COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 22-23 :
Introduction to Complexity

Nobk all prabtems
were bori equal...

S
3 3
L O
m v
S S
i~

Nob all
were bo

Is it pass&bte to paint a colour on
each region of a map so that no
neighbours are of the same colour ?

O*bvmusi.v, yes, 3 you can use
as mahy colours as you
LE‘MQQQQ

l-colour w\.g
problem

Only kwo wmaps are l-colourable.

2—-colour lng
PT O b Leyw

Very few maps are 2-colourable.

2—-colour lng
PT O b Leyw

Very few maps are 2-colourable.

2—-colour lng
T O b Leymw

Most maps are not 2-colourable.

Tractable Problems

\9

Tractable Problems

\9

o 2-colorability of maps.

Tractable Problems
\9
o 2-colorability of maps.

o Primalily testing,
(but probably not factoring)

Tractable Problems
\9
o 2-colorability of maps.

o Primalily testing,
(but probably not factoring)

@ $<;>Lvi;hg NxNxN Rubilk’s cube.

Tractable Problems
\9
o 2-colorability of maps.

o Primalily testing,
(but probably not factoring)

@ $<;>Lvi;hg NxNxN Rubilk’s cube.

o Finding a word i a di&%&oma\ryﬂ

Tractable Problems
(P)
3 2*«&0{01’&&{&&3 of maps.

o Primalily testing,
(but probably not factoring)

3 $<;>Lvi;s¢9 NxNxN Rubilk’s cube.
o Finding a word i a dic&ov\o\r:}.

o Sorting elements..

Tractable Problems

\9

Tractable Problems

\9

= ﬁor&uma&etj, many Fr&&&aat Frobt&ms
are tractable. The name P stands for
‘Pcutjmommtm’nme ﬁmmpuﬁableﬁ

Tractable Problems

\9

= ﬁor&uma&etj, many Fr&&&wat probt&ms
are tractable. The name P stands for
‘Pcwtvmommlm’ﬂme ﬂompuhbw_.

© More formally, there exists a TM to
compute solutions to the probtam and
there exists a polynomial @ such that
the number of steps on each input x
before halking is no more than Q([x]).

Tractable Problems

\9

Tractable Problems

\9

o Fortunately, many practical problems are
tractable. The name P stands for
Polynomial-Time computable.

Tractable Problems

\9

Fortunately, many practical problems are
tractable. The name P stands for
Polynomial-Time computable.

> Computer Science studies mostly
techniques to approach and find efficient
solutions to tractable problems.

Tractable Problems

\9

o Fortunately, many practical problems are
tractable. The name P stands for
Polynomial-Time computable.

o Computer Science studies mostly
techniques to approach and find efficient
solutions to tractable problems.

o Some problems may be efficiently solvable
but we might ot be able to prove Ehatk...

Tractable Problems

\9

Tractable Problems

\9

o The name P stands for Polynomial-Time
computable.

Tractable Problems

\9

o The name P stands for Polynomial-Time
computable.

o Q Why choose this level of granularity ?
Why not choose Linear-time for instance ?

Tractable Problems

\9

o The name P stands for Polynomial-Time
computable.

o Q Why choose this level of granularity ?
Why not choose Linear-time for instance ?

o A: because P is the same for all bypes of
Turing machines and any reasonable
model. This is not ktrue of Linear-time for
instance...

Tractable Problems

\9

THEOREM 7.8

Let t(n) be a function, where ¢(n) > n. Then every t(n) time multitape Turing
machine has an equivalent O(t%(n)) time single-tape Turing machine.

Complexikt
Tlng.orv /

Decidable
Languages

Complexikt
Tlng.orv /

Decidable
Languages

NP

Complexikt
Tlng.orv /

Decidable
Languages

NP

Complexikt
Tl«g.orv /

Decidable
Languages

NP

Aocoloiing

Some maps are 3-colourable.

B0 LO’ uy E"MS
“ T’Ob lemwn

©.0

Adb-

Some maps are not 3-colourable.

ng

L

4--colour

AlL maps are 4-colourable.

TRV EFN VS Yewr

G-=CO LC} -. i

Beanfort 9
Sea B 4"

N

GREENLAND
(DENMARK)

ICELAND

UNITED STATES

&=, . _— § \ !
. -4 § / L
) - S Vitona

Island

1

Yukon Te

1nHoN

o Whildhorse

BritishJColumb;

Cirear
Beasr Baffn
Lake and

Qwest Territories

No

Greaz S
[l"f

Nunavut

Albfrta

[(l‘lnnlc Sask

o Calgary

Hegnae

tchewan

Wisnipey

L]
Churchill

Manitoba

Laks \ 1

Winnipeg

W—,‘ f w’.
-

qaun

B o : i .Y Labrvador Sea

Hudson
Bay

Newfo undland

St Jofin =,

(oeboc *

-‘«.\f abe Superior

N Halfax

\ Nova Scotia
“4-~colouy
A8 SRS, 4

e W S

4-colouring F?rca-bt@.m

L i
@ﬁ?A P
. v | e a \ A i &,
Ml ,’/ ¢ /_‘_.\ 5 ot | P (._1, 7 y
A 4 ‘/ f" ’ - - | A
g ‘ : o - e 4 "; :
PV ‘ ¢ f
7 7 i
< / y
4]
o) /IR
|

¢ AN
s
/ ~y
& v vy
“\
2 g
. |
\

AlL maps are 4*&:0&01&1‘0&1@

K-colouring of
Maps (planar graphs)

K-colouring of
Maps (planar graphs)

o Kzl only the maps with zero or one region
are l-colourable.

