COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 8 : Regular and
NON-Reg. Languages

GNFA — Reg. Expression

cLaiMm 1.65
For any GNFA G, CONVERT(G) is equivalent to G.

We prove this claim by induction on &, the number of states of the GNFA.

"equivalent” means L(CONVERT(G)) = L(G)

GNFA — Reg. Expression

® Induction basis

@ Let G be a GNFA with exactly k=2 states.

® Because of the special form of our GNFA,
the two states are the start and accept
states. The regular expression on fthe
transition from Qstart 10 Qaccept generates the
language accepted by this GNFA.

\ Ystart

(buab*(aa&*(abuba))

(zuab*(aa)*a*)
(abu(aa)*(aa)*a*)*
(b*u(aa)*(aa)*(abuba))
® Because of the special form of our GNFA,
the two states are the start and accept
states. The regular expression on fthe

transition from Qstart 10 Qaccept generates the

language accepted by this GNFA.

GNFA — Reg. Expression

® Induction basis

@ Let G be a GNFA with exactly k=2 states.

® Because of the special form of our GNFA,
the two states are the start and accept
states. The regular expression on fthe
transition from Qstart 10 Qaccept generates the
language accepted by this GNFA.

GNFA — Reg. Expression

GNFA — Reg. Expression

@ Induction step

GNFA — Reg. Expression

@ Induction step

@ Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage

defined by the regular expression obtained
via CONVERT, i.e. L(G")=L(CONVERT(G")).

GNFA — Reg. Expression

@ Induction step

@ Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage

defined by the regular expression obtained
via CONVERT, i.e. L(G")=L(CONVERT(G")).

® Since k>2 then there exists at least one
state grip Which is neither Qstart NOT Qaccept-

. Expression

@ Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage

defined by the regular expression obtained
via CONVERT, i.e. L(G")=L(CONVERT(G")).

® Since k>2 then there exists at least one
state grip Which is neither Qstart NOT Qaccept-

. Expression

@ Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage

defined by the regular expression obtained
via CONVERT, i.e. L(G")=L(CONVERT(G")).

® Since k>2 then there exists at least one
state grip Which is neither Qstart NOT Qaccept-

@ Let G' be, as in CONVERT, the GNFA
obtained after ripping qrip from G.

@ Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage

defined by the regular expression obtained
via CONVERT, i.e. L(G")=L(CONVERT(G")).

® Since k>2 then there exists at least one
state grip Which is neither Qstart NOT Qaccept-

@ Let G' be, as in CONVERT, the GNFA
obtained after ripping qrip from G.

GNFA — Reg. Expression

GNFA — Reg. Expression

@ Let w be a string accepted by G, wel(G).
Consider an accepting sequence
qs’rar’rququz---,qaccep’r FOF Sh"lng W.

@uab*(aa)*a*
buab*(aa)*(abuba) O Q
b*u(aa)*(aa)*(abuba)

@ Let w be a string accepted by G, wel(G).
Consider an accepting sequence
quaT‘flqlquI-"/qaCCepf FOF Sh"lng W.

@ Let w be a string accepted by G, wel(G).
Consider an accepting sequence
quaT‘flqlquI-"zqaCCepf FOI" Sfl”lng W.

@ If qgrip is not a state of the sequence, then
the very same exact sequence will accept w
in G' because its transitions Rs; contain all
those R, in G (except for grip) in @ union with
new possibilities related to ripping grip.

GNFA — Reg. Expression

@ Let w be a string accepted by G, wel(G).
Consider an accepting sequence
qs’rar’rququz---,qaccep’r FOI" Sfrlng W.

@ If qgrip is not a state of the sequence, then
the very same exact sequence will accept w
in G' because its transitions Rs; contain all
those R, in G (except for grip) in @ union with
new possibilities related to ripping grip.

GNFA — Reg. Expression

@ If qrip is a state of the sequence, then the
same sequence (but with all grip removed) will
accept w in G'. Thats because any three
elements in a row qiqrip.q; (Qi#qrip#q;) in GS
accepting sequence, will be processed
identically through states qi,q; in G'.
Remember that the transitions for qiq; in G’
contain all those Ri(Rz)*Rs from G involving
grip in @ union with older possibilities (Ra).
(we can deal with q;,grip,---,qrip,q; Similarly.)

