COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lecture 2 : Regular Expressions & DFAs

@ 2019 T.A.s :

Pouriya Alikhani
Pierre-William Breau
Anirudha Jita
Justin Li
Yanjia Li
Shiquan Zhang

pouriya.alikhani@mail.mcgill.ca pierre-william.breau@mail.mcgill.ca anirudha.jitani@mail.mcgill.ca juan.y.li@mail.mcgill.ca yanjia.li@mail.mcgill.ca shiquan.zhang@mail.mcgill.ca

Office Hours:

Claude: Wednesday 13:00-16:00 ENGMC 110N

Pouriya: Friday 13:00-14:00 ENGTR 3090

Pierre-William: Monday 15:00-16:00 ENGTR 3110

Anirudha: Monday 16:00-17:00 ENGTR 3090

Justin: Tuesday 15:00-16:00 ENGTR 3110

Yanjia: Friday 10:00-11:00 ENGTR 3110

Shiquan: Thursday 15:00-16:00 ENGTR 3110

COMP-330 Fall 2019 — Weekly Schedule

Mon 10:00	Tue 10:00	Wed 10:00	Thu 10:00	Yanjia
Mon 10:30	Tue 10:30	Wed 10:30	Thu 10:30	TR-3110
Mon 11:00	Tue 11:00	Wed 11:00	Thu 11:00	Fri 11:00
Mon 11:30	Tue 11:30	Wed 11:30	Thu 11:30	Fri 11:30
Mon 12:00	Tue 12:00	Wed 12:00	Thu 12:00	Fri 12:00
Mon 12:30	Tue 12:30	Wed 12:30	Thu 12:30	Fri 12:30
Mon 13:00	Claude	Clauda	Claude	Pouriya
Mon 13:30	MA-112	Claude	MA-112	TR-3090
Mon 14:00	course	MC-110N	course	Fri 14:00
Mon 14:30	Tue 14:30	office	Thu 14:30	Fri 14:30
Pierre-W.	Justin	hours	Shiquan	Fri 15:00
TR-3110	TR-3110	Hours	TR-3110	Fri 15:30
Anirudha	Tue 16:00	Wed 16:00	TA	Fri 16:00
TR-3090	Tue 16:30	Wed 16:30	meeting?	Fri 16:30

MC = MCENG = McConnell • TR = ENGTR = Trottier

COMP-330 Fall 2019 — Weekly Schedule

			veekiy seried	
Mon 10:00	Tue 10:00	Wed 10:00	Thu 10:00	Yanjia
Mon 10:30	Tue 10:30	Wed 10:30	Thu 10:30	TR-3110
Mon 11:00	Tue 11:00	Wed 11:00	Thu 11:00	Fri 11:00
Mon 11:30	Tue 11:30	Wed 11:30	Thu 11:30	Fri 11:30
Mon 12:00 Mon 12:30	CSUS	Wed 12:00 CSUS	CSUS	Fri 12:00 Fri 12:30
CSUS Helpdesk	Claude MA-112	Claude	Claude MA-112	Pouriya TR-3090
TR-3090	course	MC-110N	course	Fri 14:00
Mon 14:30	Tue 14:30	office	Thu 14:30	Fri 14:30
Pierre-W. TR-3110	Justin TR-3110	hours	Shiquan TR-3110	CSUS Helpdesk
Anirudha TR-3090	Helpdesk TR-3090	Helpdesk TR-3090	Helpdesk TR-3090	TR-3090 Fri 16:30

MC = MCENG = McConnell • TR = ENGTR = Trottier

Theorem:

The Post Correspondence Problem cannot be decided by any algorithm (or computer program). In particular, no algorithm can identify in a finite amount of time some instances that have a **No** outcome. However, if a solution exists, we can ALWAYS find it.

@ Proof:

Reduction technique - if PCP was decidable then another undecidable problem (the halting problem) would be decidable.

Notice that an algorithm is a piece of text.

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.
- An algorithm can receive the text description of an algorithm as input.

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.
- An algorithm can receive the text description of an algorithm as input.
- The Halting Problem:

 Given two texts A and B, consider A as an algorithm and B as an input. Will algorithm A halt (as opposed to loop forever) on input B?

The Halting Problem and PCP

The Halting Problem and PCP

Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem as well.

The Halting Problem and PCP

- Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem as well.
- Conclusion: PCP cannot be decided either.

All languages

All languages

languages
that we can
describe

All languages

languages
that we can
describe

languages that we can decide

languages that we can <u>decide</u>

languages that we can decide

languages that we can check efficiently

languages that we can decide

languages that we can check efficiently

languages that we can decide efficiently

Not all problems were born equal...

