COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 5 : NFA-DFA equivalence
Definition of NFA

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state automaton and let $w = w_1 w_2 \ldots w_n$ ($n \geq 0$) be a string where each symbol $w_i \in \Sigma$.

N accepts w if $\exists m \geq n$, $\exists s_0, s_1, \ldots, s_m$ and $\exists y_1 y_2 \ldots y_m = w$, with each $y_i \in \Sigma \epsilon$ s.t.

1. $s_0 = q_0$
2. $s_{i+1} \in \delta(s_i, y_{i+1})$ for $i = 0 \ldots m-1$, and
3. $s_m \in F$
NFA-DFA equivalence
Theorem 1.39

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Corollary 1.40

A language is regular if and only if some nondeterministic finite automaton recognizes it.
NFA-DFA equivalence
(without empty transitions)
NFA-DFA equivalence
(without empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA (without empty transitions) accepting language A. We show a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting A.
NFA–DFA equivalence
(without empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA (without empty transitions) accepting language \mathcal{A}. We show a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting \mathcal{A}.

$Q' = \mathcal{P}(Q) = \{ R \mid R \subseteq Q \}$
NFA-DFA equivalence

(without empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA (without empty transitions) accepting language A. We show a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting A.

$Q' = \mathcal{P}(Q) = \{ R \mid R \subseteq Q \}$

$\delta'(R,a) = \{ q \in Q \mid \exists r \in R, q \in \delta(r,a) \}$
NFA-DFA equivalence
(without empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA (without empty transitions) accepting language A. We show a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting A.

- $Q' = \mathcal{P}(Q) = \{ R \mid R \subseteq Q \}$
- $\delta'(R, a) = \{ q \in Q \mid \exists r \in R, q \in \delta(r, a) \}$
- $q'_0 = \{ q_0 \}$
NFA-DFA equivalence
(without empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA (without empty transitions) accepting language A. We show a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting A.

- $Q' = \mathcal{P}(Q) = \{ R \mid R \subseteq Q \}$
- $\delta'(R, a) = \{ q \in Q \mid \exists r \in R, \ q \in \delta(r, a) \}$
- $q'_0 = \{q_0\}$
- $F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}$
\[N_{2} \]

- \(q_{0000} = q_{\emptyset} \)
- \(q_{0001} = q_{\{1\}} \)
- \(q_{0011} = q_{\{1,2\}} \)
- \(q_{0010} = q_{\{2\}} \)
- \(q_{0101} = q_{\{1,3\}} \)
- \(q_{0100} = q_{\{3\}} \)
- \(q_{0110} = q_{\{2\}} \)
- \(q_{0111} = q_{\{2,3\}} \)
- \(q_{1001} = q_{\{1,4\}} \)
- \(q_{1000} = q_{\{4\}} \)
- \(q_{1010} = q_{\{2,4\}} \)
- \(q_{1011} = q_{\{1,2,4\}} \)
- \(q_{1101} = q_{\{1,3,4\}} \)
- \(q_{1100} = q_{\{3,4\}} \)
- \(q_{1110} = q_{\{2,3,4\}} \)
- \(q_{1111} = q_{\{1,2,3,4\}} \)

\[q_{w_4 w_3 w_2 w_1} = q_{R} : (w_i = 1 \iff i \in R) \]
NFA-DFA equivalence
(with empty transitions)

\[E(R) = \{ q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}. \]
NFA-DFA equivalence
(with empty transitions)

Let \(N = (Q, \Sigma, \delta, q_0, F) \) be an NFA accepting language \(A \). We construct a DFA \(M = (Q', \Sigma, \delta', q_0', F') \) accepting \(A \) as well.

\[E(R) = \{ q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}. \]
NFA-DFA equivalence
(with empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA accepting language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting A as well.

$Q' = \mathcal{P}(Q) = \{ R \mid R \subseteq Q \}$

$E(R) = \{ q \mid q \text{ can be reached from } R \text{ by traveling along 0 or more } \varepsilon \text{ arrows} \}$.
NFA-DFA equivalence
(with empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA accepting language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting A as well.