K-colouring of
Maps (planar graphs)

o Kzl only the maps with zero or one region

are l-colourable.

o K= easy to decide. lmpossibte as Soon as 3
regions touch each other.

K-colouring of
Maps (planar graphs)

o Kzl only the maps with zero or one region

are l-colourable.

o K= easy to decide. lmpossibte as Soon as 3
regions touch each other.

o K=3 No khown efficient alqgorithm to
decide. It is easy to verify a solution.

D

D

K-colouring of
Maps (planar graphs)

K=1 omt:j the maps with zero or owhe region

are l-colourable.

K=2 easy to decide. lmpcssibi& as Soon as 3
regions touch each other.

K=3 No known efficient alqorithm to
decide. It is easy to verify a solution.

Kz4 all maps are 4-colourable, (long Fraoaf)
Does not imply easy to find a 4-colouring.

F-colour LMS cawf
Mo F?s

F-colour LMS cawf
Mo F?s

o Seems hard to solve i general,

3-colour E&r\g Oﬂf
Ma ps
o Seems hard to solve i general,

e 1s easy to verbﬁj whei a solubtion is given,
(is tn NP : guess a solution and verify it)

3-colour E&r\g Oﬂf
Ma ps
o Seems hard to solve i general,

@ 1s easy to verbﬁj whei a solution is given,
(is in NP : quess a solution and verify it)

o Is a special type of probi.em (N‘P*«r:c;mpt@_&e)
because an efficient solution to it would
:ﬁ,etd efficient solubtions ko ALL probi.ems
i NP

Examples of NP-
Complete Problems

Examples of NP-
Complete Problems

o SAT: given a boolean formula, is there an
assignment of the variables making the
formula evaluate to krue ?

Examples of NP-
Complete Problems

o SAT: given a boolean formula, is there an
assignment of the variables making the
formula evaluate to krue ?

o Travelling Salesman: given a set of cities
and distances between them, what is the
shortest route bto visit each ai&v once.

Examples of NP-
Complete Problems

o SAT: given a boolean formula, is there an
assignment of the variables making the
formula evaluate to krue ?

o Travelling Salesman: given a set of cities
and distances between them, what is the
shortest route bto visit each ai&v once.

o KnapSack: given items with various weights,
is there of subset of them of tokal weiqght K.

N‘P*CQMF?L&@.
Problems

N?’*C.OMFL&@.
Problems

o Many practical probtems are NP-complete.

N?’*C.OMFL&@.
Problems

o Many practical probtems are NP-complete.

o If any of them is easy, they are all easy

N?’*C.OMPL&@.
Problems

® Many practical problems are NP-complete.
o If any of them is easy, they are all easy

o In practice, some of them may be
solved efficiently in some special cases.

N?’*C.OMPL&@.
Problems

® Many practical problems are NP-complete.
o If any of them is easy, they are all easy

o In practice, some of them may be
solved efficiently in some special cases.

o Some books List hundreds of such
probtems‘

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

N‘P*COMF?LQ%@.
Problems

Appendix: A List of NP-Complete Problems

Al Graph Theory
Al.1 Covering and Partitioning
A1.2 Subgraphs and Supergraphs
A1.3 Vertex Ordering
Al.4 Iso- and Other Morphisms
Al.5 Miscellaneous
Network Design
A2.1 Spanning Trees
A2.2 Cuts and Connectivity
A2.3 Routing Problems
A2.4 Flow Problems
A2.5 Miscellaneous
A3 Sets and Partitions
A3.1 Covering, Hitting, and Splitting
A3.2 Weighted Set Problems
A4 Storage and Retrieval
A4.1 Data Storage
A4.2 Compression and Representation
A4.3 Database Problems

N‘P*Com[pi.e%@.
Problems

Appendix: A List of NP-Complete Problems
Al Graph Theory ¥

Al.1 Covering and Partitioning
AL2 Subgraphs and Supergraphs COUPLTERS A0 NTRACTISLTY
A1.3 Vertex Ordering S
Al.4 Iso- and Other Morphisms Michael R. Garey
Al.5 Miscellaneous
Network Design
A2.1 Spanning Trees
A2.2 Cuts and Connectivity
A2.3 Routing Problems
A2.4 Flow Problems
A2.5 Miscellaneous
A3 Sets and Partitions
A3.1 Covering, Hitting, and Splitting
A3.2 Weighted Set Problems
A4 Storage and Retrieval
A4.1 Data Storage
A4.2 Compression and Representation
A4.3 Database Problems

N‘P*Com[pi.e%@.
Problems

Sequencing and Scheduling

s e ot A S S I

AS5.2 Multiprocessor Scheduling
A3.3 Shop Scheduling COMPUTERS AND INTRACTABILITY
AS5.4 Miscellaneous A Guide to the Theory of NP-Completeness
Mathemaltical Programming

