COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 9: the Pumping Lemma

Michael Rabin

Dana Scott

NON-Regular Languages

THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.
 - Application: any language that does not satisfy the pumping lemma is non-regular.
 - Note however that some non-regular languages DO satisfy the Pumping Lemma...

If |xyz|>number-of-states then q9 exists...

FIGURE **1.72**

Example showing how the strings x, y, and z affect M

FIGURE 1.72 Example showing how the strings x, y, and z affect M

Proof: Let M be an automaton accepting A.

Let n be the number of states of M.

Consider setting p=n+1 as the pumping length. By the fact that p>n, any sequence of states $s_0...s_m$ accepting a string w of length $m \ge p$ must contain two identical states $s_i=s_j$ with j>i. Let j be the least index so that $s_j=s_i$ for some i< j as above.

FIGURE 1.72 Example showing how the strings x, y, and z affect M

- Define x to be the string digested by M from s_0 to s_i , y be the string digested by M from s_i to s_j and z be the string digested by M from s_j to s_m .
- Since j>i we have |y|>0 (2.).
- Because our choice of y produces a closed loop it is clear that zero, one, or many repetitions of y will make no difference to being a member of A or not (1.).

FIGURE 1.72 Example showing how the strings x, y, and z affect M

- Define x to be the string digested by M from s_0 to s_i , y be the string digested by M from s_i to s_j and z be the string digested by M from s_j to s_m .
- We obtain:

$$S_0 X_1 S_1 X_2 S_2...S_{i-1} X_i S_i y_1 S_{i+1} y_2 S_{i+2}...S_{j-1} y_{j-i} S_j Z_1...$$

where all states upto s_{j-1} are disctinct by the assumptions above. Thus $|xy| = i+j-i = j \le p$ (3.).

QED

- 1. for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

- 1. for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

 $A \in \mathbb{REG} \Longrightarrow$

∃p∀s∈A, |s|≥p, ∃xyz=s st 1,2,3=true.

- 1. for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

 $A \in \mathbb{REG} \Longrightarrow$

∃p∀s∈A, |s|≥p, ∃xyz=s st 1,2,3=true.

 $\forall p\exists s\in A$, $|s|\geq p$, $\forall xyz=s$ [1 or 2 or 3 = false].

 $\Rightarrow A \notin \mathbb{REG}$

- 1. for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

 $A \in \mathbb{REG} \Longrightarrow$

∃p∀s∈A, |s|≥p, ∃xyz=s st 1,2,3=true.

∀p∃s∈A, |s|≥p, ∀xyz=s st 2,3=true [1=false].

 $\Rightarrow A \notin \mathbb{REG}$

- 1. for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

 $A \in \mathbb{REG} \Longrightarrow$

∃p∀s∈A, |s|≥p, ∃xyz=s st 1,2,3=true.

∀p∃s∈A, |s|≥p, ∀xyz=s st 2,3=true [1=false].

 $\Rightarrow A \notin \mathbb{REG}$

 $\forall p\exists s\in A, |s|\geq p, \forall xyz=s s.t. |y|>0,|xy|< p,$ then $\exists i\geq 0$ s.t. $s'=xy^iz\notin A$.

 $\Rightarrow A \notin \mathbb{REG}$

Application of the Pumping Lemma

- Assume B is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take n=p and set s = OP1P∈B. Then by 3. xy contains only zeros. Therefore if we pump even once to obtain s' = xyyz = Oq1P it will contain more zeros than ones (q>p): a string s' not in B. Thus B is non-regular.

$\forall p\exists s\in B, |s|\geq p, \forall xyz=s s.t. |y|>0,|xy|< p,$ then $\exists i\geq 0$ s.t. $s'=xy^iz\notin B$.

 $\Rightarrow B \notin \mathbb{REG}$

- Assume B is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take n=p and set s = OP1P∈B. Then by 3. xy contains only zeros. Therefore if we pump even once to obtain s' = xyyz = Oq1P it will contain more zeros than ones (q>p): a string s' not in B. Thus B is non-regular.

Application of the Pumping Lemma

- Assume F is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take s=0^p10^p1∈F. Then by 3. xy contains only zeros. Therefore if we pump even once to obtain s'=xyyz it will contain more zeros before the first one than after the first one: a string s' not in F. Thus F is non-regular.