$Q' = \mathcal{P}(Q) = \{ R \mid R \subseteq Q \}$

$E(R) = \{ q \mid q \text{ can be reached from } R \text{ by traveling along 0 or more } \varepsilon \text{ arrows} \}.$

$\delta'(R,a) = \{ q \in Q \mid \exists r \in R, q \in E(\delta(r,a)) \}, \forall a \neq \varepsilon$
NFA-DFA equivalence
(with empty transitions)

Let $N = (Q, Σ, δ, q_0, F)$ be an NFA accepting language A. We construct a DFA $M = (Q', Σ, δ', q'_0, F')$ accepting A as well.

$Q' = \mathcal{P}(Q) = \{ R | R \subseteq Q \}$

$E(R) = \{ q | q$ can be reached from R by traveling along 0 or more ε arrows$\}.$

$δ'(R,a) = \{ q \in Q | \exists r \in R, q \in E(δ(r,a)) \}, \forall a \neq \varepsilon$

$q'_0 = E(q_0)$
NFA-DFA equivalence
(with empty transitions)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA accepting language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ accepting A as well.

- $Q' = \mathcal{P}(Q) = \{ R | R \subseteq Q \}$

$E(R) = \{ q | q$ can be reached from R by traveling along 0 or more ε arrows\}.

- $\delta'(R, a) = \{ q \in Q | \exists r \in R, q \in E(\delta(r, a)) \}, \forall a \neq \varepsilon$

- $q'_0 = E(q_0)$

- $F' = \{ R \in Q' | R \cap F \neq \emptyset \}$
\(N_1 \)

\[q_1 \xrightarrow{1} q_2 \xrightarrow{0, \varepsilon} q_3 \xrightarrow{1} q_4 \]

\(q \{ 1, 2, 3, 4 \} \)
The diagram represents a non-deterministic finite automaton (NFA) labeled N_1. The states are q_1, q_2, q_3, and q_4, with transitions as follows:

- From q_1 to q_2 with input 1.
- From q_2 to q_1 and q_3 with input $0, \epsilon$.
- From q_3 to q_4 with input 1.
- From q_4 to itself with input $0, 1$.

The alphabet consists of $0, 1, \epsilon$. The initial state is q_1, and the accepting states are q_4. Other states are q_2 and q_3.
\[N_1 \]

- \(q_1 \) connected to \(q_2 \) with edge labeled 1.
- \(q_2 \) connected to \(q_3 \) with edge labeled \(0, \varepsilon \).
- \(q_3 \) connected to \(q_4 \) with edge labeled 1.
- \(q_4 \) has a self-loop labeled \(0,1 \).

States:
- \(q_\emptyset \)
- \(q_{\{1\}} \)
- \(q_{\{2\}} \)
- \(q_{\{3\}} \)
- \(q_{\{4\}} \)
- \(q_{\{1,2,3,4\}} \)
The automaton N_1 is defined as follows:

- The initial state is q_1.
- The states are:
 - q_0
 - $q_{\{1\}}$
 - $q_{\{1,2\}}$
 - $q_{\{1,3\}}$
 - $q_{\{1,4\}}$
 - $q_{\{2\}}$
 - $q_{\{3\}}$
 - $q_{\{4\}}$
 - $q_{\{1,2,3\}}$
 - $q_{\{1,2,3,4\}}$
- The transitions are:
 - $q_1 \rightarrow q_2$ on input 1.
 - $q_2 \rightarrow q_3$ on input $0, \varepsilon$.
 - $q_3 \rightarrow q_4$ on input 1.
 - The loop from q_4 on input $0,1$.

The automaton is defined over the alphabet $\{0,1\}$.
The image depicts a formal language automaton labeled N_1. The automaton consists of states q_1, q_2, q_3, q_4, with transitions labeled by symbols $0, 1, \varepsilon$. The automaton transitions according to the input string 010110. The states are labeled with subsets of the input alphabet, indicating the set of states the automaton is in following a specific input sequence.
Regular Operations:
Kleene's theorem (NFA)
Regular Operations:
Kleene's theorem
Regular Operations: Kleene’s theorem

Theorem 1.45

The class of regular languages is closed under the union operation.
THEOREM 1.45

The class of regular languages is closed under the union operation.
Kleene’s theorem
Let \(N_A=(Q_A, \Sigma, \delta_A, q_{0A}, F_A) \) be a NFA accepting \(L_A \) and \(N_B=(Q_B, \Sigma, \delta_B, q_{0B}, F_B) \) be a NFA accepting \(L_B \) \((Q_A \cap Q_B = \emptyset) \).
Let $N_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$ be a NFA accepting L_A and
\[N_B = (Q_B, \Sigma, \delta_B, q_{0B}, F_B) \]
be a NFA accepting L_B ($Q_A \cap Q_B = \emptyset$).

