COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 4: DFAs, NFAs + Kleene's theorem

TUTORIALS Fri 13 sep, Mon 16 sep, Thu 19 sep

TUTORIALS Hours:

Pouriya: Friday 13:00-14:00 ARTS W-215 (cap 105)

Pierre-William: Monday 15:00-16:00 ARTS 150 (cap 88)

Anirudha: Monday 16:00-17:00 ENGIR 3090

Justin: Tuesday 15:00-16:00 ENGTR 3110

Yanjia: Friday 10:00-11:00 ENGTR 3110

Shiquan: Thursday 15:00-16:00 WILSON 105 (cap 70)

COMP-330 Fall 2019 — Weekly Schedule

Mon 10:00	Tue 10:00	Wed 10:00	Thu 10:00	Yanjia
Mon 10:30	Tue 10:30	Wed 10:30	Thu 10:30	TR-3110
Mon 11:00	Tue 11:00	Wed 11:00	Thu 11:00	Fri 11:00
Mon 11:30	Tue 11:30	Wed 11:30	Thu 11:30	Fri 11:30
Mon 12:00	Tue 12:00	Wed 12:00	Thu 12:00	Fri 12:00
Mon 12:30	Tue 12:30	Wed 12:30	Thu 12:30	Fri 12:30
Mon 13:00	Claude	Clauda	Claude	Pouriya
Mon 13:30	MA-112	Claude	MA-112	ARTW-215
Mon 14:00	course	MC-110N	course	Fri 14:00
Mon 14:30	Tue 14:30	office	Thu 14:30	Fri 14:30
Pierre-W.	Justin	hours	Shiquan	Fri 15:00
ARTS-150	TR-3110	Hours	WIL-105	Fri 15:30
Anirudha	Tue 16:00	Wed 16:00	TA	Fri 16:00
TR-3090	Tue 16:30	Wed 16:30	meeting?	Fri 16:30

MC = MCENG = McConnell • TR = ENGTR = Trottier

COMP 330 Fall 2019: Lectures Schedule

1-2. IIIII Oduction
1.5. Some basic mathematics
2-3. Deterministic finite automata +Closure propertie
4. Nondeterministic finite automata
5. Minimization+ Myhill-Nerode theore
6. Determinization+Kleene's theorem
7. Regular Expressions+GNFA
8. Regular Expressions and Languages
9-10. The pumping lemma
11. Duality
12. Labelled transition systems
13. MIDTERM

- 14. Context-free languages
- 15. Pushdown automata
- 16. Parsing
- 5. 17. The pumping lemma for CFLs
 - 18. Introduction to computability
- m 19. Models of computation

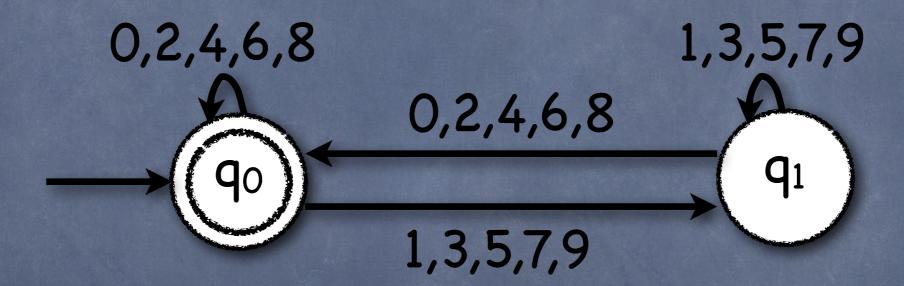
Basic computability theory

- 20. Reducibility, undecidability and Rice's theorem
- 21. Undecidable problems about CFGs
- 22. Post Correspondence Problem
- 23. Validity of FOL is RE / Gödel's and Tarski's thms
- 24. Universality / The recursion theorem
- 25. Degrees of undecidability
- 26. Introduction to complexity

Examples: automata for multiples of N base B

- automata for multiples of N = 0 mod N
- examples mod 2, mod 3, mod 7

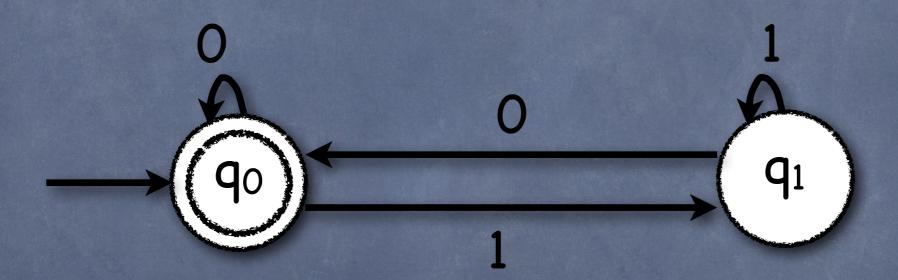
M_{2,10}



Remember what you learned in elementary school: N is a multiple of 2 iff it ends by 0,2,4,6 or 8.

0 MOD 2 (base 2)

M2,2



Remember what you learned in school of CS: N (in binary) is a multiple of 2 iff it ends by 0.

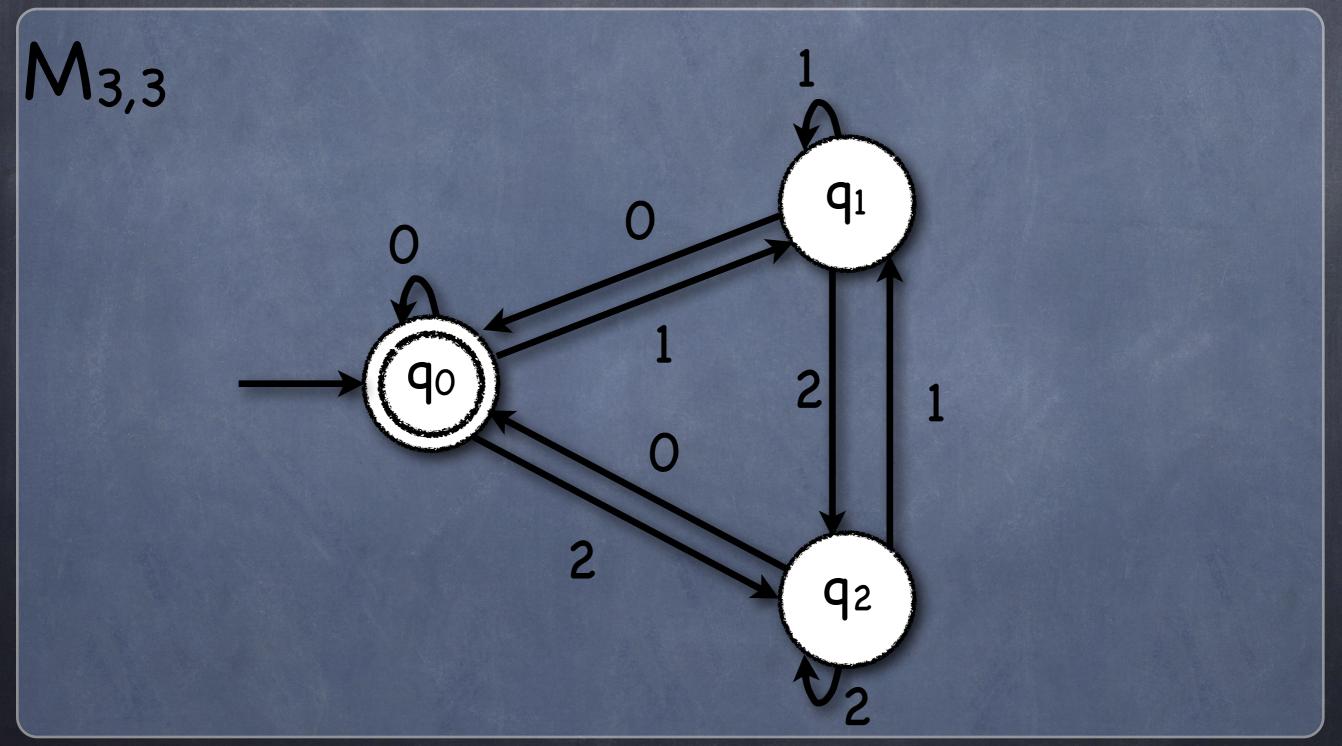
 $M_{2,2}$ stops in state $q_r \iff w = r \mod 2$

gcd(B,N) = 1 O MOD 3 (base 2)

 q_2

 $M_{3,2}$ stops in state $q_r \iff w = r \mod 3$

gcd(B,N) > 1 O MOD 3 (base 3)



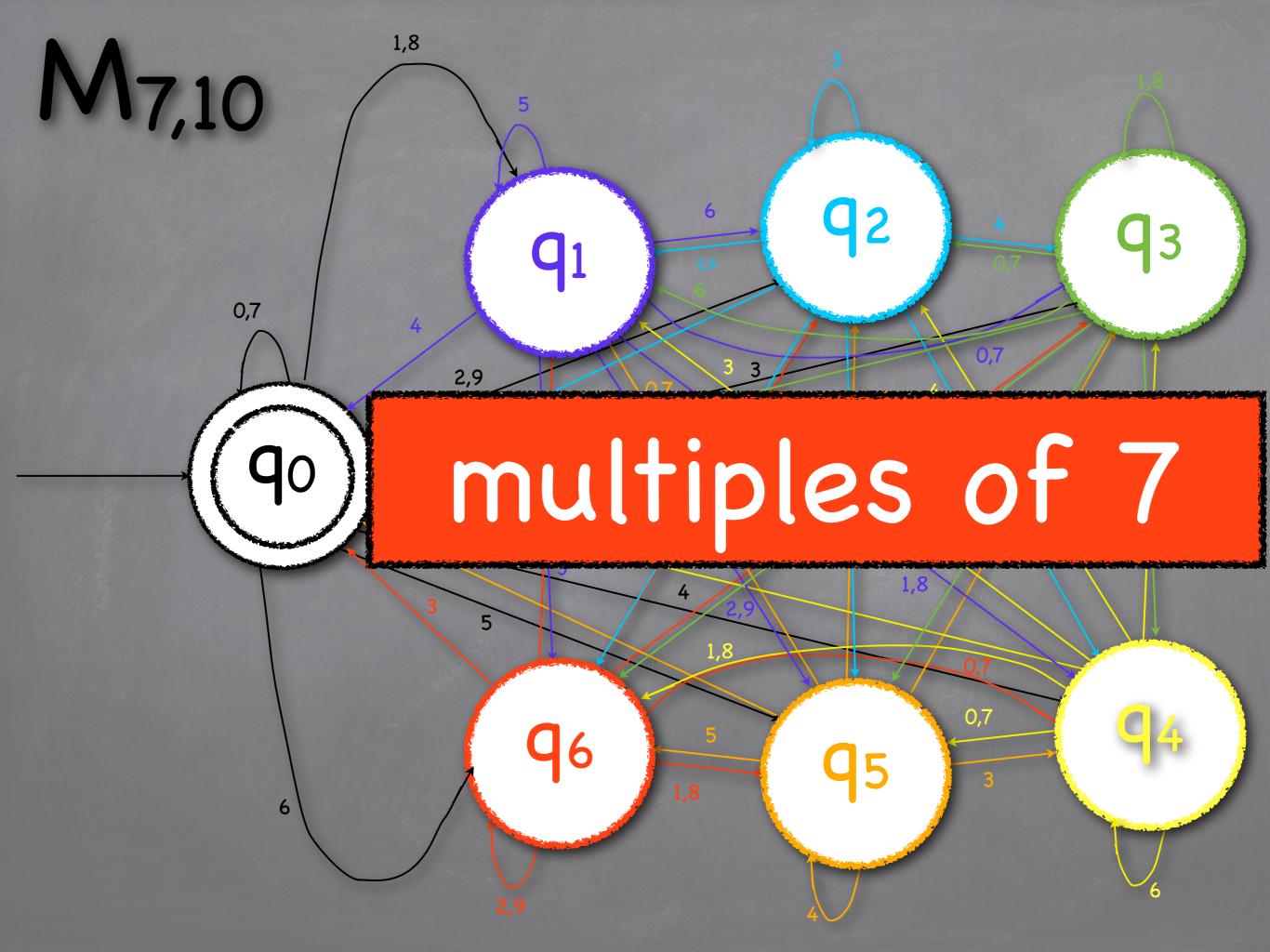
 $M_{3,3}$ stops in state $q_r \iff w = r \mod 3$

0 MOD 3 (base 3)

M3,3



Remember what you learned in school of CS: N (in ternary) is a multiple of 3 iff it ends by 0.



