COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 20-21: Reducibility

All languages

eory

Context-free
Languages

UNdecidable UNdecidable
via Diagonalization via Reductions

Reducibility

Decidable Undecidable

ATm

PCP

Reducibility

Reducibility always involves two problems, which we call A and B. If A re-
duces to B, we can use a solution to B to solve A. So in our example, A is the
problem of finding your way around the city and B is the problem of obtaining

a map. Note that reducibility says nothing about solving A or B alone, but only
about the solvability of A in the presence of a solution to B.

Reducibility

HALT v = {{(M,w)| M is a TM and M halts on input w}.

THEOREM 5.1
HALT+m 1s undecidable.

Reducibility

PROOF Let’s assume for the purposes of obtaining a contradiction that TM
R decides HALTtm. We construct TM S to decide Atm, with S operating as

follows.

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).

2. If R rejects, reject. |
3. If R accepts, simulate M on w until it halts.

4. 1f M has accepted, accept; if M has rejected, reject.”

Clearly, if R decides HALT vy, then S decides Atm. Because Aty is unde-
cidable, HA LT 1y also must be undecidable.

Reducibility

Evm = {(M)| M isaTM and L(M) = (}.

THEOREM 5.2

FEtm 1s undecidable.

Reducibility

PROOF Let’s write the modified machine described in the proof idea using
our standard notation. We call it M;.

M, = “On input z:
1. Ifx # w, reject.
2. Ifx =w, run M on input w and accept if M does.”

'This machine has the string w as part of its description. It conducts the test
of whether x = w in the obvious way, by scanning the input and comparing it
character by character with w to determine whether they are the same.

Reducibility

Putting all this together, we assume that TM R decides £Etm and construct TM
S that decides Atm as follows.

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M; just
described.

2. Run R on input (M).
3. If R accepts, reject; if R rejects, accept.”

Note that § must actually be able to compute a description of M; from a
description of M and w. It is able to do so because it needs only add extra states
to M that perform the z = w test.

If R were a decider for Etm, S would be a decider for Atm. A decider for
Atm cannot exist, so we know that Fry must be undecidable.

Reducibility

REGULARtm = {(M)| M isaTM and L(M) is a regular language}.

THEOREM 5.3
REG’ULARTM s undecidable.

Reducibility

PROOF We let R be a TM that decides REGULA Rty and construct TM S to

decide Atm. Then S works in the following manner.

S = “On input (M, w), where M isa TM and w is a string:
1. Construct the following TM M.
M, = “On input z:
1. If x has the form 0™1", accept.
2. If x does not have this form, run M on input w and
accept it M accepts w.”

2. Run R on input (Ms).
3. If R accepts, accept; it R rejects, reject.”

{OnIn| Nn20} if M rejects w

L(M2)=
Dk if M accepts w

Reducibility

EQym = {{(M1, M2)| M; and My are TMs and L(M;) = L(M>)}.

THEOREM 5.4
E Q-+ 1s undecidable.

Reducibility

PROOF We let TM R decide F(Q)+\ and construct TM S to decide Etm as
tollows.

S = “On input (M), where M is a TM:
1. Run R on input (M, M), where M is a TM that rejects all in-
puts.
2. If R accepts, accept; it R rejects, reject.”

If R decides EQ+y, S decides Etry. But Ery is undecidable by Theorem 5.2,
so EQ1\ also must be undecidable.

Reducibility

Decidable Undecidable
EQcrac
ATtm
HALT ™

Et™m
REGULARTM

EQ1wv™
PCP

Reducibility

AlLLcrc

Decidable Undecidable

EQcrG
ATm

PCP
MPCP

Reducibility

5.28 Rice’s theorem. Let P be any nontrivial property of the language of a Turing
machine. Prove that the problem of determining whether a given Turing machine’s
language has property P is undecidable.

In more formal terms, let P be a language consisting of Turing machine descrip-

tions where P fulfills two conditions. First, P is nontrivial—it contains some, but
not all, TM descriptions. Second, P is a property of the TM’s language—whenever
L(M,) = L(Mzy), we have (M) € P itf (M2) € P. Here, M; and M are any
TMs. Prove that P is an undecidable language.

Post Correspondence
Problem

Post Correspondence
3 Problem
Wil

@ In 1946, Emil Post gave a very natural

example of an undecidable language...