Algebra and Number Theory

A7.1 Divisibility Problems

A7.2 Solvability of Equations

A7.3 Miscellaneous

GRS NG POFRIBN . - o o0 2 2 i 0 F R ARG GBS S B s S 254

A9.1 Propositional Logic

A9.2 Miscellaneous

Automata and Language Theory
Al10.1 Automata Theory
A10.2 Formal Languages
Program Optimization

All.l Code Generation

All.2 Programs and Schemes
Miscellaneous

Open Problems

N‘P*Com[pi.e%@.
Problems

Sequencing and Scheduling

s e ot A S S I

AS5.2 Multiprocessor Scheduling
A3.3 Shop Scheduling COMPUTERS AND INTRACTABILITY
AS5.4 Miscellaneous A Guide to the Theory of NP-Completeness
Mathemaltical Programming

Algebra and Number Theory

A7.1 Divisibility Problems

A7.2 Solvability of Equations

A7.3 Miscellaneous

GRS NG POFRIBN . - o o0 2 2 i 0 F R ARG GBS S B s S 254

A9.1 Propositional Logic
A9.2 Miscellaneous

Automata and Language Theory
Al10.1 Automata Theory

A10.2 Formal Languages
Program Optimization

All.l Code Generation

All.2 Programs and Schemes 100 F&SQS

Miscellaneous

Open Problems 19“79 ! ! !

Complexikt
Tlng.orv /

Decidable
Languages

Complexikt
Tlng.orv /

Decidable
Languages

NP

Complexikt
Tlng.orv /

Decidable
Languages

NP

Complexikt
Tl«g.orv /

Decidable
Languages

NP

Complexikt
Tl«g.orv /

Decidable
Languages

complete

NP

p

P=NP?

Y vs NP

DEFINITION 7.7
Let t: N—R™ be a function. Define the time complexity class,

TIME(t(n)), to be the collection of all languages that are decid-
able by an O(¢(n)) time Turing machine.

DEFINITION 7.7

Let t: N—R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(¢(n)) time Turing machine.

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P =| | TIME(n*).
k

Y vs NT

DEFINITION 7.9

Let NV be a nondeterministic Turing machine that is a decider. The
running time of N is the function f: N— N, where f(n) is the

maximum number of steps that /V uses on any branch of its com-
putation on any input of length n, as shown in the following figure.

Deterministic
®

}

5 accept/reject

FIGURE 7.10
Measuring deterministic and nondeterministic time

Y vs NT

DEFINITION 7.21

NTIME(t(n)) = {L| L is a language decided by a O(¢(n)) time

nondeterministic Turing machine }.

COROLLARY 7.22
NP = |J, NTIME(n*).

Y vs NT

THEOREM 7.11

Let t(n) be a function, where t(n) > n. Then every t(n) time nondeterministic

single-tape Turing machine has an equivalent 2°(¢(")) time deterministic single-
tape Turing machine.

Y vs NT

A clique in an undirected graph is a subgraph, wherein every two nodes are

connected by an edge. A k-clique is a clique that contains k¥ nodes. Figure 7.23
illustrates a graph having a 5-clique

A clique in an undirected graph is a subgraph, wherein every two nodes are
connected by an edge. A k-clique is a clique that contains k¥ nodes. Figure 7.23
illustrates a graph having a 5-clique

ol

FIGURE 7.23
A graph with a S-clique

Y vs NT

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}.

COMPLETENESS

X

=

COMPLETENESS

X

=

COMPLETENESS

X

SOUNDNESS

s e o N

35 ‘v’x = L Elw (X, W ‘ accetS '
- and Vx gé L ‘v’w [¥(,w) reJects]

X

=

SOUNDNESS

Xeé

35 ‘v’x = L Elw (X, W ‘ accetS '
- and Vx gé L ‘v’w [¥(,w) reJects]

s e o N

X

=

SOUNDNESS

Xeé

35 ‘v’x = L Elw (X, W ‘ accetS '
- and Vx gé L ‘v’w [¥(,w) reJects]

s e o N

X

=

Grelect

THEOREM Z24 ittt sttt st s s ssassatsonssansnasasssesses
CLIQUE 1s in NP.

PROOF IDEA The clique is the certificate.

PROOF 'The following is a verifier V for CLIQUE.

V =%“On input ((G, k), ¢):
1. Test whether cis a set of £ nodes in G
2. ’lest whether GG contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input (G, k), where G is a graph:
1. Nondeterministically select a subset ¢ of k£ nodes of G.
2. ’Test whether G contains all edges connecting nodes in c.
3. Ifyes, accept; otherwise, reject.”

A Boolean formula is an expression involving Boolean variables and opera-
tions. For example,

¢=(TAy)V (zAZ)

is a Boolean formula. A Boolean formula is satisfiable if some assignment of Os
and 1s to the variables makes the formula evaluate to 1. 'The preceding formula is

satisfiable because the assignment x = 0, y = 1, and 2z = 0 makes ¢ evaluate to 1.

We say the assignment satisfies ¢. The satisfiability problem is to test whether a
Boolean formula is satisfiable. Let

SAT = {(¢)| ¢ is a satisfiable Boolean formula}.

Now we state the Cook-Levin theorem, which links the complexity of the
SAT problem to the complexities of all problems in NP.