- Remember forever what you are learning in COMP-330 today: N is a multiple of 7 if $N \in L(M_{7,10})$.
- Example: 54705 is a multiple of 7 because
- $5 = (10x0+5) = 5 = 5 \mod 7,$
- $54 = (10x5+4) = 54 = 5 \mod 7,$
- $547 = (10x5+7) = 57 = 1 \mod 7,$
- $5470 = (10x1+0) = 10 = 3 \mod 7$ and
- $54705 = (10x3+5) = 35 = 0 \mod 7$

Remember forever what you learn in COMP-330 today: N is a multiple of 7 if N∈L(M_{7,10}).

- Remember forever what you learn in COMP-330 today: N is a multiple of 7 if N∈L(M_{7,10}).
- Example: 54705 is a multiple of 7 because

- Remember forever what you learn in COMP-330 today: N is a multiple of 7 if N∈L(M_{7,10}).
- Example: 54705 is a multiple of 7 because
- $5 = (10x0+5) = 5 = 5 \mod 7,$

- Remember forever what you learn in COMP-330 today: N is a multiple of 7 if N∈L(M_{7,10}).
- Example: 54705 is a multiple of 7 because
- $5 = (10x0+5) = 5 = 5 \mod 7,$
- $54 = (10x5+4) = 54 = 5 \mod 7,$

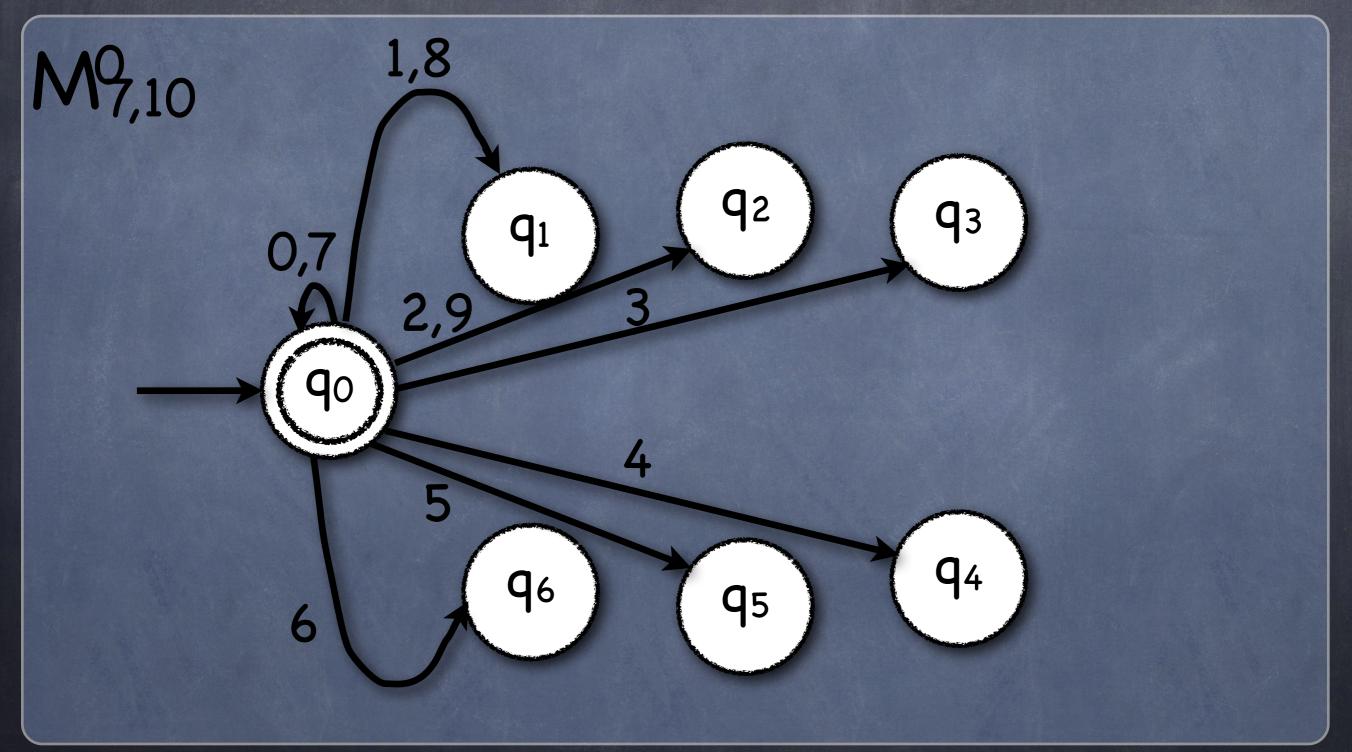
- Remember forever what you learn in COMP-330 today: N is a multiple of 7 if N∈L(M_{7,10}).
- Example: 54705 is a multiple of 7 because
- $5 = (10x0+5) = 5 = 5 \mod 7,$
- $54 = (10x5+4) = 54 = 5 \mod 7,$
- $547 = (10x5+7) = 57 = 1 \mod 7,$

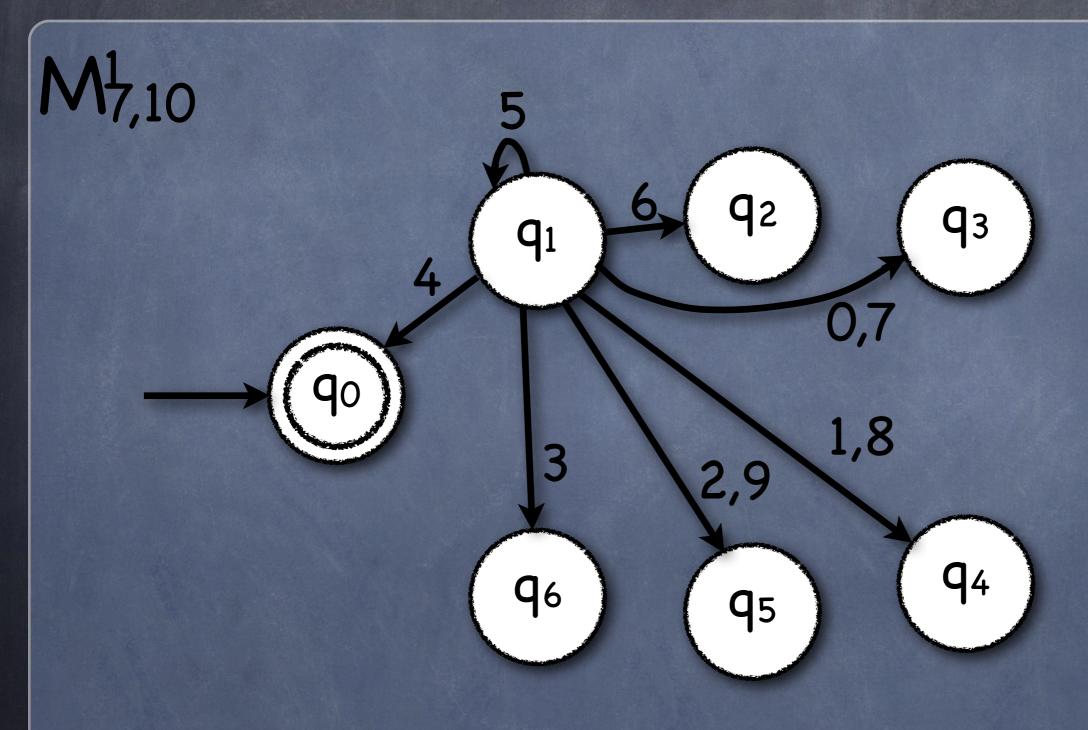
- Remember forever what you learn in COMP-330 today: N is a multiple of 7 if N∈L(M_{7,10}).
- Example: 54705 is a multiple of 7 because
- $5 = (10 \times 0 + 5) = 5 = 5 \mod 7,$
- $54 = (10x5+4) = 54 = 5 \mod 7,$
- $547 = (10x5+7) = 57 = 1 \mod 7,$
- $5470 = (10x1+0) = 10 = 3 \mod 7$ and