Consider $N_U = (\{q_0\} \cup Q_A \cup Q_B, \Sigma, \delta_U, q_0, F_U)$ where
\[\delta_U(q_0, \varepsilon) = \{q_{0A}, q_{0B}\}, \delta_U(q_0, a) = \emptyset \text{ for all } a \neq \varepsilon, \]
\[\delta_U(q, a) = \delta_X(q, a) \text{ for all } q \in Q_X, X \in \{A, B\}, \text{ and all } a, \]
\[F_U = F_A \cup F_B. \]
Let \(N_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A) \) be a NFA accepting \(L_A \) and \(N_B = (Q_B, \Sigma, \delta_B, q_{0B}, F_B) \) be a NFA accepting \(L_B \) \((Q_A \cap Q_B = \emptyset) \).

Consider \(N_U = (\{q_0\} \cup Q_A \cup Q_B, \Sigma, \delta_U, q_0, F_U) \) where

\[
\delta_U(q_0, \varepsilon) = \{q_{0A}, q_{0B}\}, \quad \delta_U(q_0, a) = \emptyset \text{ for all } a \neq \varepsilon,
\]

\[
\delta_U(q, a) = \delta_X(q, a) \text{ for all } q \in Q_X, X \in \{A, B\}, \text{ and all } a,
\]

\(F_U = F_A \cup F_B \).

\(L_U = L_A \cup L_B \).
Example

N_1

N_2
Example

N_1

q_{1A} \[\xrightarrow{0,1} \] \[\xrightarrow{1} \] q_{2A} \[\xrightarrow{0,\varepsilon} \] q_{3A} \[\xrightarrow{1} \] q_{4A}

N_2

q_{1B} \[\xrightarrow{0,1} \] \[\xrightarrow{1} \] q_{2B} \[\xrightarrow{0,1} \] q_{3B} \[\xrightarrow{0,1} \] q_{4B}
Example

\[N_1 \]

\[q_{1A} \rightarrow 1 \rightarrow q_{2A} \rightarrow 0, \varepsilon \rightarrow q_{3A} \rightarrow 1 \rightarrow q_{4A} \]

\[N_2 \]

\[q_{1B} \rightarrow 1 \rightarrow q_{2B} \rightarrow 0, 1 \rightarrow q_{3B} \rightarrow 0, 1 \rightarrow q_{4B} \]
Example
Example

\[N_1 \]

\[q_0 \]

\[q_{1A} \rightarrow_{0,1} q_{2A} \rightarrow_{1} q_{3A} \rightarrow_{0,\varepsilon} q_{4A} \]

\[N_2 \]

\[q_{1B} \rightarrow_{0,1} q_{2B} \rightarrow_{1} q_{3B} \rightarrow_{0,1} q_{4B} \]
Example
Regular Operations:
Kleene's theorem
Regular Operations: Kleene's theorem

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.
THEOREM 1.47

The class of regular languages is closed under the concatenation operation.
Kleene's theorem
Kleene's theorem

Let $N_A = (Q_A, \Sigma, \delta_A, q_0A, F_A)$ be a NFA accepting L_A and $N_B = (Q_B, \Sigma, \delta_B, q_0B, F_B)$ be a NFA accepting L_B ($Q_A \cap Q_B = \emptyset$).
Let \(N_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A) \) be a NFA accepting \(L_A \) and \(N_B = (Q_B, \Sigma, \delta_B, q_{0B}, F_B) \) be a NFA accepting \(L_B \) (\(Q_A \cap Q_B = \emptyset \)).

Consider \(N_C = (Q_A \cup Q_B, \Sigma, \delta_C, q_{0A}, F_B) \) where

\[
\begin{align*}
\delta_C(q,a) &= \delta_B(q,a) \text{ for all } q \in Q_B, \text{ all } a, \\
\delta_C(q,a) &= \delta_A(q,a) \text{ for all } q \in Q_A, \text{ all } a \neq \varepsilon, \\
\delta_C(q,\varepsilon) &= \delta_A(q,\varepsilon) \text{ for all } q \in Q_A \setminus F_A, \\
\delta_C(q,\varepsilon) &= \delta_A(q,\varepsilon) \cup \{q_{0B}\} \text{ for all } q \in F_A.
\end{align*}
\]
Let \(N_A = (Q_A, \Sigma, \delta_A, q_0A, F_A) \) be a NFA accepting \(L_A \) and \(N_B = (Q_B, \Sigma, \delta_B, q_0B, F_B) \) be a NFA accepting \(L_B \) (\(Q_A \cap Q_B = \emptyset \)).