Post Correspondence
Problem

7

E/Post ‘

i/

@ In 1946, Emil Post gave a very natural
example of an undecidable language...

@ It is the "Post Correspondence Problem".

Post Correspondence
Problem

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP

ad
d

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP

aa bbb
d d

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP

aa bbb b

d d

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP

aa bbb b

e bb

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP

aa bbb b

R e bb! |bb

Post Correspondence
Problem

(og

aaa"™ a bbb aa
bb bb a a bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP e + +
aa| |bbb['b| |_I"|_ ool . |lo.o
a‘f1a bb bb o

= =

® ® O
®

O ® O
© [

[

o SR
®

®
@

Post Correspondence
Problem

aaa” 4a bbbiaa 7D
bb -bb|| 2a a- «bb

@ An instance of PCP with 6 dominos.

@ A solution to PCP

aa bbb b

R e bb! |bb

A Solution to PCP

A Solution to PCP

Ui Us Us Un
V1 Vo2 V3 Vn

A Solution to PCP

® A solution is of this form:

A Solution to PCP

® A solution is of this form:

i, Wi, Wi, U Ui Ui

A Solution to PCP

® A solution is of this form:
Ui, Ui, Uj Ui, Ui Ui,
Viel F Vi | Vi | PV E T Ve Vi
s.t.
Uj,oUuj,oUuj,° ... oUj = Vj,oVj,°Vj,0 ... oV ¢

Post Correspondence
Problem

Post Correspondence
Problem

® Theorem:

The Post Correspondence Problem cannot be

decided by any algorithm (or computer
program). In particular, no algorithm can
identify in a finite amount of time some

instances that have a No outcome. However, if

a solution exists, we can find it. PCP is Turing-
recognizable.

Reducing Atm TO N\PCP ‘
a (mostly) complete example

Post Correspondence
Problem

Post Correspondence
Problem

@ Proof ldea:

Reduction - if PCP was decidable then the
ACCEPTANCE problem would be decidable as well.

Computation History

DEFINITION 5.5

Let M be a Turing machine and w an input string. An accepting
computation bistory for M on w is a sequence of configurations,
Cy, Cy,...,Cy, where C] is the start configuration of M on w, Cj is

an accepting configuration of M, and each C; legally follows from
C;—1 according to the rules of M. A rejecting computation hbis-
tory tor M on w is defined similarly, except that C; is a rejecting
configuration.

ATM Z A s’rory
a Reduction In Seven
to MPCP parts

ATM g
a Reduction
to MPCP

A story
In Seven
parts

ATM g
a Reduction
to MPCP

A story
In Seven
parts

ATM .
a Reduction
to MPCP

A story
In Seven
parts

ATM .
a Reduction
to MPCP

A story
In Seven
parts

ATM .
a Reduction
to MPCP

A story
In Seven
parts

ATM 2 A s’rory
a Reduction In Seven
to MPCP parts

@ Qaccept

_—

(accept

Gaccept 4

—_—

Gaccept

ATM .
a Reduction

A story
In Seven
parts

@ Qaccept

_—

(accept

Gaccept 4

—_—

Gaccept

Reducing Atm to MPCP

PROOF We let TM R decide the PCP and construct S deciding Atm. Let
M = (Q; E, F; 5) 0, Qaccept; Qreject)a

where Q, 3, T, and 4, are the state set, input alphabet, tape alphabet, and transi-
tion function of M, respectively.

Reducing Atm to MPCP

PROOF We let TM R decide the PCP and construct S deciding Atm. Let
M = (Q; E, F; 5) 0, Qaccept; Qreject)a

where Q, 3, T, and 4, are the state set, input alphabet, tape alphabet, and transi-

tion function of M, respectively.

MPCP = {(P)| P is an instance of the Post correspondence problem

with a match that starts with the first domino}.

Reducing Atm to MPCP

PROOF We let TM R decide the PCP and construct S deciding Atm. Let

M = (Q; E, F; 5& 0, Qaccept; Qreject)a

where Q, 3, T, and 4, are the state set, input alphabet, tape alphabet, and transi-
tion function of M, respectively.

MPCP = {(P)| P is an instance of the Post correspondence problem
with a match that starts with the first domino}.

In this case S constructs an instance of the PCP P that has a match iff M
accepts w. To do that S first constructs an instance P’ of the MPCP. We describe
the construction in seven parts, each of which accomplishes a particular aspect of
simulating M on w. 'To explain what we are doing we interleave the construction
with an example of the construction in action.