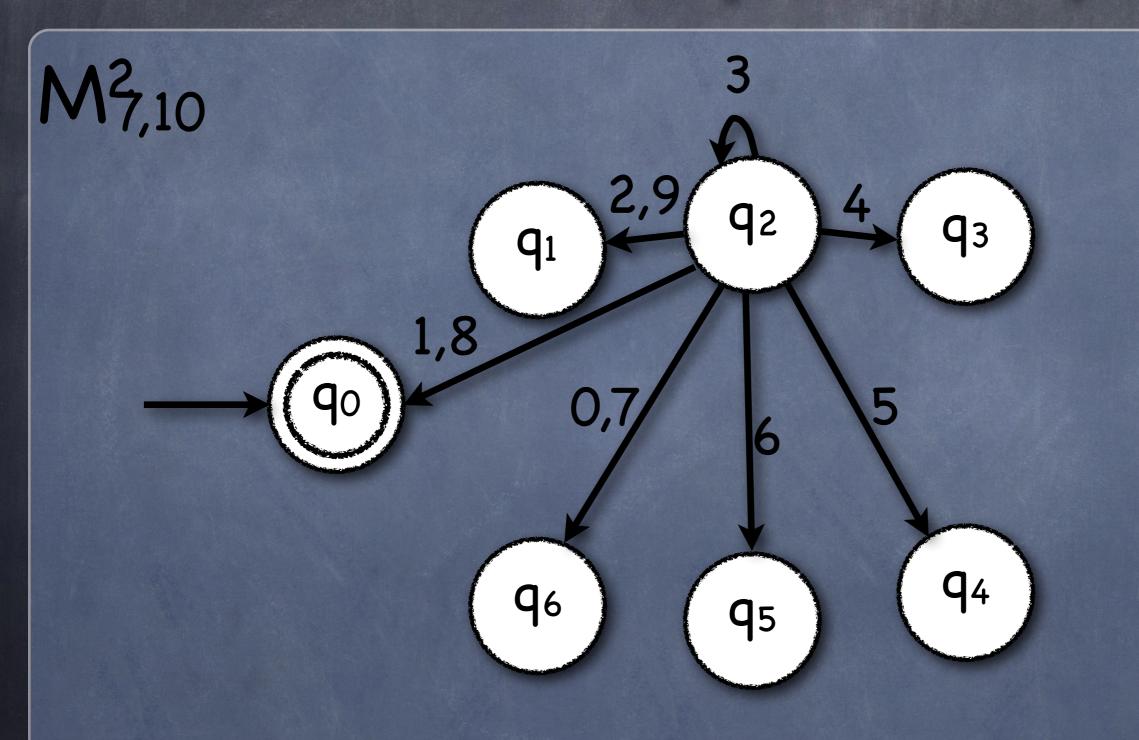
- Remember forever what you learn in COMP-330 today: N is a multiple of 7 if N∈L(M_{7,10}).
- Example: 54705 is a multiple of 7 because
- $5 = (10x0+5) = 5 = 5 \mod 7,$
- $54 = (10x5+4) = 54 = 5 \mod 7,$
- $547 = (10x5+7) = 57 = 1 \mod 7,$
- $5470 = (10x1+0) = 10 = 3 \mod 7$ and
- 54705 = (10x3+5) = 35 = 0 mod 7.

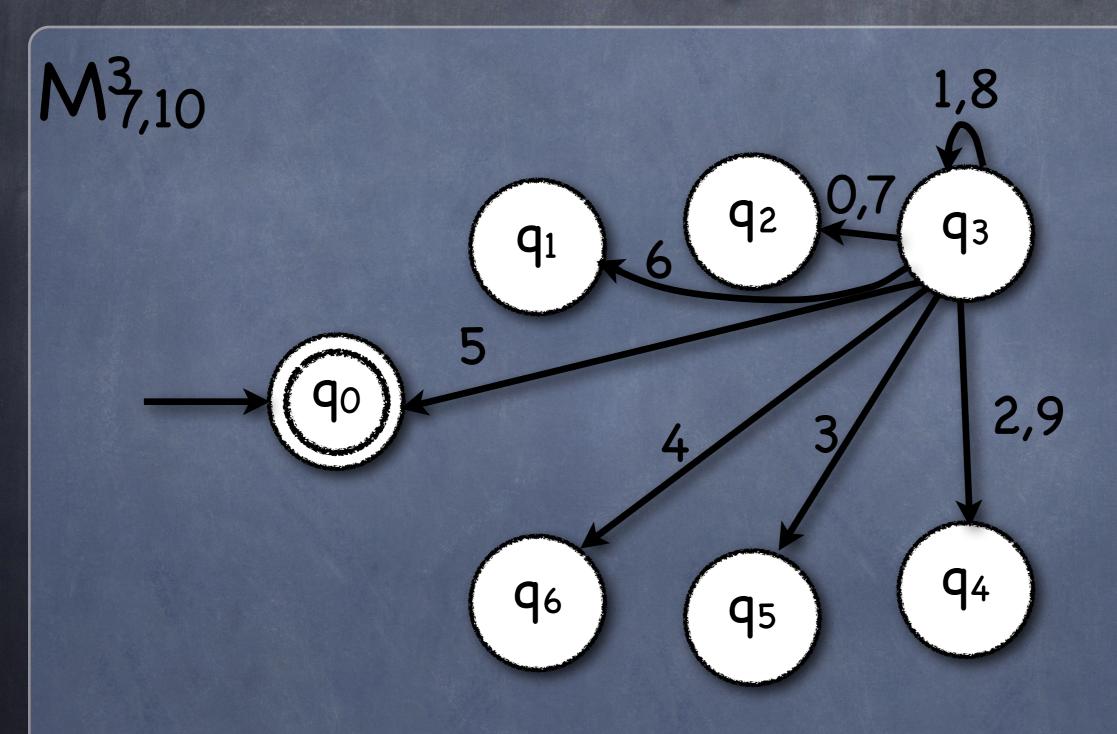
gcd(B,N) = 1

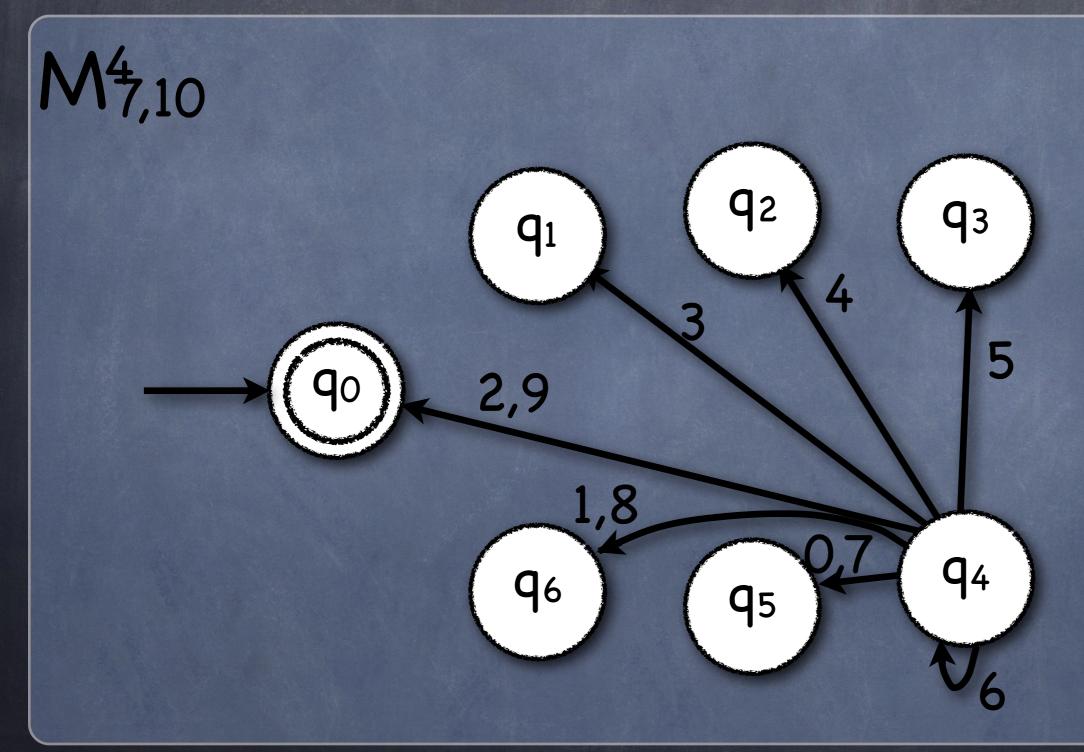
0 MOD 7 (base 10)