@ If qrip is a state of the sequence, then the
same sequence (but with all grip removed) will
accept w in G'. Thats because any three
elements in a row qiqrip.q; (Qi#qrip#q;) in GS
accepting sequence, will be processed
identically through states qi,q; in G'.
Remember that the transitions for qiq; in G’
contain all those Ri(Rz)*Rs from G involving
grip in @ union with older possibilities (Ra).
(we can deal with q;,grip,---,qrip,q; Similarly.)

GNFA — Reg. Expression

@ If qrip is a state of the sequence, then the
same sequence (but with all grip removed) will
accept w in G'. Thats because any three
elements in a row qiqrip.q; (Qi#qrip#q;) in GS
accepting sequence, will be processed
identically through states qi,q; in G'.
Remember that the transitions for qiq; in G’
contain all those Ri(Rz)*Rs from G involving
grip in @ union with older possibilities (Ra).
(we can deal with q;,grip,---,qrip,q; Similarly.)

GNFA — Reg. Expression

@ This proved “if wel(G) then wel(G')”. We
should also prove “if welL(G’) then welL(G)".

@ Let w be a string accepted by G, i.e.
wel(G’). Consider an accepting sequence
Qstart,q1,92,---,accept fOr String w. Consider any
two consecutive states gq;,qi;1. The same
portion of w is processed in G in either part
of the union, Ri(R2)*Rs or R4 along the
transition between g and g;...

@ This proved “if wel(G) then wel(G')”. We
should also prove “if welL(G’) then welL(G)".

@ Let w be a string accepted by G, i.e.
wel(G’). Consider an accepting sequence
Qstart,q1,92,---,accept fOr String w. Consider any
two consecutive states gq;,qi;1. The same
portion of w is processed in G in either part
of the union, Ri(R2)*Rs or R4 along the
transition between g and g;...

GNFA — Reg. Expression

@ This proved “if wel(G) then wel(G')”. We
should also prove “if welL(G’) then welL(G)".

@ Let w be a string accepted by G, i.e.
wel(G’). Consider an accepting sequence
Qstart,q1,92,---,accept fOr String w. Consider any
two consecutive states gq;,qi;1. The same
portion of w is processed in G in either part
of the union, Ri(R2)*Rs or R4 along the
transition between g and g;...

GNFA — Reg. Expression

@ If the portion of w is generated by R in
G’ then it is also generated by R; in G. If
the portion of w is generated by Ri(R2)*R3
in G' then there exists an m such that it
is generated by Ri(Rz)™Rs and it is also
generated in G by R;, going through grip m
times via Rz and finally Rs. Thus qi,qgis1 is
replaced by qi,qrip,---,grip,qi+1-

@ We conclude that if welL(G') then weL(G).

@ If the portion of w is generated by R in
G’ then it is also generated by R; in G. If
the portion of w is generated by Ri(R2)*R3
in G' then there exists an m such that it
is generated by Ri(Rz)™Rs and it is also
generated in G by R;, going through grip m
times via Rz and finally Rs. Thus qi,qgis1 is
replaced by qi,qrip,---,grip,qi+1-

@ We conclude that if welL(G') then weL(G).

GNFA — Reg. Expression

@ If the portion of w is generated by R in
G’ then it is also generated by R; in G. If
the portion of w is generated by Ri(R2)*R3
in G' then there exists an m such that it
is generated by Ri(Rz)™Rs and it is also
generated in G by R;, going through grip m
times via Rz and finally Rs. Thus qi,qgis1 is
replaced by qi,qrip,---,grip,qi+1-

@ We conclude that if welL(G') then weL(G).

GNFA — Reg. Expression

@ Combining both statements we get L(G")=L(G).