Part 1. 'The construction begins in the following manner.

#
#qowiwz - - Wy #

: , 2
] into P’ as the first domino [-I-)—l—] .
1
Because P’ is an instance of the MPCP, the match must begin with this domino.
Thus the bottom string begins correctly with C; = gow w2 - - - w,,, the first con-
figuration in the accepting computation history for M on w, as shown in the

following figure.

Put [

ez o W1 Wy ... Wy #

FIGURE J3.16
Beginning of the MPCP match

Reducing Atm to MPCP

In this depiction of the partial match achieved so far, the bottom string con-
sists of #gow,ws - - - wy,# and the top string consists only of #. To get a match we
need to extend the top string to match the bottom string. We provide additional
dominos to allow this extension. The additional dominos cause M’s next conhig-

uration to appear at the extension of the bottom string by forcing a single-step
simulation of M.

In parts 2, 3, and 4, we add to P’ dominos that perform the main part of
the simulation. Part 2 handles head motions to the right, part 3 handles head
motions to the left, and part 4 handles the tape cells not adjacent to the head.

Reducing Atm to MPCP

Part 2. Forevery a,b € I' and every ¢,r € Q where q # greiect,

a

if 6(q,a) = (r,b,R), put [Z_r] into P’.

Reducing Atm to MPCP

Part 2. Forevery a,b € I' and every ¢,r € Q where q # greiect,

a

if 6(q,a) = (r,b,R), put [q_] into P’.

br

Part 3. Forevery a,b,c € I' and every ¢, r € Q where ¢ # greject

if 6(q,a) = (r,b,L), put [9-?2} into P’.

rcb

Reducing Atm to MPCP

Part 2. Forevery a,b € I' and every ¢,r € Q where q # greiect,
a

if 6(q,a) = (r,b,R), put [g—r] into P’.

Part 3. Forevery a,b,c € I' and every ¢, r € Q where ¢ # greject

cqa

if 6(q,a) = (r,b,L), put [——q—} into P’.

rcb

Part4. Foreverya €T,

a
t |—| into P’.
pu [a]mo

Now we make up a hypothetical example to illustrate what we have built so
far. Let I' = {0,1,2,u}. Say that w is the string 0100 and that the start state
of M is go. In state go, upon reading a 0, let’s say that the transition function
dictates that M enters state g7, writes a 2 on the tape, and moves its head to the
right. In other words, (qp, 0) = (g7, 2, R).

Part 1 places the domino

eaotoon) = |
#go0100#)

in P’, and the match begins:

#

U el T §

In addition, part 2 places the domino

as 6(qo, 0) = (g7, 2, R) and part 4 places the dominos

5] (£} (5] nd [

in P’ as 0, 1, 2, and u are the members of I'. That, together with part 5, allows
us to extend the match to

Reducing Atm to MPCP

Thus the dominos of parts 2, 3, and 4 let us extend the match by adding
the second configuration after the first one. We want this process to continue,

adding the third configuration, then the fourth, and so on. For it to happen we
need to add one more domino for copying the # symbol.

Reducing Atm to MPCP

Thus the dominos of parts 2, 3, and 4 let us extend the match by adding
the second configuration after the first one. We want this process to continue,
adding the third configuration, then the fourth, and so on. For it to happen we
need to add one more domino for copying the # symbol.

Put [—z—] and {-#—} into P’.

u#

The first of these dominos allows us to copy the # symbol that marks the sep-
aration of the configurations. In addition to that, the second domino allows us

to add a blank symbol u at the end of the configuration to simulate the infinitely
many blanks to the right that are suppressed when we write the configuration.

Reducing Atm to MPCP

Continuing with the example, let’s say that in state g7, upon reading a 1, M
goes to state gs, writes a 0, and moves the head to the right. That s, 6(g7,1) =
(g5,0,R). Then we have the domino

17.
[27—] in P’
Ogs

So the latest partial match extends to

Then, suppose that in state g5, upon reading a 0, M goes to state gg, writes
a 2, and moves its head to the left. So d(¢5,0) = (q9,2,1.). Then we have the

dominos
[0(]50] [1(]50] [2q50'
qo021" Lgg121 1 gg22.