A Boolean formula is an expression involving Boolean variables and opera-
tions. For example,

¢=(TAy)V (zAZ)

is a Boolean formula. A Boolean formula is satisfiable if some assignment of Os
and 1s to the variables makes the fula evaluate to 1. ‘T'he preceding formula is

satisfiable because the assignmentjz = | kes ¢ | 3
We say the assignment satisfies ¢. The satz.sjﬁabzlzty problem is to test whether 2
Boolean formula is satisfiable. Let

SAT = {(¢)| ¢ is a satisfiable Boolean formula}.

Now we state the Cook-Levin theorem, which links the complexity of the
SAT problem to the complexities of all problems in NP.

A Boolean formula is an expression involving Boolean variables and opera-
tions. For example,

¢=(TAy)V (zAZ)

is a Boolean formula. A Boolean formula is satisfiable if some assignment of Os
and 1s to the variables makes the formula evaluate to 1. The preceding formula is

satisfiable because the assignmentjz = | kes ¢ | 3
We say the assignment satisfies ¢. T he satujﬁabzlzty problem is to test whether 2
Boolean formula is satisfiable. Let

SAT = {{(¢)| ¢ is a satisfiable Boolean formula}.

Now we state the Cook-Levin theorem, which links the complexity of the
SAT problem to the complexities of all problems in NP.

THEOREM 7.27
Cook-Levin theorem SAT € P iff P = NP.

?Qijmﬁme
u«t‘ubdi&v

DEFINITION 7.28

A function f: X" —— X" is a polynomial time computable function

if some polynomial time Turing machine M exists that halts with
just f(w) on its tape, when started on any input w.

?Qijmﬁme
ucibil &v

Language A is polynomial time mapping reducible,' or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: £*-—— ¥* exists, where for every

w,

r!
('

DEFINITION 7.29

w e A<= f(w) € B.

The function f is called the polynomial time reduction of A to B.

Poly-time
Reducibility

|

R,

—_—

FIGURE 7.30
Polynomial time function f reducing A to B

THEOREM 7.31

If A<p Band B € P, then A € P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w € A whenever f(w) € B because f is a reduction from A to B.
Thus M accepts f(w) whenever w € A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in

polynomial time because the composition of two polynomials is a polynomial.

N‘Pw:cwmgl&emess

~ DEFINITION 7.34

A language B 1s NP-complete it it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 7.35
If B is NP-complete and B € P, then P = NP.

PROOF 'This theorem follows directly from the definition of polynomial time
reducibility.

N‘Pw:c;:»m[pi&eness

THEOREM 7.36

It B is NP-complete and B <p C for C in NP, then C is NP-complete.

PROOF We already know that C is in NP, so we must show that every A in
NP is polynomial time reducible to C'. Because B is NP-complete, every lan-

guage in NP is polynomial time reducible to B, and B in turn is polynomial
time reducible to C'. Polynomial time reductions compose; that is, if A is poly-
nomial time reducible to B and B is polynomial time reducible to C, then A
is polynomial time reducible to C. Hence every language in NP is polynomial
time reducible to C.

Theorem

Coole~Levin
Theorem

THEOREM 7.37
SAT is NP-complete.?

This theorem restates Theorem 7.27, the Cook-Levin theorem, in another
form.

Coole~Levin
Theorem

PROOF First, we show that SAT is in NP. A nondeterministic polynomial

time machine can guess an assignment to a given formula ¢ and accept if the
assignment satisfies ¢.

Coole~Levin
Theorem

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula ¢ and accept if the

assignment satisfies ¢. |
Next, we take any language®*A in NP and show that A is polynomial time

reducible to SAT. Let N be a nondeterministic Turing machine that decides A
in n* time for some constant k. (For convenience we actually assume that NV
runs in time n* — 3, but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

Coole~Levin
Theorem

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula ¢ and accept if the
assignment satisfies ¢.

Next, we take any language®*A in NP and show that A is polynomial time
reducible to SAT. Let N be a nondeterministic Turing machine that decides A
in n* time for some constant k. (For convenience we actually assume that NV
runs in time n* — 3, but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

*"any language A in NP~ really means:

"any language A provably 1n NP'".

A tableau for N on w is an n” x n” table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.

do

w1

Wo

FIGURE 7.38

A tableauis an n

k

x n¥ table of configurations

start configuration

second configuration

window

nkth configuration

start configuration

second configuration

Coolk-Levin
Theorem

window

nkth configuration

Coolk-Levin

Every accepting tableau for IV on w corresponds to an accepting computation
branch of N on w. Thus, the problem of determining whether N accepts w is
equivalent to the problem of determining whether an accepting tableau for N
on W exists.

Coolk-Levin

Every accepting tableau for IV on w corresponds to an accepting computation
branch of N on w. Thus, the problem of determining whether N accepts w is
equivalent to the problem of determining whether an accepting tableau for N

On w exists.

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢.

Coolk-Levin

Every accepting tableau for IV on w corresponds to an accepting computation
branch of N on w. Thus, the problem of determining whether N accepts w is
equivalent to the problem of determining whether an accepting tableau for N

On w exists.

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢.