@ By induction hypothesis L(G')=L(CONVERT(G"))
because G’ contains k-1 states. By construction,
CONVERT(G)=CONVERT(G’). Therefore

L(G)=L(CONVERT(G))=L(CONVERT(G"))=L(G").

QED

DFA — GNFA — Reg. Exp.

N+2-state N+1-state
GNFA GNFA

™

regular 2-state
expression GNFA

FIGURE 1.62
‘Typical stages in converting a DFA to a regular expression

DFA — GNFA — Reg. Exp.

@Two examples

DFA — GNFA — Reg. Exp.

DFA — GNFA — Reg. Exp.

DFA — GNFA — Reg. Exp.

DFA — GNFA — Reg. Exp.

r 2

o= oI oS=0}
e

(a) (b)

DFA — GNFA — Reg. Exp.

DFA — GNFA — Reg. Exp.

(baUa)(aaUb)* U e

(balUa)(aa Ub)*ab Ubb

(©) (d)

DFA — GNFA — Reg. Exp.

a(aaUb)*

a(aaUb)*abUb

(baUa)(aa Ub)*ab U bb

(d)
r <

~()

(a(aaUb)*abUb)((baUa)(aaUb)y*abUbb)*((baUa)(aaUb)* Ue)Ua(aaUb)*

(e)

Multiples of 3 (base 10)
(1)

0=0u3u6bu9, 1=1u4u?’?, 2=2U5U8

Mulhples of 3 (base [0)

0=0u3, 3=3u6u9, I1=1v4u’, 2=2U5U8

Mulhples of 3 (base 10)

Qu20*1
%
Tuz30™1 ¢\

0=0u3, 3=3u6u9, I1=1v4u’, 2=2U5U8

Multiples of 3 (base 10)

4
f

—_—

Ou30*u

(]1U33(0)*]1)((0) UZ(O)*]l)*Z@*
2U30%*2u

(1u30*1)(0U20*1)*(1u20*2)

Oul0*2u
0*1)(0u20*1)*(1u20*2)
0=0u3, 3=3u6u9, I1=1v4u’, 2=2U5U8

Multiples of 3 (base 10)

4
f

—_—

Qu30*u

(1u30*1)(0OU20*1)*20* v

[2u30*2 v (1u30*1)(0U20*1)*(1u20*2)]
[0U10*2 U (2010*1)(OU20*1)*(1U20*2)]*
[10* v (2u10*1)(0U20*1)*20*]

0=0u3, 3=3u6u9, I1=1v4u’, 2=2U5U8

Multiples of 3 (base 10)

3 = 3U6UY,
0 = 0U3,

1" = 1U4U7,
2 = 2U5U8

O u 30° u
(1u30*1) (QU20*1)* 20" U
[2 U 30*2 U (Tu30*1) (QU20*1)* (1Tu20*2)]
[0 v 10*2 U (2ul10*1) (OU20*1)* (1u20*2)]*
[10* U (2ul0*1) (V20 1)* 20*]

Application of the
Mvyhill-Nerode Theorem

Application of the
Mvyhill-Nerode Theorem

Given two regular expressions R and R* we can
find out whether they generate the same
regular language or not :

Application of the
Mvyhill-Nerode Theorem

Given two regular expressions R and R* we can

find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’
accepting L(R) and L(R") (Lemma 1.55).

Application of the
Mvyhill-Nerode Theorem

Given two regular expressions R and R* we can

find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’
accepting L(R) and L(R") (Lemma 1.55).

2.Compute equivalent DFAs M and M’ (Thm 1.39).

Application of the
Mvyhill-Nerode Theorem

Given two regular expressions R and R* we can

find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’
accepting L(R) and L(R") (Lemma 1.55).

2.Compute equivalent DFAs M and M’ (Thm 1.39).

3.Using part (b) of Myhill-Nerode we construct
minimal DFAs W for M and W’ for M.

Application of the
Mvyhill-Nerode Theorem

Given two regular expressions R and R" we can

find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’
accepting L(R) and L(R") (Lemma 1.55).

2.Compute equivalent DFAs M and M’ (Thm 1.39).

3.Using part (b) of Myhill-Nerode we construct
minimal DFAs W for M and W’ for M.