The first one is relevant because the symbo!
preceding partial match extends to

Note that, as we construct a match, we are forced to simulate M on input w.
'This process continues until M reaches a halting state. If an accept state occurs,
we want to let the top of the partial match “catch up” with the bottom so that
the match is complete. We can arrange for that to happen by adding additional
dominos.

Part 6. Foreverya €T,
@ Qaccept] and [Qaccept a

(accept

} into P’.

put

Gaccept

This step has the effect of adding “pseudo-steps” of the Turing machine after
it has halted, where the head “eats” adjacent symbols until none are left. Con-
tinuing with the example, if the partial match up to the point when the machine
halts in an accept state is

#H 2 (]accept ey #

Reducing Atm to MPCP

The dominos we have just added allow the match to continue:

Part 7. Finally we add the domino
[Qaccept##]

#

and complete the match:

(]accept #

(]accept # |

That concludes the construction of P’. Recall that P’ is an instance of the

MPCP whereby the match simulates the computation of M on w. To finish
the proof, we recall that the MPCP differs from the PCP in that the match is

required to start with the first domino in the list. If we view P’ as an instance of

the PCP instead of the MPCP, it obviously has a match, regardless of whether
M halts on w. Can you find it? (Hint: It is very short.)

ATM .
a Reduction

A story
In Seven
parts

@ Qaccept

_—

(accept

Gaccept 4

S —

Gaccept

Reducing Atm TO N\PCP ‘
a (mostly) complete example

Reducing MPCP to PCP

We now show how to convert P’ to P, an instance of the PCP that still simu-
lates M on w. We do so with a somewhat technical trick. 'The idea is to build the
requirement of starting with the first domino directly into the problem so that
stating the explicit requirement becomes unnecessary. We need to introduce
some notation for this purpose.

Let u = uwjuz - - - uy, be any string of length n. Define xu, ux, and xux to be
the three strings

*U UL ¥ U2 XkUI X 0 XUy
U*k Up U *UI k) XUy ¥
*UX U kU2 RUI X 0 XU X,

Here, xu adds the symbol * before every character in u, ux adds one after each
character in u, and xux adds one both before and after each character in w.

Reducing MPCP to PCP

To convert P’ to P, an instance of the PCP, we do the following. If P’ were

))G G

the collection

we let P be the collection

s G el 53] Bl (1)

Reducing MPCP to PCP

Considering P as an instance of the PCP, we see that the only domino that
could possibly start a match is the first one,

[*11]
bl ’
because it is the only one where both the top and the bottom start with the same

symbol—namely, . Besides forcing the match to start with the first domino, the

presence of the *s doesn’t affect possible matches because they simply interleave
with the original symbols. The original symbols now occur in the even positions

is there to allow the top to add the extra x at the end of the match.

...

Reducibility

AlLLcrc

Decidable Undecidable
EQcrFG

PCP
MPCP

Reducibility

ALLcrg = {(G)| GisaCFGand L(G) = ¥*}.

THEOREM 5.13
ALLcgg is undecidable.

EQcrc decidable = ALLcrc decidable
EQcrc = { {G1,G2) | G1,G;2 are CFGs and L(G))=L(Gy)}

Let (G2) be such that L(G2)=>* (G2 R— g|OR| IR)
(€) CALLcrc & (G, Gy) EEQCFG

ALLcrg decidable = AT1mMm decidable

We now describe how to use a decision procedure for AL Lcgg to decide Atpm.
For a TM M and an input w, we construct a CFG G that generates all strings if
and only if M does not accept w. So if M does accept w, G does not generate
some particular string. This string is—guess what—the accepting computation
history for M on w. That is, G is designed to generate all strings that are not
accepting computation histories for M on w.

'To make the CFG G generate all strings that fail to be an accepting computa-
tion history for M on w, we utilize the following strategy. A string may fail to be
an accepting computation history for several reasons. An accepting computation
history for M on w appears as #C 1 #Co# - - - #C)#, where C; 1s the configuration
of M on the ith step of the computation on w. Then, G generates all strings

1. that do not start with (1,
2. that do not end with an accepting configuration, or
3. in which some C; does not properly yield C;11 under the rules of M.

It M does not accept w, no accepting computation history exists, so #// strings
fail in one way or another. Therefore, G would generate all strings, as desired.