= QPeell U @start U

¢a&tep% U $move

turning variable z; ; ; on corresponds to placing

symbol s in celllt, j]. The first thing we must guarantee in order to obtain a cor-
respondence between an assignment and a tableau is that the assignment turns
on exactly one variable for each cell. Formula ¢, ensures this requirement by
expressing it in terms of Boolean operations:

Peell = /\ {(\/ :ri,j,s) A (/\ (a::,;,j,sv:cz-,j,t))}

1<4,5<nk - s€C s, tcC
sF#t

turning variable z; ; ; on corresponds to placing

symbol s in celllt, j]. The first thing we must guarantee in order to obtain a cor-
respondence between an assignment and a tableau is that the assignment turns
on exactly one variable for each cell. Formula ¢, ensures this requirement by
expressing it in terms of Boolean operations:

Peell = /\ {(\/ :ri,j,s) A (/\ (a::,;,j,sv:cz-,j,t))}

1<4,5<nk - s€C s, tcC
sF#t

Coolk-Levin
Theorem: ¢

The symbols A and \/ stand for iterated AND and OR. For example, the
expression in the preceding formula

is shorthand for

:Bi)j’sl v :L'?;,j,SQ v S \/ xi,j,S;

where C' = {s1, 82, ...,s;}. Hence ¢ 1s actually a large expression that con-

tains a fragment for each cell in the tableau because 7 and j range from 1 to n”.

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

(ﬁ’Start — L1,1.4 A ml,QaQO/\

X1,3w; NT1 4w N\ ... N1 n+2,w, N

x]_,n_i_S’u JANAN :Cl’nk__]_’u AN .lenk,# .

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

(ﬁ’Start — xl,l 531,2,q0/\

X1,3w; NT1 4w N\ ... N1 n+2,w, N

x]_,n_i_S’u JANAN :Cl’nk__]_’u AN .lenk,# .

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

Pstart = 5131,1 T1,2(go)

X1,3w; NT1 4w N\ ... N1 n+2,w, N

x]_,n_i_S’u JANAN :Cl’nk__]_’u AN .lenk,# .

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

(ﬁ’Start — xl,l .’,81,2/\
fL‘1,3, NT1aws N oo NT1n42.w, N
x]_,n_i_S’u JANAN :Cl’nk__]_’u AN .lenk,# .

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

Pstart = 5131,1 T1,2(go)
fL‘1,3, AN 561’4, Noo o NZ1 42w, N
x]_,n_i_S’u JANAN :Cl’nk__]_’u AN .lenk,# .

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

Pstart = 5131,1 T1,2(go)
fL‘1,3, AN 561’4, AN AN .’E1,n.|_2,@/\

x]_,n_i_S’u JANAN :Cl’nk__]_’u AN .lenk,# .

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

Pstart = 5131,1 T1,2(go)
fL‘1,3, AN 561’4, AN AN .’E1,n.|_2,@/\

x]_,n_i_S/\ VAN :Cl’nk__]_’u AN .lenk,# .

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

Pstart = 5131,1 T1,2(go)
fL‘1,3, AN 561’4, AN AN .’E1,n.|_2,@/\
xl,n+3/\ VAN le,n’“-—l/\ Ty nk g -

Coolk-Levin
Theorem: ¢aiart

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

(ﬁ’Start — xl,l 581,2/\
fL‘1,3, AN 561’4, AN AN .’E1,n.|_2,@/\
xl,n+3/\ VAN le,n’“-—l/\ .lenk.

Cook-Levin
Theorem: ¢accep&

Formula ¢,ccepe guarantees that an accepting configuration occurs in the
tableau. It ensures that g,ccepr, the symbol for the accept state, appears in one
of the cells of the tableau, by stipulating that one of the corresponding variables
1S on:

‘fpaccept —

Coolk-Levin
Theorem: Pmove

(d)

FIGURE 7.39
Examples of legal windows

B Cook-Levin
H}} I Theorem: Pmove

EEE oFEE oBER
q1 72 g2

FIGURE 7.40
Examples of illegal windows

B Cook-Levin
H}} I Theorem: Pmove

R FEE oBER
q1 72 g2

8(q1,b)=(q1,¢,L)

FIGURE 7.40
Examples of illegal windows

Cook-lLevi
Theorem: ¢nove

cLAIM 7.41

If the top row of the table is the start configuration and every window in the

table is legal, each row of the table is a configuration that legally follows the
preceding one.

Cook-lLevi
Theorem: ¢nove

Now we return to the construction of ¢poyve. It stipulates that all the windows
in the tableau are legal. Each window contains six cells, which may be set in
a fixed number of ways to yield a legal window. Formula ¢yove says that the

settings of those six cells must be one of these ways, or

Pmove = /\ (the (4, j) window is legal)

1<i<nk, 1<j<nk

Cook-lLevi
Theorem: ¢nove

We replace the text “the (i, j) window is legal” in this formula with the following
formula. We write the contents of six cells of a window as a4, ..., as.

\/ (Tij—1,01 N Tijias A Tij41,as N Tielj—1,a5 N Tig1jias N Titl,j41,a0)
al,...,ae6
is a legal window

Coolk-Levin

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢.

Coolk-Levin

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢.

(@) € SAT

4t
N accep%s w
within nk steps.

3SAT s
NP-Complete

literal is a Boolean variable or a negated Boolean variable, as in z or Z. A clause
is several literals connected with Vs, as in (z; VT3 VT3 V 24). A Boolean for-
mula is in conjunctive normal form, called a cnf-formula, if it comprises several

clauses connected with As, as in

(1 VT2 VT3V xg) A (x3VT5Vixg) N\ (23V Tg).