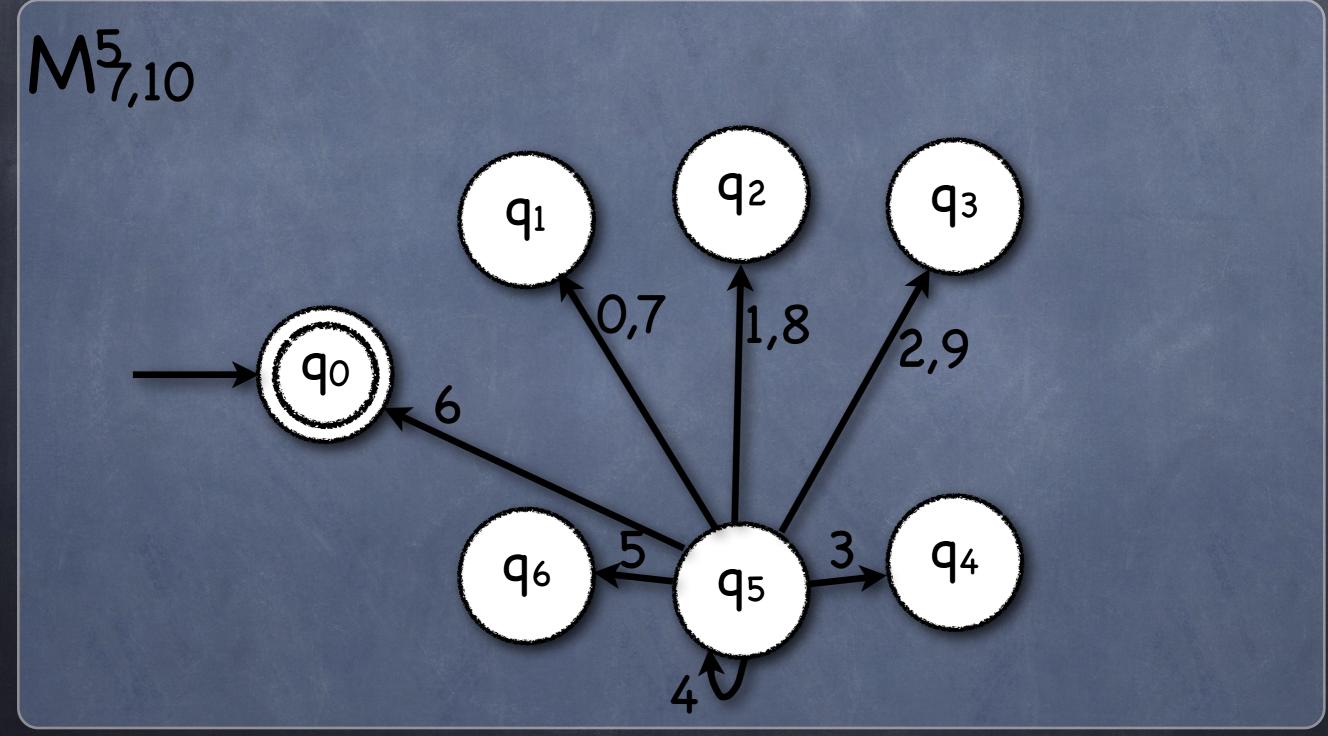


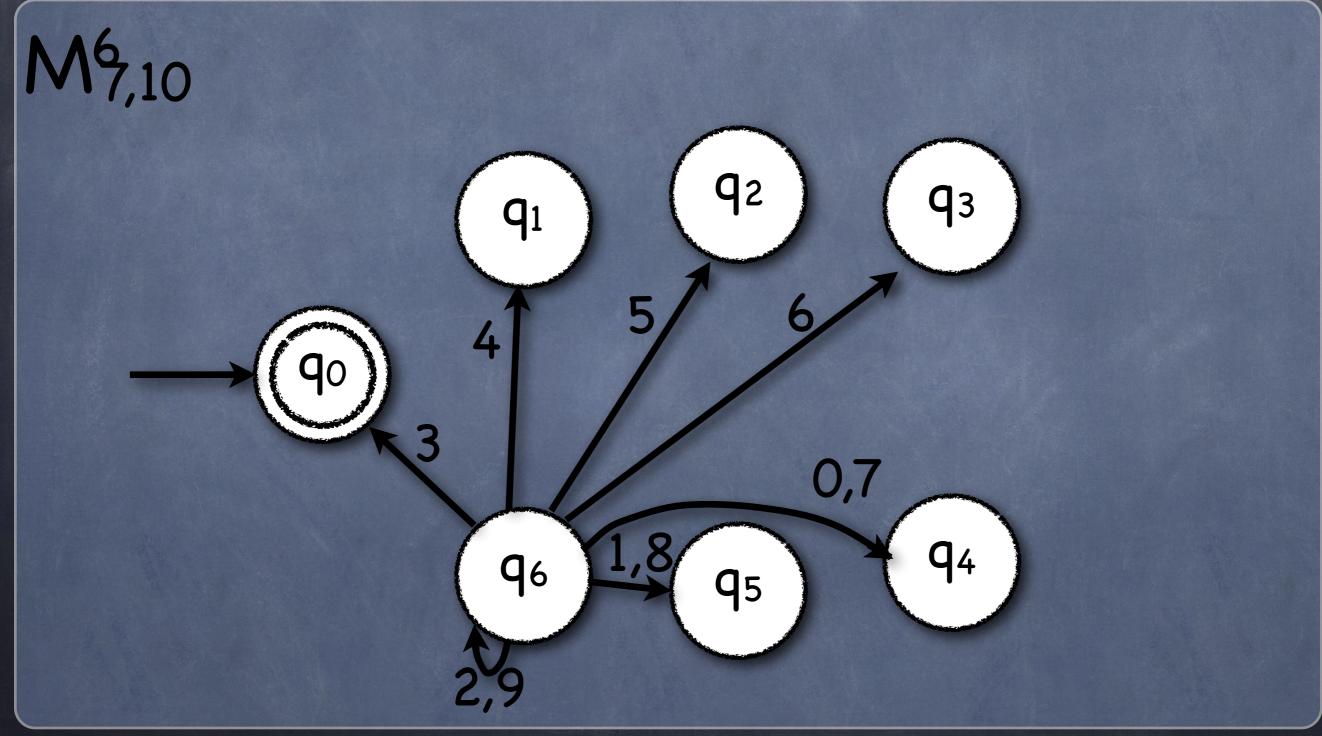




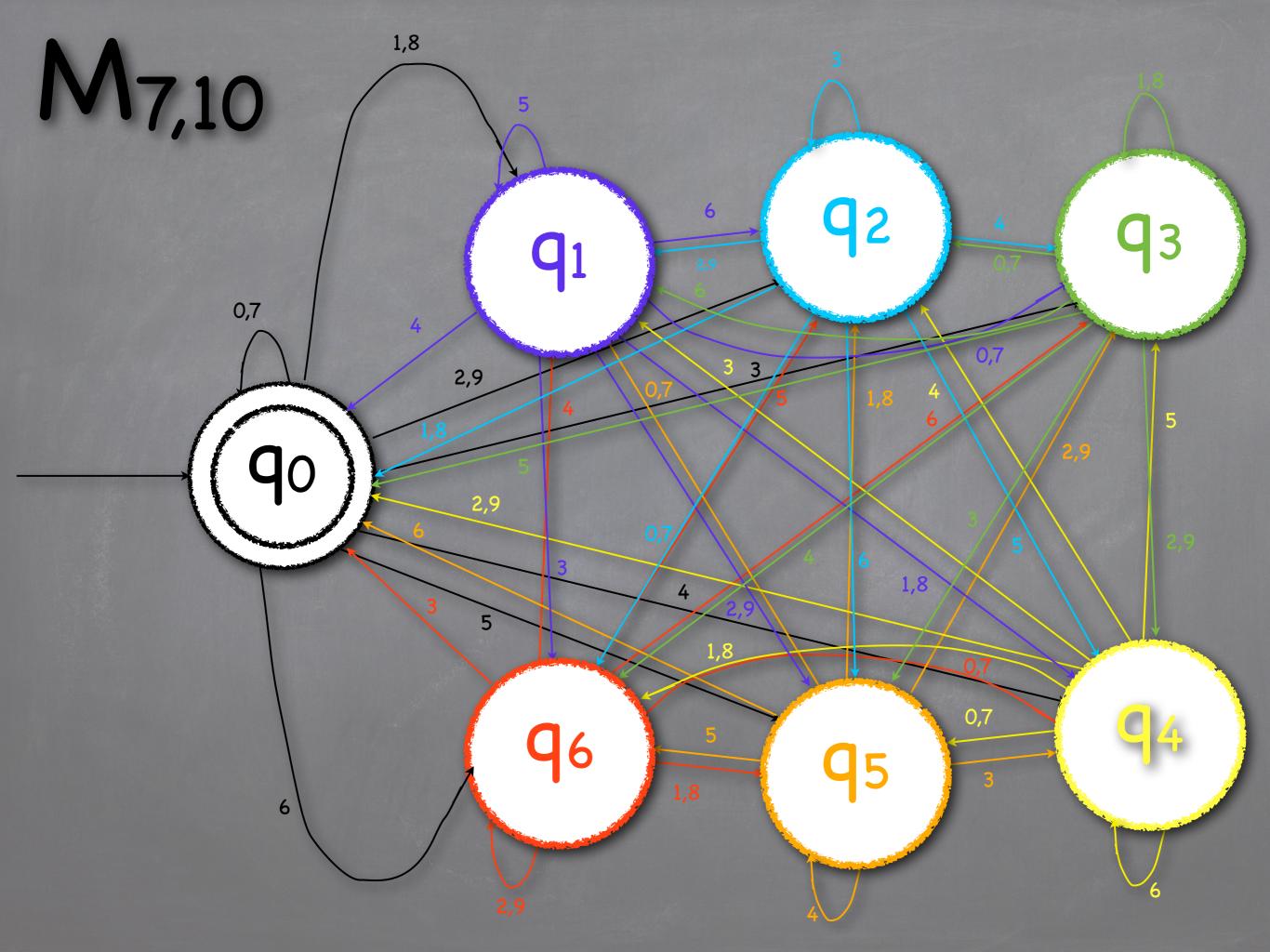








 $M_{7,10}$ stops in state $q_r \iff w = r \mod 7$



Regular Operations

Regular Operations

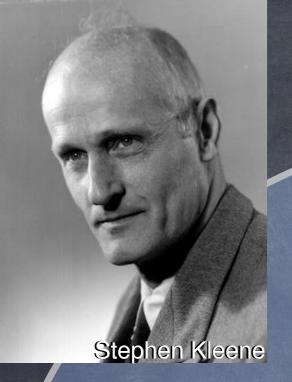
DEFINITION 1.23

Let A and B be languages. We define the regular operations union, concatenation, and star as follows.

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

Regular Operations

```
Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}. If A=\{good,bad\} and B=\{boy,girl\}, then A\cup B=\{good,bad,boy,girl\}, A\circ B=\{goodboy,goodgirl,badboy,badgirl\}, and A^*=\{\varepsilon,good,bad,goodgood,goodbad,badgood,badbad,goodgoodgood,goodgood,goodbadgood,goodbadbad,\ldots\}.
```



THEOREM 1.25

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

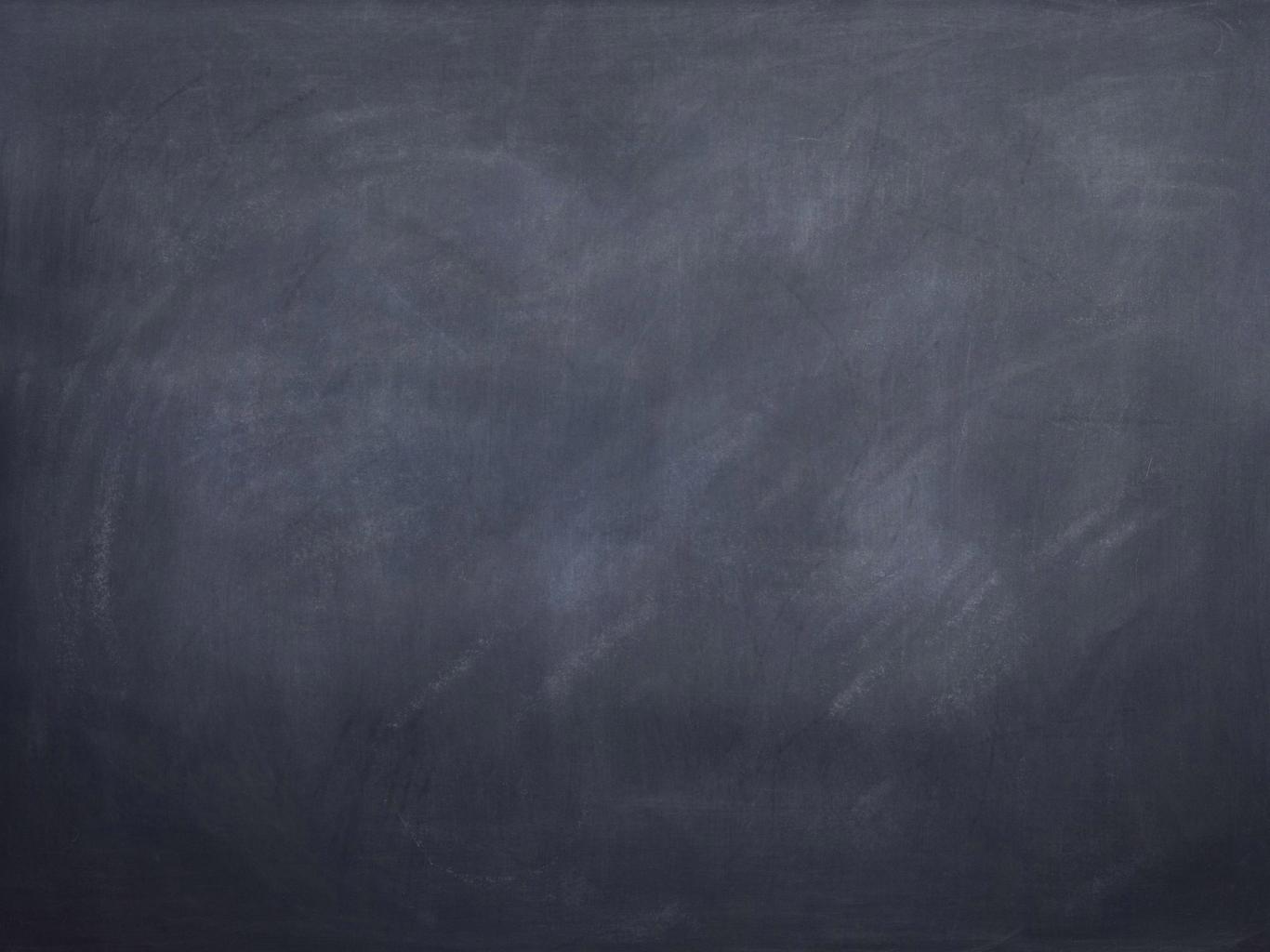
Let $M_A=(Q_A, \Sigma, \delta_A, q_{OA}, F_A)$ be a DFA accepting L_A and $M_B=(Q_B, \Sigma, \delta_B, q_{OB}, F_B)$ be a DFA accepting L_B .