$\forall p\exists s\in F, |s|\geq p, \forall xyz=s s.t. |y|>0,|xy|< p,$ then $\exists i\geq 0$ s.t. $s'=xy^iz\not\in F$.

⇒ F∉REG

- Assume F is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take s=0^p10^p1∈F. Then by 3. xy contains only zeros. Therefore if we pump even once to obtain s'=xyyz it will contain more zeros before the first one than after the first one: a string s' not in F. Thus F is non-regular.

Application of the Pumping Lemma

- $\odot E = \{ 0^{i}1^{j} \mid i>j\geq 0 \} \text{ is NON-Regular.}$
- Assume E is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take i=p+1, j=p and obtain s=O^{p+1}1^p∈E. Then by 3. xy contains only zeros.

$\forall p\exists s\in E, |s|\geq p, \forall xyz=s s.t. |y|>0,|xy|< p,$ then $\exists i\geq 0$ s.t. $s'=xy^iz\notin E$.

⇒ E∉REG

- \odot E = { $0^{i}1^{j} | i>j\geq0$ } is NON-Regular.
- Assume E is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take i=p+1, j=p and obtain s=O^{p+1}1^p∈E. Then by 3. xy contains only zeros.

Application of the Pumping Lemma

- $\odot E = \{ 0^{i}1^{j} \mid i>j\geq 0 \} \text{ is NON-Regular.}$
- Therefore if we pump up to obtain s'=xyyz=0^{k1j}, k>i it will contain even more zeros than ones, which is still a string s' in E. If we pump down however s"=xz, the number of zeros will become smaller or equal to the number of ones: an s" not in E. Thus E is non-regular.

$\forall p\exists s\in E, |s|\geq p, \forall xyz=s s.t. |y|>0,|xy|< p,$ then $\exists i\geq 0$ s.t. $s''=xy^iz\not\in E$.

⇒ E∉REG

- \odot E = { $0^{i}1^{j} | i>j\geq0$ } is NON-Regular.
- Therefore if we pump up to obtain s'=xyyz=0k1j, k>i it will contain even more zeros than ones, which is still a string s' in E. If we pump down however s"=xz, the number of zeros will become smaller or equal to the number of ones: an s" not in E. Thus E is non-regular.

Application (?) of the Pumping Lemma

- **1.54** Consider the language $F = \{a^i b^j c^k | i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}.$
 - **a.** Show that F is not regular.
 - b. Show that F acts like a regular language in the pumping lemma. In other words, give a pumping length p and demonstrate that F satisfies the three conditions of the pumping lemma for this value of p.
 - **c.** Explain why parts (a) and (b) do not contradict the pumping lemma.
 - © c. The Pumping Lemma says: if A is regular then 1., 2. and 3. are satisfied. It does not say: if A is not regular then 1., 2. or 3. is not satisfied... We can only conclude the opposite: if 1., 2. or 3. is not satisfied then A is not regular...

Application of the Pumping Lemma

- ② D = $\{ 1^{n^2} \mid n \ge 0 \}$ is NON-Regular.
- Assume D is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take n=p and obtain $s=1^{p^2}$. Let i=|y|≤p. If we pump up we get s"=xyyz=1p2+i. Is it possible that both p^2 and p^2+i be perfect squares? No! The next square after p is $(p+1)^2 = p^2+2p+1 > p^2+p+1 > p^2+i$ proving that s" is not in D. So D is non-regular.

$\forall p\exists s\in D$, $|s|\geq p$, $\forall xyz=s$ s.t. |y|>0, |xy|< p, then $\exists i\geq 0$ s.t. $s''=xy^iz\notin D$.

 $\Rightarrow D \notin \mathbb{REG}$

- Assume D is regular. Then by the pumping Lemma there exists a pumping length p with properties 1., 2. and 3. satisfied. Take n=p and obtain $s=1^{p^2}$. Let i=|y|≤p. If we pump up we get s"=xyyz=1p2+i. Is it possible that both p^2 and p^2+i be perfect squares? No! The next square after p is $(p+1)^2 = p^2+2p+1 > p^2+p+1 > p^2+i$ proving that s" is not in D. So D is non-regular.

All languages

Computability Theory

Languages we can describe

Decidable Languages

Context-free Languages

Regular Languages

NON-Regular Languages via Pumping Lemma NON-Regular Languages via Reductions

COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 9: the Pumping Lemma