It is a 3cnf-formula if all the clauses have three literals, as in

(1 VZ2VZ3) AN (23 VT5 Vag) A (3 VTg V) N (x4 VsV xg).

Let 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula}. In a satisfiable cnf-formula,
each clause must contain at least one literal that is assigned 1.

2ISAT s
NtP-Com FL@.& e

COROLLARY 7.42
3SAT is NP-complete.

PROOF Obviously 3847 is in NP, so we only need to prove that all languages

in NP reduce to 3547 in polynomial time. One way to do so is by showing
that SAT polynomial time reduces to 3S47. Instead, we modity the proof of
Theorem 7.37 so that it directly produces a formula in conjunctive normal form
with three literals per clause.

Coole~Levin
Theorem

Qbstart — L1,1.% A ml,2,€10/\

T1,3,w1 NT14,00 N oo o N T 042w, N

L1,n+3,U JANPIRAN ml’nk_l’u N xl,nk,# .

Qﬁaccept — \/ m'iaj yQaccept *

1<4,5<nk

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already

in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already
in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already

in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already

in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already
in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

¢’start — -7;1,1,# A ‘/BLQ,Q‘O/\

X1,3w; NT1 a0, N e N1 042w, N

T1n+3,u N o ATy kg N Tp kg -

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already

in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already
in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

(baccept — \/ L4,5,Gaccept -

1<4,5<nk

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already

in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Com Fi@.& e

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already
in cnt. Formula ¢y 1s @ big AND of variables. Taking each of these variables to
be a clause of size 1 we see that @seye 15 in cnf. Formula ¢yccepe 15 a big OR of vari-
ables and is thus a single clause. Formula ¢4y, 15 the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

Pmove = /\ (the (4, j) window is legal)

1<i<nk, 1<j<nk

Coole~Levin
Theorem

Omove = /\ (the (z, 7) window is legal)

1<i<nk, l<j<nk

V (Tij—1,01 A Tijias A Tij41,as N Tielj—1,a5 A Tit1jias N Titl,j41,a0)
al,...,a6
is a legal window

NP-Com Pl@ﬁ e

Recall that ¢pove 1s 2 big AND of subformulas, each of which is an OR of ANDs
that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of

ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of @meve by a constant factor because the size of each
subformula depends only on N. The result 1s a formula that 1s in conjunctive

normal form.

NP-Com Fﬂ.@.& e

Pmove = /\ (the (z, 7) window is legal)

1<i<nk, 1<j<nk

Recall that ¢pove 1s 2 big AND of subformulas, each of which is an OR of ANDs

that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of
ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of @meve by a constant factor because the size of each
subformula depends only on N. The result 1s a formula that 1s in conjunctive

normal form.

NP-Com Pl@ﬁ e

Recall that ¢pove 1s 2 big AND of subformulas, each of which is an OR of ANDs
that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of

ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of @meve by a constant factor because the size of each
subformula depends only on N. The result 1s a formula that 1s in conjunctive

normal form.

S AT LS
NP-Com Fﬂ.@.& e

v (wi,j—*l,al /\ x?l,j,az /\ xi,j+11a3 /\ :U'i+1,j—1,a4 /\ xi'}_lsjvafi /\ $Z+1,]+1,(16)
Al,y,...,08
is a legal window

Recall that ¢pove 1s 2 big AND of subformulas, each of which is an OR of ANDs

that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of
ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of @meve by a constant factor because the size of each
subformula depends only on N. The result 1s a formula that 1s in conjunctive

normal form.

NP-Com Fﬂ.@.& e

v (wi,j—"l,al /\ 'T'll,j,az /\ -Tz',j—{-l,a,g /\ :U'i+1,j—1,a4 /\ xi'}_lsjvafi /\ mz+17]+1706)
Al,y,...,08
is a legal window

* PV(QAR)equals(PVQ)A(PVR).

Recall that ¢pove 1s 2 big AND of subformulas, each of which is an OR of ANDs

that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of
ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of @meve by a constant factor because the size of each
subformula depends only on N. The result 1s a formula that 1s in conjunctive

normal form.

S AT LS
NP-Com F?l@.& e

Now that we have written the formula in cnf, we convert it to one with three
literals per clause. In each clause that currently has one or two literals, we repli-

cate one of the literals until the total number is three. In each clause that has
more than three literals, we split it into several clauses and add additional vari-
ables to preserve the satisfiability or nonsatisfiability of the original.

3SAT Ls
NP-Com z Llete

For example, we replace clause (a1 V as Vag V as), wherein each q; is a literal,
with the two-clause expression (a1 V as V 2) A (Z V a3 V aq), wherein z 1s a new
variable. If some setting of the a;’s satisfies the original clause, we can find some
setting of z so that the two new clauses are satisfied. In general, if the clause

contains [literals,
(a1 Vag V---Vap),
we can replace it with the [— 2 clauses

(a1 VasVz1)AN(ZTVazsVz)A(ZzVasVz3) A --A(Zi3Va_1Va).

We may easily verify that the new formula is satisfiable iff the original formula
was, so the proof is complete.

CLIQUE s
N‘P*Cc»m?i@.%e

THEOREM 7.32
3SAT is polynomial time reducible to CLIQUE.