Regular Operations: Kleene's theorem

- Let M_A =(Q_A , Σ, $δ_A$, q_{OA} , F_A) be a DFA accepting L_A and M_B =(Q_B , Σ, $δ_B$, q_{OB} , F_B) be a DFA accepting L_B .
- Consider $M_U=(Q_A \times Q_B, \Sigma, \delta_U, (q_{OA}, q_{OB}), F_U)$ where $\delta_U((q,q'),s) = (\delta_A(q,s), \delta_B(q',s))$ for all q,q',s and $F_U = \{(q,q') \mid q \in F_A \text{ or } q' \in F_B \}.$

Regular Operations: Kleene's theorem

- Let $M_A=(Q_A, \Sigma, \delta_A, q_{OA}, F_A)$ be a DFA accepting L_A and $M_B=(Q_B, \Sigma, \delta_B, q_{OB}, F_B)$ be a DFA accepting L_B .
- Consider $M_U = (Q_A \times Q_B, \Sigma, \delta_U, (q_{OA}, q_{OB}), F_U)$ where $\delta_U((q,q'),s) = (\delta_A(q,s), \delta_B(q',s))$ for all q,q',s and $F_U = \{(q,q') \mid q \in F_A \text{ or } q' \in F_B\}.$
- O LU = LAULB.



Let $M_A=(Q_A, \Sigma, \delta_A, q_{OA}, F_A)$ be a DFA accepting L_A and $M_B=(Q_B, \Sigma, \delta_B, q_{OB}, F_B)$ be a DFA accepting L_B .

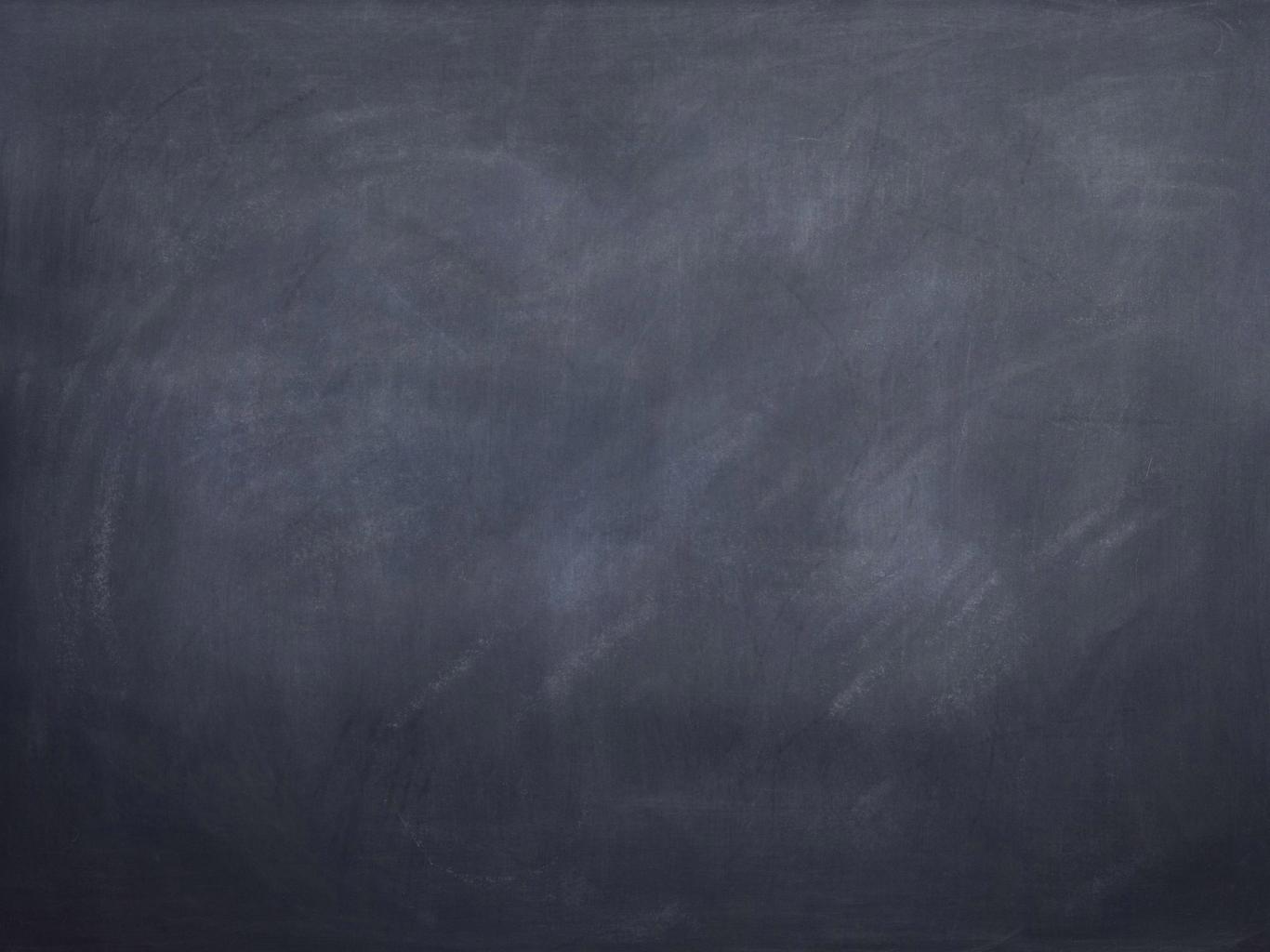
- Let M_A =(Q_A , Σ, $δ_A$, q_{OA} , F_A) be a DFA accepting L_A and M_B =(Q_B , Σ, $δ_B$, q_{OB} , F_B) be a DFA accepting L_B .
- Consider $M_U=(Q_A \times Q_B, \Sigma, \delta_U, (q_{OA}, q_{OB}), F_U)$ where $\delta_U((q,q'),s) = (\delta_A(q,s), \delta_B(q',s))$ for all q,q',s and $F_U = \{(q,q') \mid q \in F_A \text{ or } q' \in F_B\}.$

- Let M_A =(Q_A , Σ, $δ_A$, q_{OA} , F_A) be a DFA accepting L_A and M_B =(Q_B , Σ, $δ_B$, q_{OB} , F_B) be a DFA accepting L_B .
- Consider $M_U=(Q_A \times Q_B, \Sigma, \delta_U, (q_{OA}, q_{OB}), F_U)$ where $\delta_U((q,q'),s) = (\delta_A(q,s), \delta_B(q',s))$ for all q,q',s and $F_U = \{(q,q') \mid q \in F_A \text{ or } q' \in F_B\}.$
- @ Lu = LAULB.

- Let M_A =(Q_A , Σ, $δ_A$, q_{OA} , F_A) be a DFA accepting L_A and M_B =(Q_B , Σ, $δ_B$, q_{OB} , F_B) be a DFA accepting L_B .
- Consider $M_U=(Q_A \times Q_B, \Sigma, \delta_U, (q_{OA}, q_{OB}), F_U)$ where $\delta_U((q,q'),s) = (\delta_A(q,s), \delta_B(q',s))$ for all q,q',s and $F_U = \{(q,q') \mid q \in F_A \text{ or } q' \in F_B\}.$
- O Lu = LAULB.
- We can write it as $F_U = (F_A \times Q_B) \cup (Q_A \times F_B)$. (Not the same as $F_A \times F_B$.)

- Let M_A =(Q_A , Σ, $δ_A$, q_{OA} , F_A) be a DFA accepting L_A and M_B =(Q_B , Σ, $δ_B$, q_{OB} , F_B) be a DFA accepting L_B .
- Consider $M_U=(Q_A \times Q_B, \Sigma, \delta_U, (q_{OA}, q_{OB}), F_U)$ where $\delta_U((q,q'),s) = (\delta_A(q,s), \delta_B(q',s))$ for all q,q',s and $F_U = \{(q,q') \mid q \in F_A \text{ or } q' \in F_B\}.$
- @ Lu = LAULB.
- We can write it as $F_U = (F_A \times Q_B) \cup (Q_A \times F_B)$. (Not the same as $F_A \times F_B$.)
- The resulting language would be the intersection and not the union. This proves that the class of regular languages is closed under intersection.

- Let $M_A = (Q_A, \Sigma, \delta_A, q_{OA}, F_A)$ be a DFA accepting L_A and $M_B = (Q_B, \Sigma, \delta_B, q_{OB}, F_B)$ be a DFA accepting L_B .
- Consider $M_U=(Q_A \times Q_B, \Sigma, \delta_U, (q_{OA}, q_{OB}), F_U)$ where $\delta_U((q,q'),s) = (\delta_A(q,s), \delta_B(q',s))$ for all q,q',s and $F_U = \{(q,q') \mid q \in F_A \text{ or } q' \in F_B\}.$
- @ Lu = LAULB.
- We can write it as $F_U = (F_A \times Q_B) \cup (Q_A \times F_B)$. (Not the same as $F_A \times F_B$.)
- The resulting language would be the intersection and not the union. This proves that the class of regular languages is closed under intersection.