4.L(R)=L(R") iff WaW’
(= means "identical up to state renaming").

footnote 3 page 46:

@ Let MA=(QA,2,6A,C|0A,FA) be a DFA _accep’ring LA
and Mg=(Qs,2,58,q08,Fs) be a DFA accepting Ls.

@ Consider My=(QaxQs,2,5u,(qoa.qos),Fu) Where

6u((q.9').s) = (da(q,s), 8s(q’,s)) for all q.,q9',s
and

Fu = (FA x QB) u (QA x FB).

footnote 3 page 46:

@ Let MA=(QA,2,6A,C|0A,FA) be a DFA _accep’ring LA
and Mg=(Qs,2,58,q08,Fs) be a DFA accepting Ls.

@ Consider My=(QaxQs,2,5u,(qoa.qos),Fu) Where

6u((q.9').s) = (da(q,s), 8s(q’,s)) for all q.,q9',s
and

Fu = (FA x QB) u (QA x FB).

@ Ly = LaULg.

footnote 3 page 46:

@ Let MA=(QA,Z,6A,C|0A,FA) be a DFA accepting La
and Mg=(Qs,2,58,908,Fe) be a DFA accepting Ls.

@ Consider My=(QaxQs,2,9u,(qoa,qos),Fu) where

6u((q.9'),s) = (8alq,s), de(q’,s)) for all q,q',s
and

Fu = (FA x QB) u (QA x FB).

@ Ly = LaULg

@ Fy = Fa x Fs would vyield the intersection

(and not the union) of La and Ls.
This proves that the class of regular
languages is also closed under intersection.

NON-Regular Languages

@B ={0nn | n20 }

@ C = { W | w contains an equal number of 0Ss
and 15 }

@D = { w | w contains an equal number of
occurrences of 01 and 10 as sub-strings }

NON-Regular Languages

and 15 }

@D = { w | w contains an equal number of
occurrences of 01 and 10 as sub-strings }

NON-Regular Languages

@D = { w | w contains an equal number of
occurrences of 01 and 10 as sub-strings }

NON-Regular Languages

oD ={w | wcog “\O»f qual number of
occurrences ,Q,QQ, 10 as sub-strings }

Computability
Theory w

“All languages

Regular
Languages

NON-Regular Languages

@ Theorem: Some languages are not regular.

Proof idea: all regular languages have
certain properties. Some languages provably
do not have one of these properties.

Computability
Theory

All languages

languages
we can

describe /

Regular

Languages 4
-~ NON-Regular

NON-Regular Languages Languages
via Pumping Lemma via Reductions

Reductions

@ If C is regular then so is B.

@ Proof: Regular languages are closed under
intersection (see footnote 3 page 46). Define

A = L(0*1*). Obviously A is regular. If C was
regular then so would CnA = B.

QED

@ If B is NON-regular then so is C.

B=10"1"]| n20 }
C = { w | w contains an equal number of 0s and 15 }

Reductions

@ If A is regular then so is A.

@ Reqgular laguages are closed under complement
(see ex. 1.14), intersection, union, concatenation

and star. If there exists R, a regular language,
such that either AC=A, A“=A, ANR=A, AUR=A,

AoR=A" or any combinations of these
operations then A is reqular as long as A is.

@ If A is NON-regular then so is A.

Simple Reductions

@ If A* is NON-regular then so is A.
@ If A is NON-regular then so is AC.
@ If A is NON-regular then so is AR.

Complex Reductions

@ Let A= (AUR)N(ACUR’) (R,R’ regular)
o Let A= ((A°NR)U(A"NR"))oR” (R,R',R" regular)
@ Let A= (AoR)N(ACoR’) (R,R" regular)

@ If A is NON-regular then so is A.

NON-Regular Languages

@ Theorem: Some languages are not regular.

Proof idea: all regular languages have
certain properties. Some languages provably
do not have one of these properties.

@ Example: A property of all regular languages
= the Pumping Lemma.

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 8 : Regular and
NON-Reg. Languages

