ \forall xyz = s \ \text{s.t.} \ |y| > 0, |xy| < p, \]
\[\text{then } \exists i \geq 0 \ \text{s.t.} \ s' = xy^iz \not\in F. \]
\[\Rightarrow F \not\in \text{REG} \]

\[F = \{ \text{ww} \mid \text{w} \in \Sigma^* \} \] is NON-Regular.

Assume F is regular. Then by the pumping lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take \(s = 0^p10^p1 \in F \). Then by 3. xy contains only zeros. Therefore if we pump even once to obtain \(s' = xyyz \) it will contain more zeros before the first one than after the first one: a string s' not in F. Thus F is non-regular.
Application of the Pumping Lemma

E = \{ 0^i 1^j \mid i > j \geq 0 \} is NON-Regular.

Assume E is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take i=p+1, j=p and obtain s=0^{p+1}1^p \in E. Then by 3. xy contains only zeros.
∀p∃s∈E, |s|≥p, ∀xyz=s s.t. |y|>0,|xy|<p, then ∃i≥0 s.t. s′=xyiz∉E.
⇒ E∉REG

E = \{ 0^i1^j \mid i>j≥0 \} is NON-Regular.

Assume E is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take i=p+1, j=p and obtain s=0^{p+1}1^p∈E. Then by 3. xy contains only zeros.
Application of the Pumping Lemma

\[E = \{ 0^i1^j \mid i > j \geq 0 \} \text{ is NON-Regular.} \]

Therefore if we pump up to obtain \(s' = xyyz = 0^k1^j \), \(k > i \) it will contain even more zeros than ones, which is still a string \(s' \) in \(E \). If we pump down however \(s'' = xz \), the number of zeros will become smaller or equal to the number of ones: an \(s'' \) not in \(E \). Thus \(E \) is non-regular.
∀p∃s∈E, |s|≥p, ∀xyz=s s.t. |y|>0,|xy|<p, then ∃i≥0 s.t. s''=xy^i z ∉ E.

⇒ E ∉ REG

E = \{ 0^i 1^j \mid i>j≥0 \} is NON-Regular.

Therefore if we pump up to obtain s'=xyyz=0^k 1^j , k>i it will contain even more zeros than ones, which is still a string s' in E. If we pump down however s''=xz, the number of zeros will become smaller or equal to the number of ones: an s'' not in E. Thus E is non-regular.
Application (?) of the Pumping Lemma

1.54 Consider the language $F = \{a^i b^j c^k \mid i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k\}$.

 a. Show that F is not regular.

 b. Show that F acts like a regular language in the pumping lemma. In other words, give a pumping length p and demonstrate that F satisfies the three conditions of the pumping lemma for this value of p.

 c. Explain why parts (a) and (b) do not contradict the pumping lemma.

 c. The Pumping Lemma says: if A is regular then 1., 2. and 3. are satisfied. It does not say: if A is not regular then 1., 2. or 3. is not satisfied... We can only conclude the opposite: if 1., 2. or 3. is not satisfied then A is not regular...
Application of the Pumping Lemma

\[D = \{ 1^{n^2} \mid n \geq 0 \} \text{ is NON-Regular.} \]

Assume \(D \) is regular. Then by the pumping Lemma there exists a pumping length \(p \) with properties 1., 2. and 3. satisfied. Take \(n=p \) and obtain \(s=1^{p^2} \).

Let \(i=|y| \leq p \). If we pump up we get \(s''=x^iyyz=1^{p^2+i} \).

Is it possible that both \(p^2 \) and \(p^2+i \) be perfect squares? No! The next square after \(p \) is \((p+1)^2 = p^2+2p+1 > p^2+p+1 > p^2+i\) proving that \(s'' \) is not in \(D \). So \(D \) is non-regular.
Application of the Pumping Lemma

\[D = \{ 1^n^2 \mid n \geq 0 \} \text{ is NON-Regular.} \]

Assume \(D \) is regular. Then by the pumping Lemma there exists a pumping length \(p \) with properties 1., 2. and 3. satisfied. Take \(n=p \) and obtain \(s=1^{p^2} \).

Let \(i=|y| \leq p \). If we pump up we get \(s''=xyyz=1^{p^2+i} \).

Is it possible that both \(p^2 \) and \(p^2+i \) be perfect squares? No! The next square after \(p \) is \((p+1)^2 = p^2+2p+1 > p^2+p+1 > p^2+i \) proving that \(s'' \) is not in \(D \). So \(D \) is non-regular.
All languages

Computability Theory

Languages we can describe

Decidable Languages

Context-free Languages

Regular Languages

NON-Regular Languages
via Pumping Lemma

NON-Regular Languages
via Reductions
COMP-330
Theory of Computation
Fall 2019 -- Prof. Claude Crépeau
Lec. 9 :
the Pumping Lemma