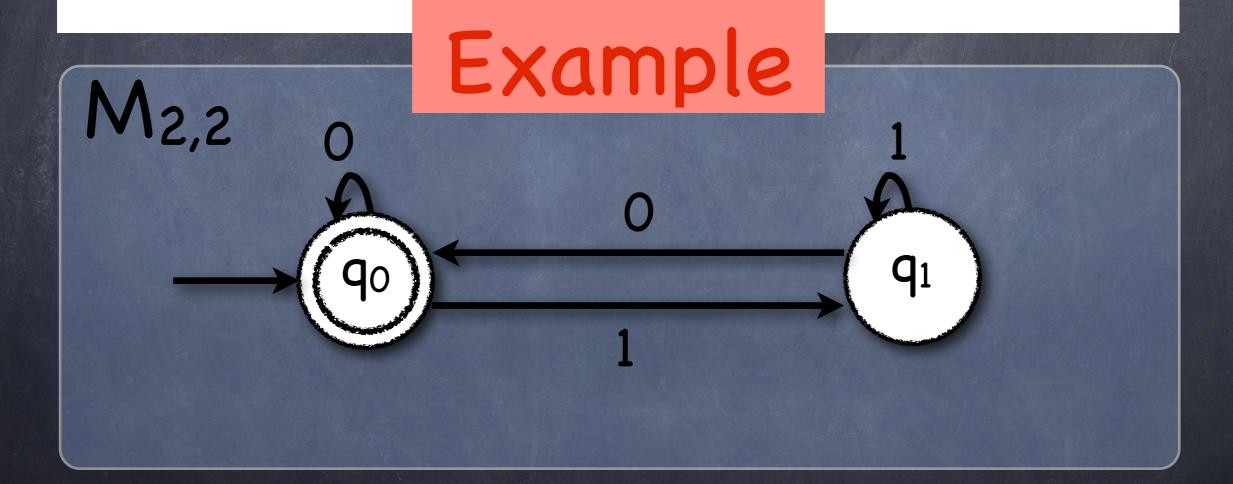


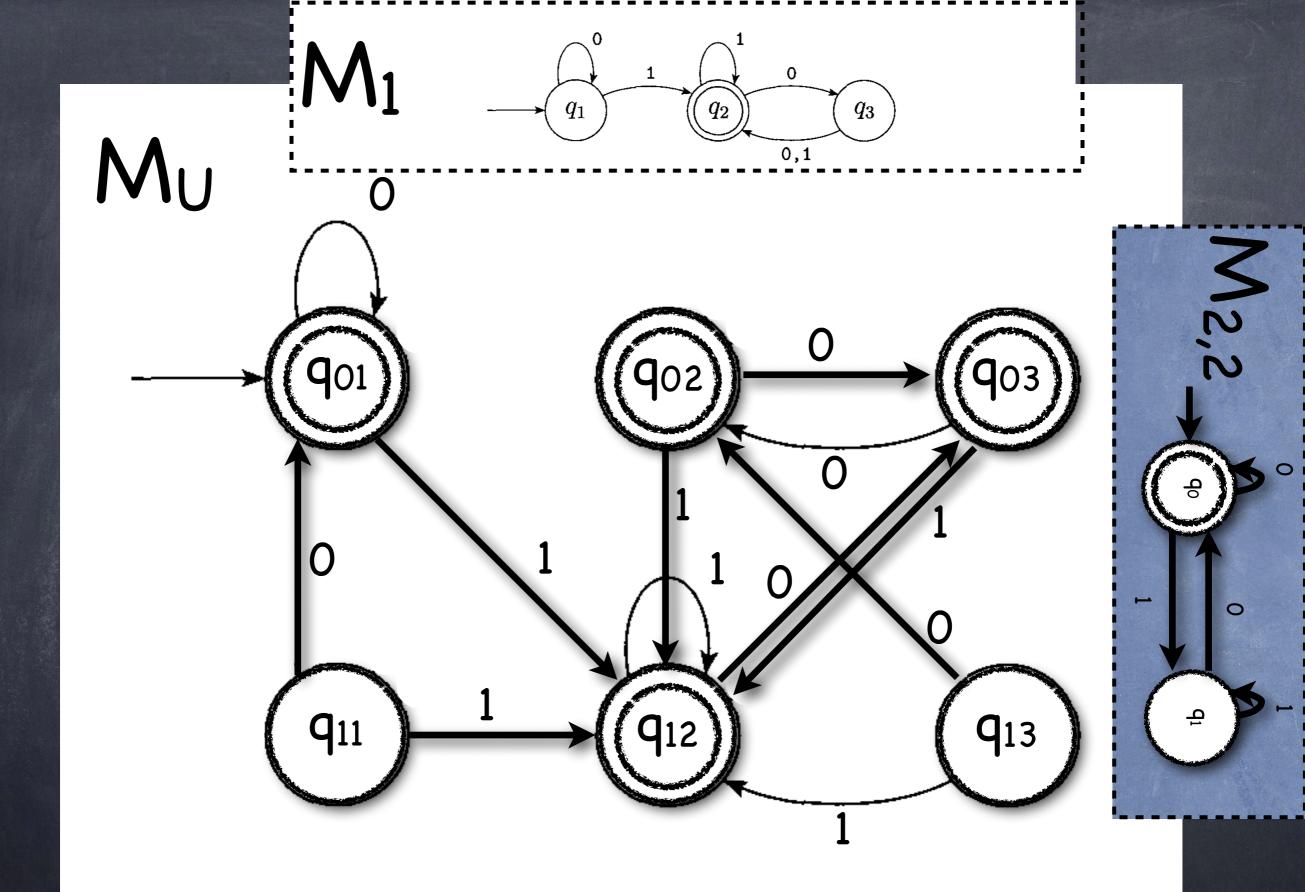
Example

 M_1 q_1 q_2 q_3 q_3

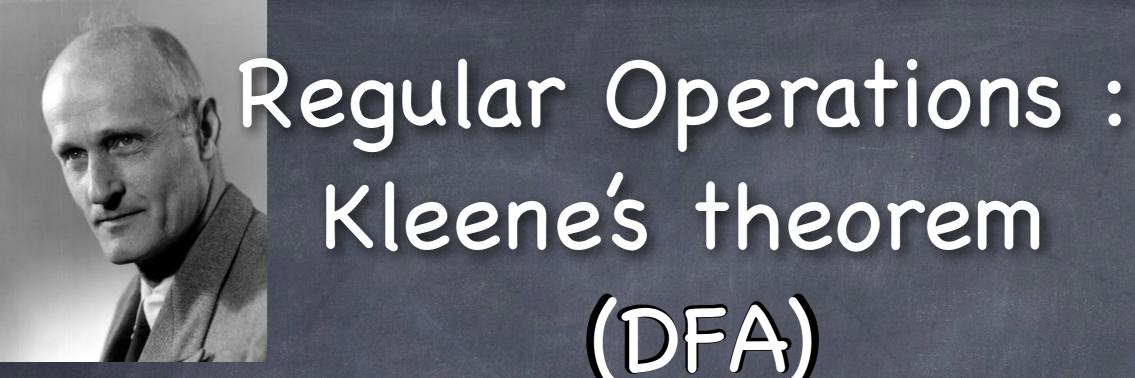
Example

 M_1 q_1 q_2 q_3 q_3





 $L(M_U) = L(M_1) \cup L(M_{2,2})$

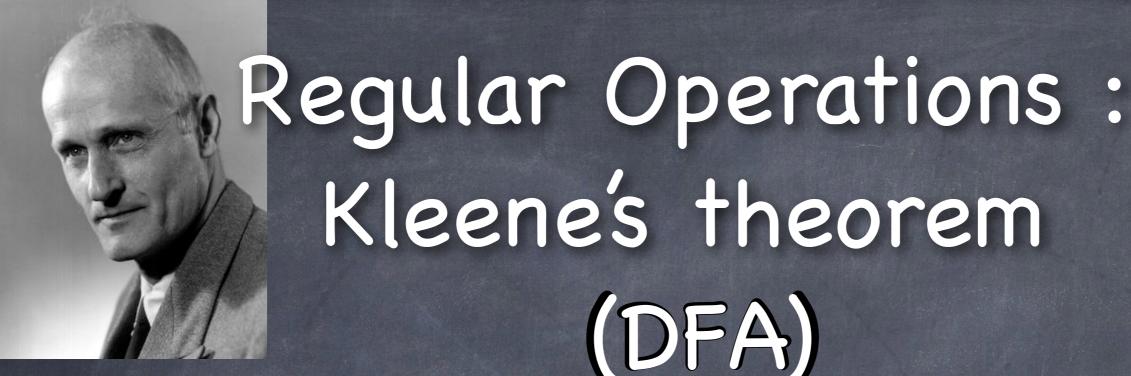


THEOREM 1.26

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

(NFA)



THEOREM 1.26

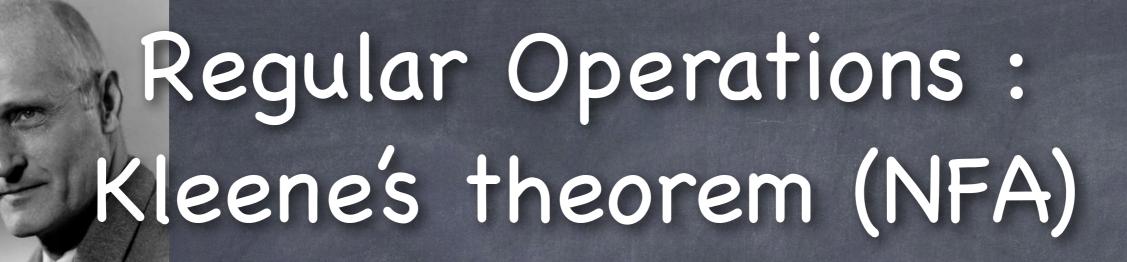
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

(NFA)

THEOREM 1.47

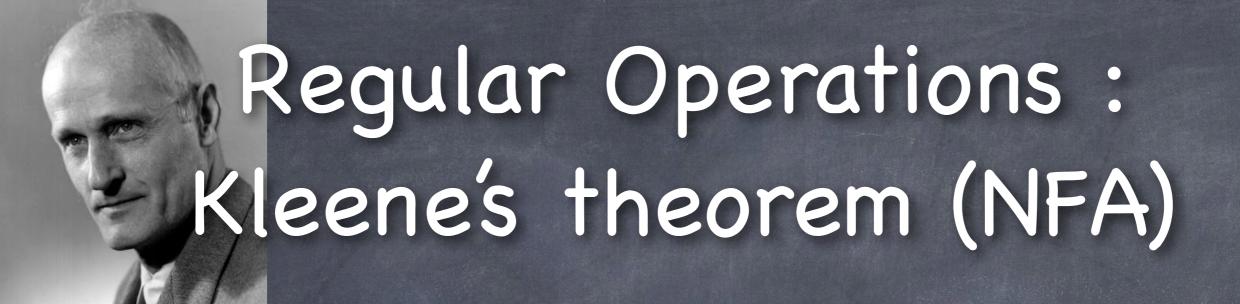
The class of regular languages is closed under the concatenation operation.



Regular Operations: Kleene's theorem (NFA)

THEOREM 1.45

The class of regular languages is closed under the union operation.

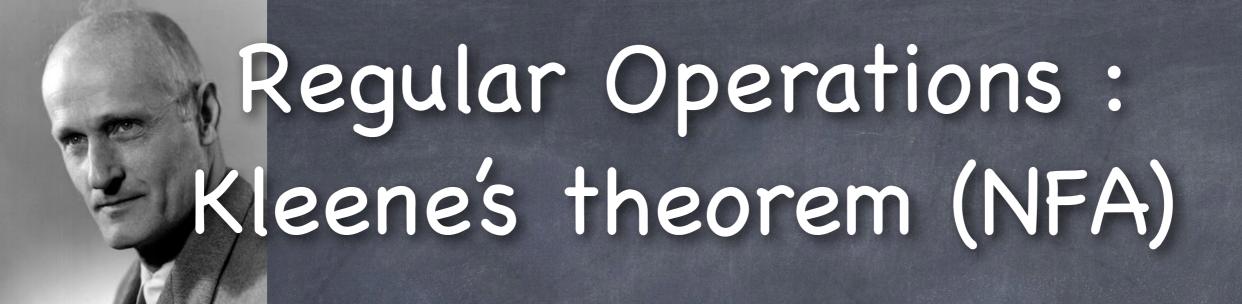


THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

THEOREM 1.45

The class of regular languages is closed under the union operation.