Is it possible to paint a colour on each region (province) of a map so that no neighbours are of the same colour?

Obviously, yes, if you can use as many colours as you like...

K-colouring of Maps (planar graphs)

K-colouring of Maps (planar graphs)

K=1, only the maps with zero or one region are 1-colourable.

K-colouring of Maps (planar graphs)

- K=1, only the maps with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.

K-colouring of Maps (planar graphs)

- K=1, only the maps with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.

K-colouring of Maps (planar graphs)

- K=1, only the maps with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.
- K≥4, all maps are K-colourable. (looong proof)
 Not easy to find a K-colouring.
 However it is easy to verify a solution.

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given,
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to MANY similar problems!

SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.
- KnapSack: given items with various weights, is there of subset of them of total weight K.

Many practical problems are NP-complete.

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.
- Some books list hundreds of such problems.

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.
- Some books list hundreds of such problems.

2-colorability of maps.

- 2-colorability of maps.
- Primality testing. (but probably not factoring)

- 2-colorability of maps.
- Primality testing. (but probably not factoring)
- Solving NxNxN Rubik's cube.

- 2-colorability of maps.
- Primality testing. (but probably not factoring)
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.

- 2-colorability of maps.
- Primality testing. (but probably not factoring)
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.
- Sorting elements.

Fortunately, many practical problems are tractable. The name P stands for Polynomial—Time computable.

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for Polynomial—Time computable.
- © Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for Polynomial—Time computable.
- © Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

Decidable Languages

Decidable Languages

NP

Decidable Languages

NP

P

Decidable Languages

P

Decidable Languages

P

P = NP ?

Beyond NP-Completeness

Beyond NP-Completeness

PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.

Beyond NP-Completeness

- PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them may be solved within reasonable (Poly) amount of time, then all of them can.

PSpace Completeness

PSpace Completeness

Geography Game:

Given a set of country names: Arabia, Cuba, Canada, France, Italy, Japan, Korea, Vietnam

PSpace Completeness

Geography Game:

Given a set of country names: Arabia, Cuba, Canada, France, Italy, Japan, Korea, Vietnam

A two player game: One player chooses a name. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Generalized Geography

Generalized Geography

Given an arbitrary set of names: w₁, ..., w_n.

Generalized Geography

- Given an arbitrary set of names: w₁, ..., w_n.
- Is there a winning strategy for the first player to the previous game?

Decidable Languages

complete

PSpace

NP

P

Decidable Languages

complete

PSpace

NP

P

NP = PSpace?

© Challenges of TCS:

- Challenges of TCS:
- FIND efficient solutions to many problems. (Algorithms and Data Structures)

- © Challenges of TCS:
- FIND efficient solutions to many problems. (Algorithms and Data Structures)
- PROVE that certain problems are NOT computable within a certain time or space.

- Challenges of TCS:
- FIND efficient solutions to many problems. (Algorithms and Data Structures)
- PROVE that certain problems are NOT computable within a certain time or space.
- Consider new models of computation. (Such as a Quantum Computer)

COMP 330 Fall 2017: Lectures Schedule

1-2. Introduction

1.5. Some basic mathematics

2-3. Deterministic finite automata +Closure properties,

- 3-4. Nondeterministic finite automata
- 5. Minimization+ Myhill-Nerode theorem
- 6. Determinization+Kleene's theorem
- 7. Regular Expressions+GNFA
- 8. Regular Expressions and Languages
- 9-10. The pumping lemma
- 11. Duality
- 12. Labelled transition systems
- 13. MIDTERM

- 14. Context-free languages
- 15. Pushdown automata
- 16. Parsing
- 17. The pumping lemma for CFLs
- 18. Introduction to computability
- 19. Models of computation

Basic computability theory

- 20. Reducibility, undecidability and Rice's theorem
- 21. Undecidable problems about CFGs
- 22. Post Correspondence Problem
- 23. Validity of FOL is RE / Gödel's and Tarski's thms
- 24. Universality / The recursion theorem
- 25. Degrees of undecidability
- 26. Introduction to complexity

Deterministic Finite Automata, and Regular expressions

Deterministic Finite Automata, and Regular expressions

front pad rear pad door

front pad

rear pad

door

front pad rear pad door

front pad pad door

input signal

	NEITHER	FRONT	REAR	ВОТН
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

22 25 19 20 21 16 17 18 10 19 10 7 3 6 2

22 25 19 20 21 16 17 18 11 12 15 10 7 3

22 25 19 20 21 16 17 18 11 12 15 10 7 8 6 2

COMP-330 Theory of Computation

Fall 2017 -- Prof. Claude Crépeau

Lecture 2 : Regular Expressions & DFAs