Consider \(N_C = (Q_A \cup Q_B, \Sigma, \delta_C, q_0A, F_B) \) where

\[
\begin{align*}
\delta_C(q, a) & = \delta_B(q, a) \text{ for all } q \in Q_B, \text{ all } a, \\
\delta_C(q, a) & = \delta_A(q, a) \text{ for all } q \in Q_A, \text{ all } a \neq \varepsilon, \\
\delta_C(q, \varepsilon) & = \delta_A(q, \varepsilon) \text{ for all } q \in Q_A \setminus F_A, \\
\delta_C(q, \varepsilon) & = \delta_A(q, \varepsilon) \cup \{q_0B\} \text{ for all } q \in F_A.
\end{align*}
\]

\(L_C = L_A \circ L_B. \)
Example

\[N_1 \]

\[q_{1A} \xrightarrow{1} q_{2A} \xrightarrow{0, \varepsilon} q_{3A} \xrightarrow{1} q_{4A} \]

\[N_2 \]

\[q_{1B} \xrightarrow{1} q_{2B} \xrightarrow{0, 1} q_{3B} \xrightarrow{0, 1} q_{4B} \]
Example

\[N_1 \]
\[q_{1A} \quad 1 \quad q_{2A} \quad 0, ε \quad q_{3A} \quad 1 \quad q_{4A} \]

\[N_2 \]
\[q_{1B} \quad 1 \quad q_{2B} \quad 0, 1 \quad q_{3B} \quad 0, 1 \quad q_{4B} \]
Example

\(N_1 \)

\[q_{1A} \xrightarrow{0,1} q_{2A} \xrightarrow{1} q_{3A} \xrightarrow{0,\varepsilon} q_{4A} \]

\(N_2 \)

\[q_{1B} \xrightarrow{0,1} q_{2B} \xrightarrow{1} q_{3B} \xrightarrow{0,1} q_{4B} \]
Example
Example
Regular Operations: Kleene's theorem

Theorem 1.49

The class of regular languages is closed under the star operation.
THEOREM 1.49

The class of regular languages is closed under the star operation.
Kleene’s theorem
Kleene's theorem

Let $N_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$ be a NFA accepting L_A.
Kleene's theorem

Let $N_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$ be a NFA accepting L_A.

Consider $N_S = (Q_A \cup \{q_0\}, \Sigma, \delta_S, q_0, F_A \cup \{q_0\})$ where

- $\delta_S(q_0, \varepsilon) = q_{0A}$, and $\delta_S(q_0, a) = \emptyset$ for all $a \neq \varepsilon$,
- $\delta_S(q, a) = \delta_A(q, a)$ for all $q \in Q_A \setminus F_A$, all a,
- $\delta_S(q, \varepsilon) = \delta_A(q, \varepsilon) \cup \{q_{0A}\}$ for all $q \in F_A$,
- $\delta_S(q, a) = \delta_A(q, a)$ for all $q \in F_A$, all $a \neq \varepsilon$.
Let $N_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$ be a NFA accepting L_A.

Consider $N_S = (Q_A \cup \{q_0\}, \Sigma, \delta_S, q_0, F_A \cup \{q_0\})$ where

- $\delta_S(q_0, \varepsilon) = q_{0A}$, and $\delta_S(q_0, a) = \emptyset$ for all $a \neq \varepsilon$,
- $\delta_S(q, a) = \delta_A(q, a)$ for all $q \in Q_A \setminus F_A$, all a,
- $\delta_S(q, \varepsilon) = \delta_A(q, \varepsilon) \cup \{q_{0A}\}$ for all $q \in F_A$,
- $\delta_S(q, a) = \delta_A(q, a)$ for all $q \in F_A$, all $a \neq \varepsilon$.

$L_S = (L_A)^*.$
Example

\[N_1\]

\[q_1 \xrightarrow{1} q_2 \xrightarrow{0,\varepsilon} q_3 \xrightarrow{1} q_4\]
Example
Example
Example
COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 5 : NFA-DFA equivalence