THEOREM 1.49

The class of regular languages is closed under the star operation.

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

THEOREM 1.45

The class of regular languages is closed under the union operation.

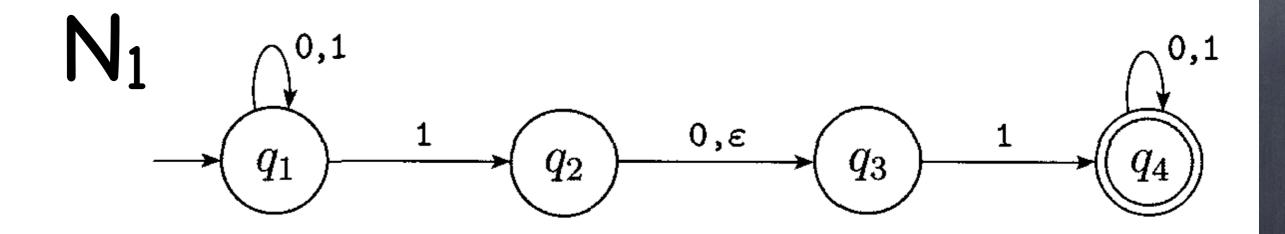


FIGURE 1.27

The nondeterministic finite automaton N_1

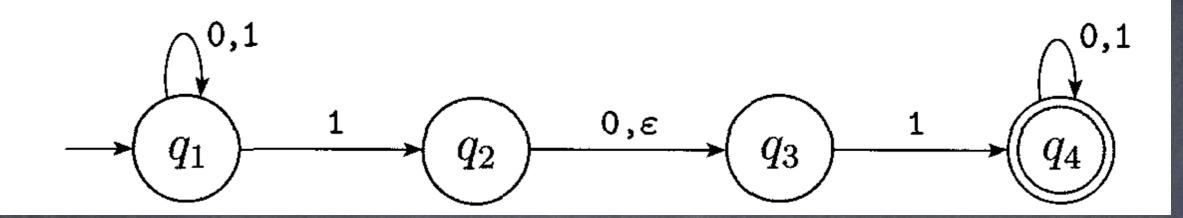
Symbol read

Start

The computation of N_1 on input 010110

Symbol read

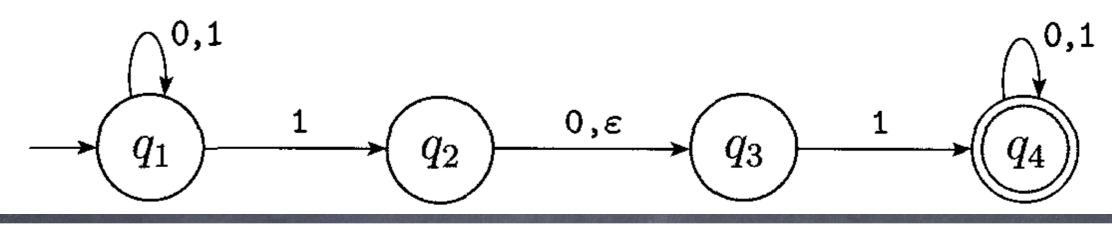
Start

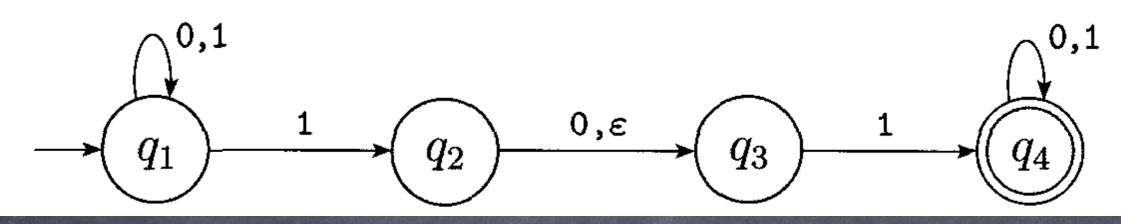


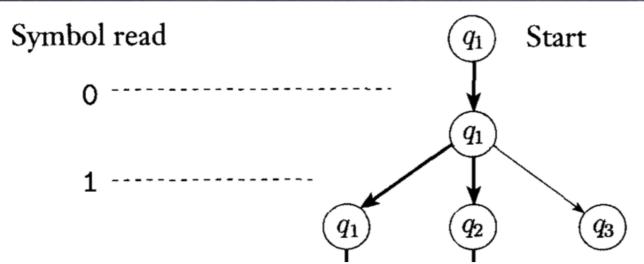
Symbol read

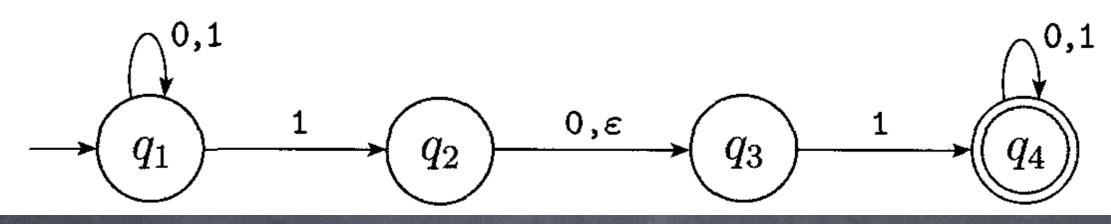
 (q_1) Start

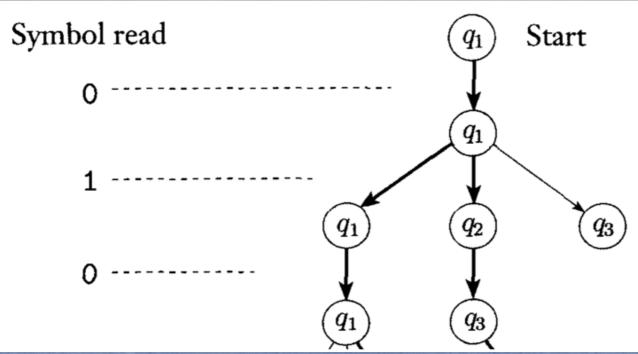
The computation of N_1 on input 010110

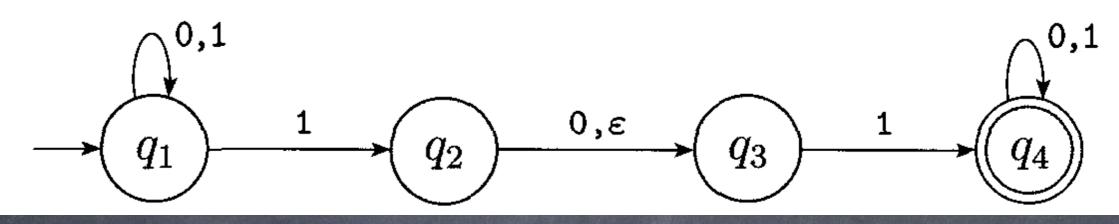


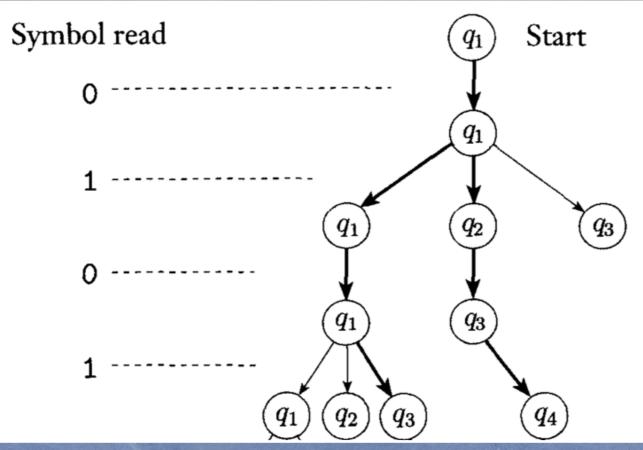


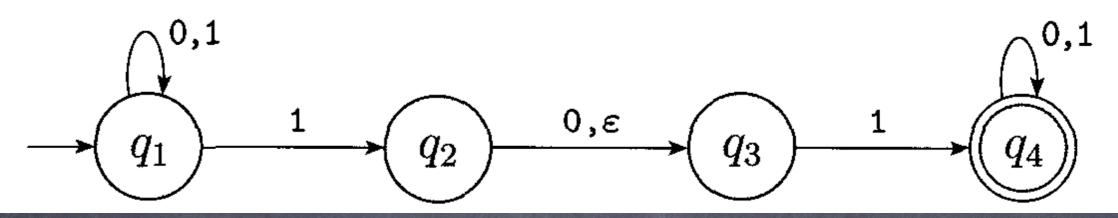


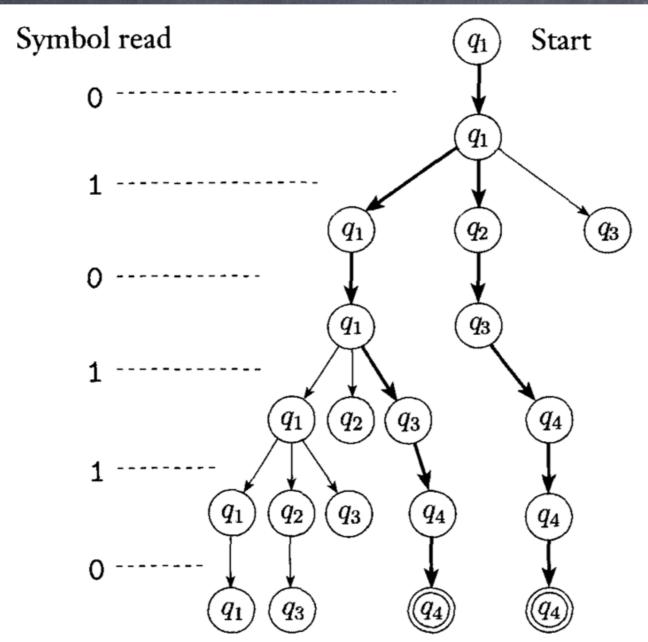




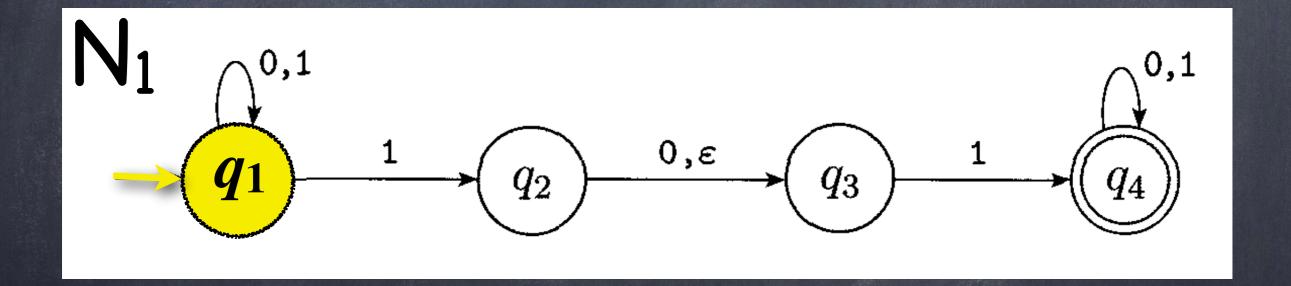


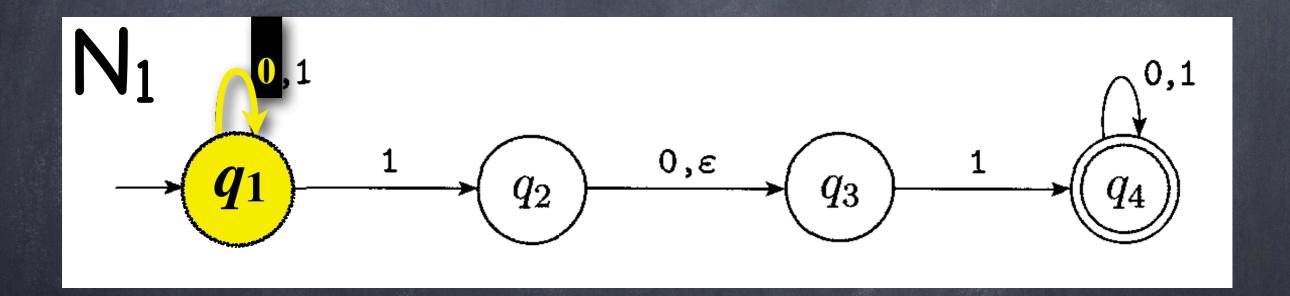


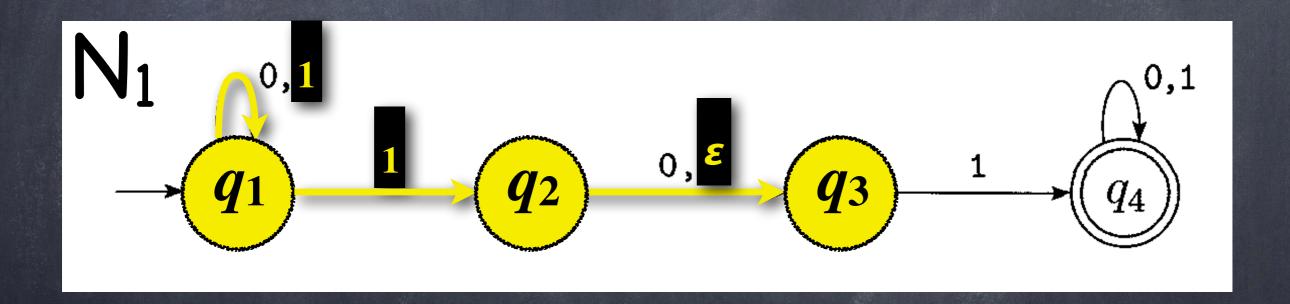


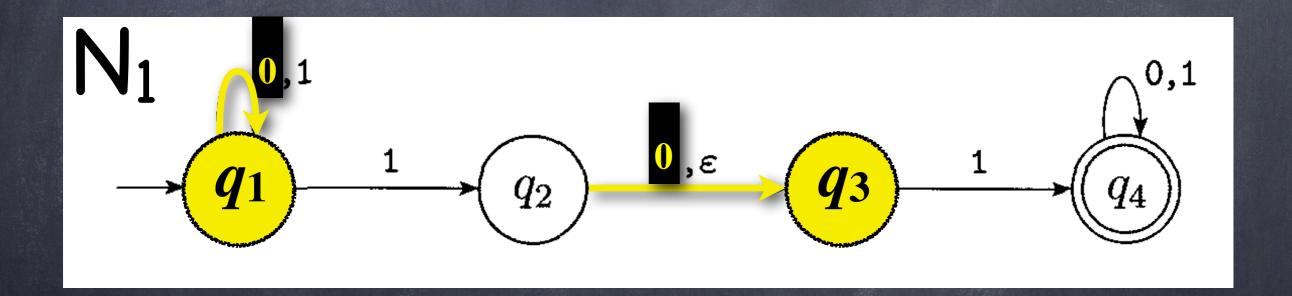


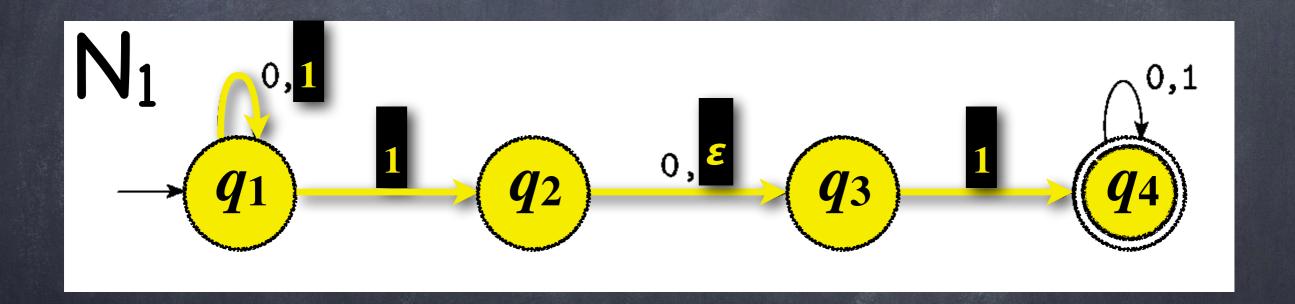