PROOF IDEA 'The polynomial time reduction f that we demonstrate from
3SAT to CLIQUE converts formulas to graphs. In the constructed graphs,
cliques of a specified size correspond to satisfying assignments of the formula.
Structures within the graph are designed to mimic the behavior of the variables
and clauses.

CLIQUE (s
N‘P*CQMF?L@.%Q

PROOF Let¢ 1th k& clauses such as

d=(a1 Vb Ver) AN(aaVbaVe) A -+ A (ak Vb V)

The reduction f generates the string (G, k), where G is an undirected graph

defined as follows.

The nodes in G are organized into k groups of three nodes each called the
triples, t,, ..., tr. Each triple corresponds to one of the clauses in ¢, and each
node in a triple corresponds to a literal in the associated clause. Label each node
of G with its corresponding literal in ¢.

The edges of G connect all but two types of pairs of nodes in GG. No edge
is present between nodes in the same triple and no edge is present between two
nodes with contradictory labels, as in z2 and Z3. The following figure illustrates
this construction when ¢ = (1 Va3 Vas) A (Z7VZ2VZ2) A (T1 Va2 V22).

CLIQUE (s
N‘E’*CQMPL&@.

FIGURE 7.33
'The graph that the reduction produces from
p={(rrVei V) N (@TIVT2VT2) A (T1 V2V T3)

CLIQUE e NP-Complete:
(¢)EBSAT =>» (G,k) ECLIQUN

Suppose that ¢ has a satisfying assignment. In that satisfying assignment, at
least one literal is true in every clause. In each triple of G, we select one node
corresponding to a true literal in the satisfying assignment. If more than one
literal is true in a particular clause, we choose one of the true literals arbitrarily.
The nodes just selected form a k-clique. The number of nodes selected is &,

because we chose one for each of the & triples. Fach pair of selected nodes is
joined by an edge because no pair fits one of the exceptions described previously.
They could not be from the same triple because we selected only one node per
triple. They could not have contradictory labels because the associated literals
were both true in the satistying assignment. Therefore G contains a k-clique.

CLIQUE € N‘P-"CQMPLQ%@.:
(Gr,le) ECLIQUE -> (¢)E3SAT

Suppose that G has a k-clique. No two of the clique’s nodes occur in the same
triple because nodes in the same triple aren’t connected by edges. Therefore
each of the k triples contains exactly one of the k clique nodes. We assign truth
values to the variables of ¢ so that each literal labeling a clique node is made
true. Doing so is always possible because two nodes labeled in a contradictory

way are not connected by an edge and hence both can’t be in the clique. This
assignment to the variables satisfies ¢ because each triple contains a clique node
and hence each clause contains a literal that is assigned TRUE. Therefore ¢ is
satisfiable.

Verbtex—-Cover is
N‘P*COMPL@.E@.

THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where
every edge of GG touches one of those nodes. The vertex cover problem asks
whether a graph contains a vertex cover of a specified size:

VERTEX-COVER = {(G, k)| G 1s an undirected graph that

has a k-node vertex cover}.

Verbtex—-Cover is
N‘P*Com!pt@.%e

THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where
every edge of GG touches one of those nodes. The vertex cover problem asks

whether a graph contains a vertex cover of a specified size:

VERTEX-COVER = {(G, k)| G 1s an undirected graph that
has a k-node vertex cover}.

THEOREM 7.44
VERTEX-COVER is NP-complete.

Vertex—-Cover is
N‘P*CQMF?L@.%Q

PROOF Here are the details of a reduction from 3SAT to VERTEX-COVER
that operates in polynomial time. The reduction maps a Boolean formula ¢ to a
graph G and a value k. For each variable x in ¢, we produce an edge connecting
two nodes. We label the two nodes in this gadget z and Z. Setting z to be
TRUE corresponds to selecting the left node for the vertex cover, whereas FALSE
corresponds to the right node.

Verbtex—-Cover is
N‘P*CQMFL@.E@.

The gadgets for the clauses are a bit more complex. Each clause gadget is a
triple of three nodes that are labeled with the three literals of the clause. These
three nodes are connected to each other and to the nodes in the variables gadgets
that have the identical labels. Thus the total number of nodes that appear in G
is 2m + 3l, where ¢ has m variables and [clauses. Let & be m + 2.

For example, if ¢ = (zy Vo, Vae) A (TT VI3 VIZ) A (T1 Vo V xy), the
reduction produces (G, k) from ¢, where k = 8 and G takes the form shown in
the following figure.

FIGURE 7.45
The graph that the reduction produces from
d=(x1VziVz) A (FTVEVE:) A (FTTV x2 V Zo

Vertex—Cover € N‘P*(..QMF?L@.%@.*
(¢) € 3SAT =» (=~ \fw(__

To prove that this reduction works, we need to show that ¢ is satisfiable if and
only if G has a vertex cover with & nodes. We start with a satisfying assignment.
We first put the nodes of the variable gadgets that correspond to the true literals
in the assignment into the vertex cover. Then, we select one true literal in every

clause and put the remaining two nodes from every clause gadget into the vertex
cover. Now, we have a total of k nodes. They cover all edges because every vari-
able gadget edge is clearly covered, all three edges within every clause gadget are
covered, and all edges between variable and clause gadgets are covered. Hence
(7 has a vertex cover with £ nodes.

