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THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

THEOREM 1.49

The class of regular languages is closed under the star operation.
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Mvyhill-Nerode Theorem

@ Let x and y be strings and L be a language.

@ We say that x and y are distinguishable by L
If there exists a z such that xzelL and yzé¢L

or yzelL and xzéL.

@ If x and y are indistinguishable by L we
write x=.y, ( =L is an equivalence relation ). If

X, Yy are distinguishable by L we write x=_V.



Distinguishable Strings
OlliéLl

there exists a z such that xzeL and yz¢L.

z=0 Is such that 0110€L while 10<L.



Indistinguishable Strings
O11=.010

There does not exist a z such that xzelL and yz¢L nor yzelL
and xz¢L. For all z, xz and yz are both in L or neither in L.
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Mvyhill-Nerode Theorem

@ Let L be a language and X a set of strings.

@ We say that X is pairwise distinguishable by
L if every two elements in X are
distinguishable by L (For all x, x" in X, x=.x").

® Define the index of L to be the size of a
maximum set X that IS pairwise
distinguishable by L. The index may be finite
or infinite.




Distinguishable Strings

While this automaton has 5 states, fhe' /index of L is only 4:
g, 1,11 and 111
111eL while 11¢L, 111eL while 1¢L, 111eL while €¢L,
111eL while 11¢L, 111eL while 1¢L, 111eL while 11¢L.
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@ Let M be a k state DFA recognizing L.
@ Suppose L has index larger than K.

@ Some X with k+l elements is distinguishable by
L. But since the number of states < k+l there

must exist x,y in X such that d(qo,x) = 5(qo,y).

But then, x and y are not distinguishable.
A contradiction.
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Mvyhill-Nerode Theorem

b. If the index of L is a finite number Kk,
then it is recognized by a DFA with k states.

o Let X={si,....sx} be pairwise distinguishable by L.

olLet Q={qi,...,.qx} be the states of a DFA
recognizing L and define &(qgi,a)=q; s.t. s; =L sia.

@ Let qo be the g s.t. si=_ £. Let F={ qi | sieL }.

@ Miss.t.{s|8(qos)=qgi t=ts|s=Lsi}.



Mvyhill-Nerode Theorem

c. L is regular iff it has finite index.
This index is the size of the smallest DFA recognizing L.

(=) L is regular implies the existence of a DFA
recognizing L. By (a), L has index at most k.

(<) If L has index k then by (b) there exists a
DFA with k states (i.e. L is regular).

@ As for the minimality, if the index of L is not
the size of the minimal DFA then there exists a
DFA with index-1 states recognizing L. But this
is impossible by part (a).
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Minimizing via
Mvyhill-Nerode Theorem

@lLet L be a regular language. Compute the
index of L by finding the set X of all the
strings that are pairwise distinguishable by L.

@ All strings considered as X, y, X2 and yz may
be shorter than the number of states of a
DFA accepting L. Every string which is longer
IS equivalent to a shorter one obtained by
pumping down.




Computing Index
O

If we consider all 63=2¢-1 strings oFAleng’rh up to 5, we get:

E= OEL OOEL OOOEL OOOOEL].OOOELlOlOELIIOOELllloEL
00000=.01000=.01010=,01100=,01110=,10000=,10010=,10100=,10110=,11000=,11010=,11100=,11110

1=, 01=.001=,0001=. 00001=,10001=,10101=,11001=,11101
].O_='|_11_=’|_ O].OELO].].EL OOIOELOOIIEL OOOIOELOOO].].

100=101=,110=.111=, 0100=,0101=0110=,0111=,1001=,1011=,1101=.1111=,
00100=.00101=.00110=,00111=.01001=,01011=,01101=,01111=,10011=,10111=,11011=, 11111



Minimizing via
Mvyhill-Nerode Theorem

@Let L be a regular language. Compute the
index of L by finding the set X of all the
strings that are pairwise distinguishable by L.

@ Using part (b) of the Myhill-Nerode Theorem
we construct a minimal DFA to accept L.
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Minimal DFA

(b) Let X={¢,1,10,100} be pairwise distinguishable by L.
o Let Q=19¢,91,910,q100; be the states of a DFA recognizing L
@ Let g: be the initial state and F={ qioo }-.

o Define 8(qw,a)=qw s.t. W' =_ wa.
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. iooo,,,. D U - AARr o AP BT 0 e B A e

1
10 1

100 101

o Define 8(qw,a)=qw s.t. W' =_ wa.

@ Misst {s|d(ges)=qw }={s|s=Lwi.




Application of the
Mvyhill-Nerode Theorem

B ={ Onln | n20 } is non-regular because it has
infinite index.

Consider the set X={ On| n20 }. Its an infinite set
that is pairwise distinguishable by B.

Proof: For all n, O" is distinguishable from all
previous O, 0<i<n-1, because there exists a z=I"
such that OnrzeB while 0'z¢B, O<isn-1.

QED



Application of the
Mvyhill-Nerode Theorem

F ={ww | we3* } is non-regular because it has
infinite index.

Consider the set X={ Onl | n20 }. Its an infinite set
that is pairwise distinguishable by F.

Proof: For all n, Onl is distinguishable from all
previous 01, O<i<n-1, because there exists a z=0nl
such that O"1zeB while 0'1z¢B, O<i<n-1.

QED
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Application of the

Mvyhill-Nerode Theorem

Given two regular expressions R and R’ we can
find out whether they generate the same regular

language or not :

D

From R and R’, compute NFAs N and N’
accepting L(R) and L(R") (Lemma 1.55).

Compute equivalent DFAs M and M" (Thm 1.39).

Using part (b) we construct minimal DFAs W
and W' for each of them.

L(R)=L(R") iff W=aW'
(= means "identical up to renaming of states").