The computation of N_1 on input 010110

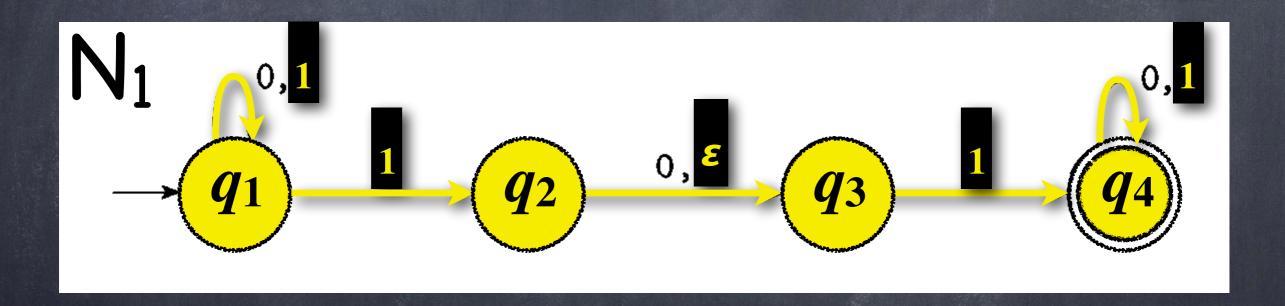


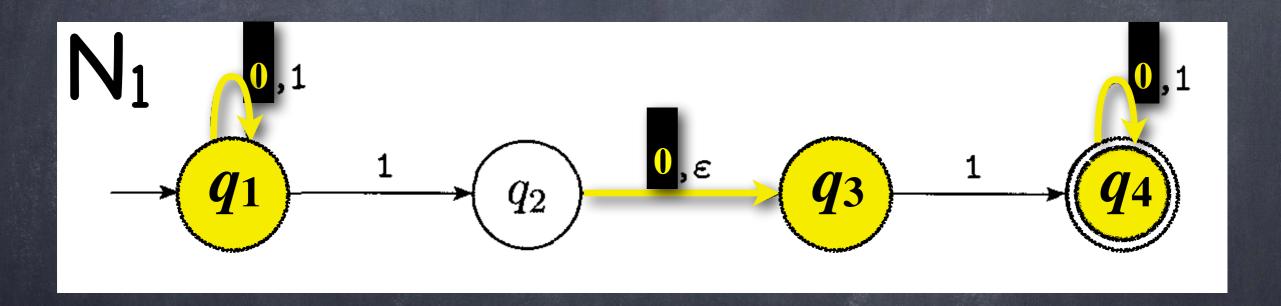


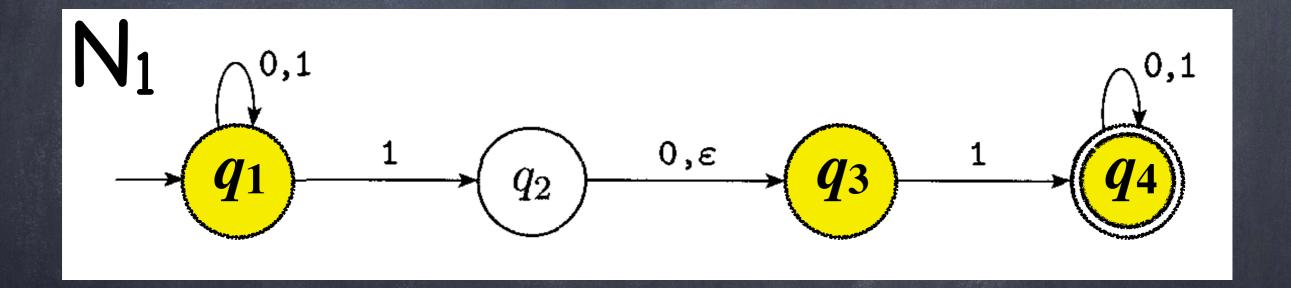












$$010110 \in L_{N_1} \Leftrightarrow$$

$$\{q_1,q_3,q_4\} \cap F = \{q_4\} \neq \emptyset$$

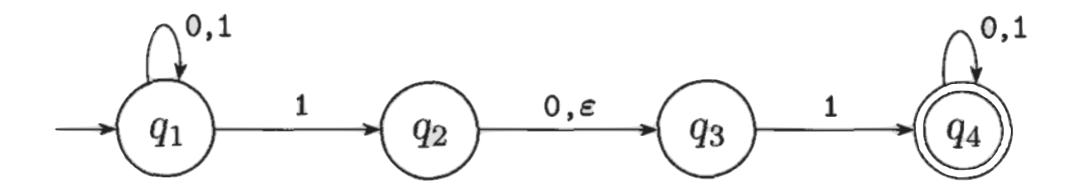
Definition of NFA

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Recall the NFA N_1 :



The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},\$$

3.
$$\delta$$
 is given as

	0	1	ε	
q_1	$\{q_1\}$	$\overline{\{q_1,q_2\}}$	Ø	_
q_2	$\{q_3\}$	Ø	$\{q_3\}$,
q_3	Ø	$\{q_4\}$	Ø	
q_4	$\{q_4\}$	$\{q_4\}$	Ø	

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

Definition of NFA

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state automaton and let $w=w_1w_2...w_n$ (n ≥ 0) be a string where each symbol $w_i \in \Sigma$.
- N accepts w if ∃ m≥n, ∃ s₀,s₁,...,s_m and ∃ y₁y₂...y_m = w, with each y_i ∈ Σ_ε s.t.
 - 1. $s_0 = q_0$
 - 2. $s_{i+1} \in \delta(s_i, y_{i+1})$ for i = 0 ... m-1, and
 - 3. $s_m \in F$

COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 4: DFAs, NFAs + Kleene's theorem