Vertex—-Cover € NP-Complete:

(G, i) EV-C -> (¢)E 3SAT

Second, if G has a vertex cover with k nodes, we show that ¢ is satisfiable
by constructing the satisfying assignment. The vertex cover must contain one
node in each variable gadget and two in every clause gadget in order to cover
the edges of the variable gadgets and the three edges within the clause gadgets.
That accounts for all the nodes, so none are left over. We take the nodes of the
variable gadgets that are in the vertex cover and assign the corresponding literals

TRUE. That assignment satisfies ¢ because each of the three edges connecting
the variable gadgets with each clause gadget is covered and only two nodes of
the clause gadget are in the vertex cover. Therefore one of the edges must be
covered by a node from a variable gadget and so that assignment satisfies the
corresponding clause.

Bevomd
N‘P*C‘.Qm?{eﬁemess

Bevomd
N‘P*C‘.Qm?{e&mess

o PSpace Completeness: problems that
require a reasonable (Poly) amount of
space to be solved but May use very
long time though,

Bevomd
N‘P*C‘.Qm?{e&mess

o PSpace Completeness: problems that
require a reasonable (Poly) amount of
space to be solved but May use very
long time though,

o Many such Farc;)bi.ems‘ if any of them
moay be solved within reasonable (Poly)
amount of time, then all of them can,

Bevowi
N‘P*CQMPLQ%@MQSS

DEFINITION 8.1

Let M be a deterministic Turing machine that halts on all inputs.
The space complexity of M is the function f: N— N, where f(n)
is the maximum number of tape cells that M scans on any input of
length n. If the space complexity of M is f(n), we also say that M

runs in space f(n).
If M is a nondeterministic Turing machine wherein all branches

halt on all inputs, we define its space complexity f(n) to be the
maximum number of tape cells that M scans on any branch of its

computation for any input of length n.

Space Complexity

DEFINITION 8.2

Let f: N—R™ be a function. The space complexity classes,
SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

SPACE(f(n)) = {L| L is a language decided by an O(f(n)) space
deterministic Turing machine}.
NSPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

nondeterministic Turing machine}.

THEOREM 8.5

Savitch’s theorem For any! function f: N— R, where f(n) > n,
NSPACE(f(n)) C SPACE(f*(n)).

Spat:e Cmm[ptexi;%v

DEFINITION 8.6

PSPACE is the class of languages that are decidable in polynomial
space on a deterministic Turing machine. In other words,

PSPACE = | |SPACE(n*).

We define NPSPACE, the nondeterministic counterpart to PSPACE, in

terms of the NSPACE classes. However, PSPACE = NPSPACE by virtue of
Savitch’s theorem, because the square of any polynomial is still a polynomial.

P C NP C PSPACE = NPSPACE C EXPTIME = |J, TIME(2"

Decidable
Languages

Spaﬂe/ Time Complexity

Sp&t:@./ Time C.Qmpt@.x&v
Decidable
Languages ' ,

Decidable
Languages

Spaﬂe/ Time Complexity

Sp&ae/Time C’.Qmpt@.xi&v
Decidable
Languages ' »

®

PSpace=EXPTime ?

Decidable
Languages

Spaﬂe/ Time Complexity

Decidable
Languages

Spa&@./“f&me Comptexiiv

P2EXPTime

Spat:e Cmm[ptexi;%v

DEFINITION 8.8
A language B is PSPACE-complete if it satisfies two conditions:
1. B is in PSPACE, and

2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-bard.

?’Space Camgvleﬁemess

?’Space Camgoleﬁemess

3 Geogro\ghj Crame!

Griven a set of country names: Aruba, Cuba,
Canada, Equador, France, Italy, Japan, Korea,
Nigeria, Russia, Vietham, Yemen,

?’Spo«t@. Camtzol&emess

o Geography Game:

Griven a set of country names: Aruba, Cuba,
Canada, Equador, France, Italy, Japan, Korea,
Nigeria, Russia, Viebham, Yemen,

o A two Ftaj@.r game: Ohe F?Lajer chooses a
name and crosses it out. The other ptaver
must choose a name that starts with the Last
letter of the previous name and so on. A
Ptaver wins when his OPPOMEME cannot F’mj
any name.

Greneralized Geagra[pkv

Creneralized Gewgrapkv

o Criven al cxrbi;%ro\rj set o{ names:
W31 ey WG

Generalized Geography

o Criven al cxrbi&r&ry set onf narmes:
W31 ey WG

o Is there a winning strateqgy for the
first player to the previous game ?

Theoretical
Compu@er Sclence

Theoretical
Compu@er Sclence

o Challenges of TCS:

Theoretical
Compu@er Sclence

o Challenges of TCS:

o FIND efficient solutions to many problems.
(Algorithms and Data Structures)

Theoretical
Compu&er Sclence

o Challenges of TCS:

o FIND efficient solutions to many problems.
(Algorithms and Data Structures)

o PROVE Ehab certain Probtems are NOT
compuﬁabm within a certain time or space.

Theoretical
Compu&er Sclence

o Challenges of TCS:

o FIND efficient solutions to many problems.
(Algorithms and Data Structures)

o PROVE Ehal certain probtems are NOT
compuﬁabte within a certain time or space.

o Consider new models of tampu&o\&cw
(Such as o Quantum Computber)

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 22-23 :
Introduction to Complexity