PDA D(eG) for
M does not accept w

FIGURE 5.14
Every other configuration written in reverse order

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

@ The third branch is supposed to accept if some C; does not properly
Y|eld Ci+1:

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

@ The third branch is supposed to accept if some C; does not properly
Y|eld Ci+1:

m It works by scanning the input until it nondeterministically decides that it
has come to Ci.

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

@ The third branch is supposed to accept if some C; does not properly
Y|eld Ci+1:

m It works by scanning the input until it nondeterministically decides that it
has come to Ci.

B Next, it pushes C; onfo the stack until it comes fo the end as marked by the
symbol.

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

@ The third branch is supposed to accept if some C; does not properly
Y|eld Ci+1:

m It works by scanning the input until it nondeterministically decides that it
has come to Ci.

B Next, it pushes C; onfo the stack until it comes fo the end as marked by the
symbol.

m Then D pops the stack to compare with Ci,i.

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

@ The third branch is supposed to accept if some C; does not properly
Y|eld Ci+1:

m It works by scanning the input until it nondeterministically decides that it
has come to Ci.

B Next, it pushes C; onfo the stack until it comes fo the end as marked by the
symbol.

m Then D pops the stack to compare with Ci,i.

B They are supposed to match except around the head position, where the
difference is dictated by the transition function of M.

® One branch checks on whether the beginning of the input string is
C: and accepts if it isnt.

@ Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isnt.

@ The third branch is supposed to accept if some C; does not properly
Y|eld Ci+1:

It works by scanning the input until it nondeterministically decides that it
has come to Ci.

Next, it pushes C; onto the stack until it comes to the end as marked by the
symbol.

Then D pops the stack to compare with Ci,..

They are supposed to match except around the head position, where the
difference is dictated by the transition function of M.

Finally, D accepts if it discovers a mismatch or an improper update.

PDA D(eG) for
(M) does not accept w

z *\{accepting computation history} |f M acce PtS \""4
L(D)=

2 *® if M rejects w

@ On input (M,w) generate (G) s.t.
L(G)=3* « M rejects w

@ If Allcs is decidable, then so is Atm.

Computable Functions

A 'Turing machine computes a function by starting with the input to the function
on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function f: ¥*—— 3" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Computable Functions

A 'Turing machine computes a function by starting with the input to the function
on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function f: ¥*—— 3" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

EXAMPLE 5.18

All usual arithmetic operations on integers are computable functions. For exam-
ple, we can make a machine that takes input (m, n) and returns m + n, the sum
of m and n. We don’t give any details here, leaving them as exercises.

Mapping Reducibility

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational prob-
lems by languages.

DEFINITION 5.20

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥*— ¥*, where for every w,

w e A<= f(w) € B.

The function f is called the reduction of A to B.

Mapping Reducibility

The following figure illustrates mapping reducibility.

THEOREM 5.22
If A <., B and B is decidable, then A is decidable.
PROOF We let M be the decider for B and f be the reduction from A to B.

We describe a decider N for A as follows.

N = “On input w:
1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs.”

Clearly, if w € A, then f(w) € B because f is a reduction from A to B. Thus
M accepts f(w) whenever w € A. Therefore N works as desired.

THEOREM 5.22
If A <., B and B is decidable, then A is decidable.
PROOF We let M be the decider for B and f be the reduction from A to B.

We describe a decider N for A as follows.

N = “On input w:
1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs.”

Clearly, if w € A, then f(w) € B because f is a reduction from A to B. Thus
M accepts f(w) whenever w € A. Therefore N works as desired.

COROLLARY 5.23
If A <,, B and A is undecidable, then B is undecidable.

EXAMPLE 5.24

In Theorem 5.1 we used a reduction from Aty to prove that HALT 1ty is un-
decidable. This reduction showed how a decider for HALT v could be used to
give a decider for Atym. We can demonstrate a mapping reducibility from Aty
to HALTt\ as follows. To do so we must present a computable function f that
takes input of the form (M, w) and returns output of the form (M’ w'), where

(M,w) € Atm if and only if (M’ w') € HALT tm.
The following machine F' computes a reduction f.

F =“On mput (M, w):
1. Construct the following machine M’.
M’ = “On input z:
I. Run M on z.
2. If M accepts, accept.
3. If M rejects, enter a loop.”

