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NON-Regular Languages

THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where, if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the tfollowing conditions:

1. for eachi > 0, zy'z € A,
2. |y| > 0, and
3. |zy| < p.

@ Application: any language that does not
satisfy the pumping lemma is non-regular.

@ Note however that some non-regular
languages DO satisfy the Pumping Lemma...
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If |xyz|>number-of-states then qo exists...

M ™

FIGURE 1.72
Example showing how the strings z, y, and z affect M




Example showing how the strings z, y, and 2 affect M

@ Proof: Let M be an automaton accepting A.
Let n be the number of states of M.

Consider setting p=n+l as the pumping
length. By the fact that p>n, any sequence
of states so..sm accepting a string w of
length m2p must contain two idenftical states
si=sj With j>i. Let j be the least index so that
sj=si for some i<j as above.




Pumping
Lemma

FFFFFF
Example showing how the strings z, y, and 2 affect M

@ Define x to be the string digested by M from
so to si, ¥ be the string digested by M from
Si to s; and z be the string digested by M
from s; fo sm.

@ Since j>i we have |y|>0 (2.).

@ Because our choice of y produces a closed
loop it is clear that zero, one, or many
repetitions of y will make no difference to
being a member of A or not (1.).



Example showing how the strings z, y, and 2 affect M

@ Define x to be the string digested by M from
So to si, ¥y be the string digested by M from
si to s; and z be the string digested by M
from s; fo sm.

@ We obtain:
S0 X1 S1 X2 S2...5i-1 Xj Si Y1 Si+1 Y2 Si+2:.5j-1 Yj-i S Z1...

where all states upto s;.1 are disctinct by the
assumptions above. Thus |xy| =i+j-i=j<p (3.).
QED
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Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where, if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditons:

1. foreach: > 0, zy'z € A,
2. Iyl > 0, and
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THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where, if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditons:

1. foreach: > 0, zy'z € A,

2. Iyl > 0, and

3. |ry| < p.

AERIE(G :

Ixyz=s st 1,2,3= tr rue.

VpaseA, Isl2p, Vxyz=s s.t. ly|>0,Ixyl<p,
then 3i20 s.t. s'=xyizgA.
— AZREG




Application of
the Pumping Lemma

@B ={0nln | n20 } is NON-Regular.

@ Assume B is regular. Then by the pumping
Lemma there exists a pumping length p with
properties 1., 2. and 3. satisfed. Take n=p
and set s = OrlreB. Then by 3. xy contains

only zeros. Therefore if we pump even once
to obtain s’ = xyyz = 0Oalr it will contain more
zeros than ones (g>p) : a string s’ not in B.
Thus B is non-regular.



Vp3seB, [sl2p, Vxyz=s s.t. ly|>0,Ixyl<p,

then 3i20 s.t. s'=xyiz¢B.
= B¢REG

28 = { 0" | n20 } is NON-Regular.

@ Assume B is regular. Then by the pumping
Lemma there exists a pumping length p with
properties 1., 2. and 3. satisfied. Take n=p
and set s = OrlreB. Then by 3. xy contains

only zeros. Therefore if we pump even once
to obtain s’ = xyyz = 0alr it will contain more
zeros than ones (g>p) : a string s’ not in B.
Thus B is non-regular.



Application of
the Pumping Lemma

oF = { ww | we3* } is NON-Regqular.

@ Assume F is regular. Then by the pumping
Lemma there exists a pumping length p with
properties 1., 2. and 3. satished. Take

s=0P10P1eF. Then by 3. xy contains only zeros.
Therefore if we pump even once to obtain
s'=xyyz it will contain more zeros before the
first one than after the first one : a string s’
not in F. Thus F is non-regular.
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then 3i20 s.t. s'=xyiz¢F.
= FZREG

oF = { ww | we3* } is NON-Regqular.

@ Assume F is regular. Then by the pumping
Lemma there exists a pumping length p with
properties 1., 2. and 3. satished. Take

s=0P10P1eF. Then by 3. xy contains only zeros.
Therefore if we pump even once to obtain
s'=xyyz it will contain more zeros before the
first one than after the first one : a string s
not in F Thus F is non-regular.



Application of
the Pumping Lemma

®E = { 0l | i>j20 } is NON-Regular.

@ Assume E is reqgular. Then by the pumping
Lemma there exists a pumping length p with
properties 1., 2. and 3. satished. Take i=p+l,
J=p and obtain s=0r+llPcE. Then by 3. xy

contains only zeros.
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then 3i20 s.t. s'=xyiz¢E.
— E¢ZREG

oE = {0li | i>j20 } is NON-Regular.

@ Assume E is regular. Then by the pumping
Lemma there exists a pumping length p with
properties 1., 2. and 3. satished. Take i=p+l,
J=p and obtain s=0r+llPeE. Then by 3. xy

contains only zeros.



Application of
the Pumping Lemma

®E = {0l | i>j20 } is NON-Regular.

® Therefore if we pump up to obtain
s'=xyyz=0kli , k>i it will contain even more
zeros than ones, which is still a string s’ in
E. If we pump down however s”=xz, the
number of zeros will become smaller or
equal to the number of ones: an s” not in E.
Thus E is non-regular.
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®E = {0l | i>j20 } is NON-Regular.

® Therefore if we pump up to obtain
s'=xyyz=0kli , k>i it will contain even more
zeros than ones, which is still a string s’ in
E. If we pump down however s”=xz, the
number of zeros will become smaller or
equal to the number of ones: an s” not in E.
Thus E is non-regular.



Application (?) of
the Pumping Lemma

1.54 Consider the language F' = {a’bic*l4, 5,k > 0andifi = 1 then j = k}.

. Show that F' is not regular.

. Show that F' acts like a regular language in the pumping lemma. In other
words, give a pumping length p and demonstrate that F satisfies the three
conditions of the pumping lemma for this value of p.

. Explain why parts (a) and (b) do not contradict the pumping lemma.

@ ¢. The Pumping Lemma says: if A is regular then 1.,
2. and 3. are satisfied. It does not say: if A is not
regular then 1., 2. or 3. is not satished.. We can only
conclude the opposite: if 1., 2. or 3. is not satisfied
then A is not regular...



Application of
the Pumping Lemma

@D = {1 | n20 } is NON-Regular.

@ Assume D is regular. Then by the pumping Lemma
there exists a pumping length p with properties

1., 2. and 3. satisfied. Take n=p and obtain s=17".
Let i=lyl<p. If we pump up we get s”=xyyz=1P""
Is it possible that both p° and p°+i be perfect
squares ? No! The next square after p is

(p+1)° = p°+2p+l > p°+p+l > p°+i
proving that s” is not in D. So D is non-regular.



Vp3seD, Isl2p, Vxyz=s s.t. |y[>0,|xyl<p,

then 3i20 s.t. s"=xyiz¢D.
= D¢REG

@D = {1 | n20 } is NON-Regular.

@ Assume D is regular. Then by the pumping Lemma
there exists a pumping length p with properties

1., 2. and 3. satisfied. Take n=p and obtain s=17".
Let i=lyl<p. If we pump up we get s”=xyyz=1P""
Is it possible that both p° and p°+i be perfect
squares ? No! The next square after p is

(p+1)? = p*+2p+l > pZ+p+l > p +i
proving that s” is not in D. So D is non-regular.
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