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COMP 330 Fall 2019:
Lectures Schedule

1-2. Introduction
1.5. Some basic mathematics
2-3. Deterministic finite automata

5. Minimization+ Myhill-Nerode theorem
6. Determinization+Kleene’s theorem

7. Regular Expressions+GNFA

8. Regular Expressions and Languages
9-10. The pumping lemma

11. Duality

12. Labelled transition systems

13. MIDTERM

14.
| ]
16.
157
18.
18

20.
27T.
22.
20
24.
2.
26.

Context-free languages
Pushdown automata
Parsing
The pumping lemma for CFLs
Introduction to computability
Models of computation
Basic computability theory
Reducibility, undecidability and Rice’s theorem
Undecidable problems about CFGs
Post Correspondence Problem
Validity of FOL 1s RE / Godel’s and Tarski’s thms
Universality / The recursion theorem
Degrees of undecidability
Introduction to complexity



Examples: automata for
multiples of N base B

@ automata for multiples of N = O mod N

@ examples mod 2, mod 3, mod 7



0 MOD 2 (base 10)

@ Remember what you learned in elementary school:
N is a multiple of 2 iff it ends by 0,2,4,6 or 8.

M2 10 Stops in state q- & w = r mod 2

J
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O MOD 2 (base 2)

® Remember what you learned in school of CS:
N (in binary) is a multiple of 2 iff it ends by O.

Mz,> stops in state q- & w =r mod 2



gcd(BN) =1
O MOD 3 (base 2)

M3 stops in state qr & w = r mod 3



gcd(BN) > 1
O MOD 3 (base 3)

M3,3 stops in state qr & w = r mod 3



O MOD 3 (base 3)

® Remember what you learned in school of CS:
N (in ternary) is a multiple of 3 iff it ends by O.

M33 stops in state go & w = 0 mod 3



multiples of 7
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Another example:
multiples of 7...

@ Remember forever what you are learning in
COMP-330 today : N is a multiple of 7 if
NeL(M7,10).

@ Example: 54705 is a multiple of 7 because
@5 = (10x0+5) =5 =5 mod 7,

@ 54 = (10x5+4) = 54 = 5 mod 7,

@ 547 = (10x5+7) = 57 = 1 mod 7,

@ 5470 = (10x140) = 10 = 3 mod 7 and

@ 54705 = (10x3+5) =35 =0 mod 7
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Another example:
multiples of 7...

@ Remember forever what you learn in
COMP-330 today : N is a multiple of 7 if
NEL(N\Z )

@ Example: 54705 is a multiple of 7 because
@5 =(10x0+5) =5 = 5 mod 7,

@ 54 = (10x5+4) =54 = 5 mod 7,

@ 547 = (10x5+7) = 57 = | mod 7,

@ 5470 = (10x1+0) = 10 = 3 mod 7 and

@ 54705 = (10x3+5) = 35 = 0 mod 7.



gcd(BN) =1
O MOD 7 (base 10)

Mz710 stops in state qr <& w =1 mod 7



1 MOD 7 (base 10)

Mz710 stops in state qr <& w =1 mod 7



2 MOD 7 (base 10)

Mz710 stops in state qr <& w =1 mod 7



3 MOD 7 (base 10)

Mz710 stops in state qr <& w =1 mod 7



4 MOD 7 (base 10)

Mz710 stops in state qr <& w =1 mod 7



5 MOD 7 (base 10)

Mz710 stops in state qr <& w =1 mod 7



6 MOD 7 (base 10)

Mz710 stops in state qr <& w =1 mod 7









Reqular Operations

DEFINITION 1.23

Let A and B be languages. We define the regular operations union,
concatenation, and star as follows.

* Union: AUB = {z|z € Aorz € B}.

* Concatenation: Ao B = {xy|x € Aand y € B}.

» Star: A* = {122 ... 2| kK > 0 and each z; € A}.




Reqular Operations

EXAMPLE 1.24

Let the alphabet ¥ be the standard 26 letters {a,b, ..., z}. If A = {good, bad}
and B = {boy. girl}, then

AU B = {good, bad, boy, girl},

A o B = {goodboy, goodgirl, badboy, badgirl}, and

A* = {e, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }.







I© 'Regular Operations :
. " Kleenes theorem

The class of regular languages is closed under the union operation.

In other words, if A; and A, are regular languages, so is A; U As.
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L(Mu) = L(M1) U L(M2,2)
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¢ Regular Operations :

= ' Kleenes theorem

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and Aj are regular languages then so is A; o As.

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.
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-
JRegular Operaftions :

Kleenes theorem (NFA)

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

THEOREM 1.45

The class of regular languages 1s closed under the union operation.



Regular Operations :

leenes theorem (NFA)

THEOREM 1.49

The class of regular languages is closed under the star operation.

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

THEOREM 1.45

The class of regular languages 1s closed under the union operation.







Non-Deterministic
Finite Automata

FIGURE 1.27
The nondeterministic finite automaton NV,




Non-Deterministic
Finite Automata

FIGURE 1.29
The computation of N; on input 010110



Non-Deterministic
Finite Automata

FIGURE 1.29

The computation of N; on inpug010110



Symbol read

FIGURE 1.29

The computation of N; on inpug010110
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The computation of N; on input§010110
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Non-Deterministic
Finite Automata




Nondeterministic
Finite Automata

O10110 e L\, <

191,93,943 N F={qa} £



Definition of NFA

DEFINITION 1.37

A nondeterministic finite automaton is a S-tuple (Q, 2,4, qo, F'),
where

1. () is a finite set of states,

2. ¥ is a finite alphabet,

3. 6: Q x ¥.—"P(Q) is the transition function,
4. g9 € Q 1s the start state, and

5. F C Q is the set of accept states.

S.=3u{e}  POQ)={S:S5c0)}




EXAMPLE 1.38
Recall the NFA Ni:

0,1
1 0,e 1

The formal description of N; is (Q, %, 6, q1, F), where

1. Q = {ql,Q2,Q3,(I4},
2. Y = {0,1},

3. ) 1s g1 a
1S given as 0 )

{n} {g1,q2} 0
{Q3} 0

0 {qa}
{Q4} {94}

4. g, is the start state, and
5. F = {Q4}.




Definition of NFA

@ Let N=(Q,2,5,90,F) be a nondeterministic

finite state automaton and let w=wiw....w
(n20) be a string where each symbol wie2.

@ N accepts w if 3 m2n, 3 so,s1,...,Sm and
I Y1Y2..Ym =W, WIith each yie 2¢ s.t1.
1. So=4qo
2. si+1 €0(si,yiv)) fori=0..m-1, and

3. SmeF
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