2. Output (M’ w).”

Mapping Reducibility

EXAMPLE 5.25

The proof of the undecidability of the Post correspondence problem in Theo-
rem 5.15 contains two mapping reductions. First, it shows that Aty <,, MPCP

and then it shows that MPCP <, PCP. In both cases we can easily obtain
the actual reduction function and show that it is a mapping reduction. As Ex-
ercise 5.6 shows, mapping reducibility is transitive, so these two reductions to-
gether imply that Aty <, PCP.

Mapping Reducibility

THEOREM 5.28

If A <, B and B is Turing-recognizable, then A is Turing-recognizable.

The proof is the same as that of Theorem 5.22, except that M and NV are recog-
nizers instead of deciders.

Mapping Reducibility

THEOREM 5.28

If A <, B and B is Turing-recognizable, then A is Turing-recognizable.

The proof is the same as that of Theorem 5.22, except that M and NV are recog-
nizers instead of deciders.

COROLLARY 5.29

It A <,, B and A is not luring-recognizable, then B is not Turing-recognizable.

Mapping Reducibility

In a typical application of this corollary, we let A be Atm, the complement
of Atm. We know that Aty 1s not ‘Turing-recognizable from Corollary 4.23.
The definition of mapping reducibility implies that A <., B means the same

as A <., B. To prove that B isn’t recognizable we may show that Atm <. B.
We can also use mapping reducibility to show that certain problems are neither
Turing-recognizable nor co-Turing-recognizable, as in the following theorem.

Mapping Reducibility

THEOREM 5.30

E Q-+ 1s neither "Turing-recognizable nor co-Turing-recognizable.

PROOF First we show that £Q+y i1s not Turing-recognizable. We do so by
showing that Aty is reducible to FQty. The reducing function f works as
follows.

F' = “On input (M, w) where M is a TM and w a string:
1. Construct the following two machines M; and Ms.
M; = “On any 1nput:
1. Reject.”
M5 = “On any input:
I. Run M on w. If it accepts, accept.”
2. Output (M7, Ms).”

Here, M; accepts nothing. It M accepts w, M5 accepts everything, and so the
two machines are not equivalent. Conversely, if M doesn’t accept w, My accepts
nothing, and they are equivalent. Thus f reduces Aty to EQ+p, as desired.

To show that EQ+y, is not Turing-recognizable we give a reduction from Aty
to the complement of EQy—namely, EQ1y. Hence we show that Avm <p,
EQ+pm- The following TM G computes the reducing function g.

G = “The inputis (M, w) where M is a TM and w a string:

1. Construct the following two machines M; and M,.
M; = “On any input:
1. Accept.”
My = “On any nput:
1. Run M on w.
2. Ifitaccepts, accept.”

2. Output (Ml, M2>.”

The only difference between f and g is in machine M;. In f, machine M,
always rejects, whereas in g it always accepts. In both f and g, M accepts w iff
M, always accepts. In g, M accepts w iff My and M; are equivalent. That is why

g is a reduction from Atm to EQ 1.

Turing Reducibility

DEFINITION 6.18

An oracle for a language B is an external device that is capable of
reporting whether any string w is a member of B. An oracle Turing

machine is a modified Turing machine that has the additional ca-
pability of querying an oracle. We write M® to describe an oracle
‘Turing machine that has an oracle for language B.

Turing Reducibility

EXAMPLE 6.19

Consider an oracle for Atm. An oracle Turing machine with an oracle for Atm
can decide more languages than an ordinary Turing machine can. Such a ma-

chine can (obviously) decide Aty itself, by querying the oracle about the input.
[t can also decide Ety, the emptiness testing problem for TMs with the following

procedure called T4™,

TA™ = “On input (M), where M is a TM:
1. Construct the following TM N.
N = “On any input:
1. Run M in parallel on all strings in 2*.
2. If M accepts any of these strings, accept.”
2. Query the oracle to determine whether (V,0) € Atm.

3. 1If the oracle answers NO, accept; if YES, reject.”

Turing Reducibility

DEFINITION 6.20

Language A is Turing reducible to language B, written A <1 B, if
A is decidable relative to B.

Turing Reducibility

THEOREM 6.2]
If A <t B and B is decidable, then A is decidable.

PROOF If B is decidable, then we may replace the oracle for B by an actual
procedure that decides B. Thus we may replace the oracle Turing machine that
decides A by an ordinary Turing machine that decides A.

All languages

9
Q
O
9
O
Q
()

Languages

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 20-21: Reducibility

