COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lecture 1 :
Introduction

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

COURSE OUTLINE

COMP 330 Fall 2019

@ Class Schedule :
Tuesday-Thursday 13:05-14:25 MAASS 112

@ Instructor :
Prof. Claude Crépeau

@ Office : Room 110N,
McConnell Eng. Building
phone: (514) 398-4716
email: crepeau@cs.mcqill.ca

mailto:crepeau@cs.mcgill.ca

v. li’-

5 2019 T.A.S :

Pouriya Alikhani
Pierre-Willlam Breau
Anirudha Jita

Justin Li
Yanjia L1
Shiquan Zhang

pouriya.alikhani@mail.mcqill.ca

pierre-william.breau@mail.mcqill.ca

anirudha.jitani@mail.mcaqill.ca
juan.y.li@mail.mcqill.ca

vanjia.li@mail.mcqill.ca
shiquan.zhang@mail.mcgill.ca

@ Office Hours :

Claude : Wednesday 13:00-16:00 ENGMC 110N
Pouriya : Friday 13:00-14:00 ENGTR 3090
Pierre-William : Monday 15:00-16:00 ENGTR 3110
Anirudha : Monday 16:00-17:00 ENGTR 3090
Justin : Tuesday 15:00-16:00 ENGTR 3110
Yanjia : Friday 10:00-11:00 ENGTR 3110
Shiquan : Thursday 15:00-16:00 ENGTR 3110

mailto:pouriya.alikhani@mail.mcgill.ca
mailto:pierre-william.breau@mail.mcgill.ca
mailto:anirudha.jitani@mail.mcgill.ca
mailto:juan.y.li@mail.mcgill.ca
mailto:yanjia.li@mail.mcgill.ca
mailto:shiquan.zhang@mail.mcgill.ca

Mon 10:00
Mon 10:30
Mon 11:00
Mon 11:30
Mon 12:00
Mon 12:30
Mon 13:00
Mon 13:30
Mon 14:00
Mon 14:30

Pierre-VV.
TR-3110

Anirudha
TR-3090

Tue 10:00
Tue 10:30
Tue 11:00
Tue 11:30
Tue 12:00
Tue 12:30

Claude

MA-1 12

course
Tue 14:30

Justin

TR-3110

Wed 10:00
Wed 10:30
Wed 11:00
Wed 11:30
Wed 12:00
Wed 12:30

Claude

MC-1 10N

office

hours

Wed 16:00
Wed 16:30

COMP-330 Fall 2019 — Weekly Schedule

Thu 10:00
Thu 10:30
Thu 11:00
Thu 11:30
Thu 12:00
Thu 12:30

Claude

MA-1 12

course
Thu 14:30

Shiquan
TR-3110

Thu 16:00
Thu 16:30

Yanjia

TR-3110

Fri 11:00
Fri 11:30
Fri 12:00
Fri 12:30

Pouriya

TR-3090

Fri 14:00
Fri 14:30
Fri 15:00
Fri 15:30
Fri 16:00
Fri 16:30

MC = MCENG = McConnell « TR = ENGTR = Trottier

COMMUNICATION

\VAVVAVAVA
http://crypto.cs.mcqill.ca/~crepeau/COMP330/

emalil:
cs330@cs.mcaqill.ca
FaceBook:

COMP 330 Fall 2019

mailto:http://crypto.cs.mcgill.ca/~crepeau/COMP330/
mailto:cs330@cs.mcgill.ca
mailto:cs330@cs.mcgill.ca

COMP-330 Fall 2019 — Extra help !

WHO ARE WE? WHAT DO WE DO?

eU2 and U3 students who have taken
this course and want to help you!

eWe are a FREE drop-in tutoring

C S U S H e I pd es k service, perfect for study help, and

guidance on assignments.

eWe provide review sessions for
midterms and finals for intro
courses!

HOURS: 12pm - 5pm (mon-fri)
LOCATION: Trottier 3090

Mon 10:00
Mon 10:30
Mon 11:00
Mon 11:30

CSUS
Helpdesk

TR-3090

Pierre-VV.
TR-3110

Anirudha
TR-3090

Tue 10:00
Tue 10:30
Tue 11:00
Tue 11:30

CSUS

Claude
MA-I 12

Justin
TR-3110
Helpdesk

TR-3090

Wed 10:00
Wed 10:30
Wed 11:00
Wed 11:30

CSUS

Claude
MC-| ION

office
hours

Helpdesk
TR-3090

Thu 10:00
Thu 10:30
Thu 11:00
Thu 11:30

CSUS

Claude
MA-I 12

Shiquan
TR-3110
Helpdesk

TR-3090

COMP-330 Fall 2019 — Weekly Schedule

Yanjia

TR-3110
Fri 11:00

Fri 11:30

Pouriya

TR-3090

CSUS
Helpdesk

TR-3090

MC = MCENG = McConnell « TR = ENGTR = Trottier

COMP 330 Fall 2019

Description: (3 credits, 3 hours).

® We study models of computation of increasing power.
@ We begin with finite automata and regular languages.

® The next phase deals with context-free languages
invented by linguists and now an essential aspect of
every modern programming language.

@ Finally we explore the limits of computability with the
study of recursive sets, enumerable sets, self-
reproducing programs and undecidability theory.

Part 1: Regular expressions &
Deterministic Finite Automarta

Part 2: Context-free Language
& Pushdown Automata

Part 3: Turing Machines,
Computability & Complexity

|]|'"""||III """""""""

llllllllllllll ; \ 4
r4) " m (2] " y - < Asemd
[SRR o e o SR T :

Mandatory Textbook

[ntroduction to the Theory of

COMPUTATION

THigD EpiTION

COMP 330 Fall 2019:
Lectures Schedule

1. Introduction
1.5. Some basic mathematics
. Regular expressions, DFAs
. Nondeterministic finite automata
. Determinization
. Closure properties, Kleene’s theorem
. The pumping lemma
. The pumping lemma
. Minimization
. Lexical analysis
10. Duality
11. Myhill-Nerode theorem
12. Labelled transition systems
13. MIDTERM

O OO0 1 ON U B~ Wi

14.
1.
16.
157
18.
19.

20.
21.
22.
29
24.
23,
26.

Context-free languages
Pushdown automata

Parsing

The pumping lemma for CFLs
Introduction to computability
Models of computation

Basic computability theory
Reducibility, undecidability and Rice’s theorem
Undecidable problems about CFGs
Post Correspondence Problem
Validity of FOL is RE / Godel’s and Tarski’s thms
Universality /| The recursion theorem
Degrees of undecidability
Introduction to complexity

COMP 330 Fall 2019

@ Evaluation:
There will be
e 4 assigments worth 407%,
® a midterm exam worth 10%, and
o a final exam worth 50%
of your final grade.

COMP 330 Fall 2019

@ In accord with McGill University's Charter of
Students’ Rights, students in this course have
the right to submit in English or in French any
written work that is o be graded.

@ En vertu de la chartre des droits des etudiants
de l'universite McGill, les etudiants de ce cours
ont le droit de soumettre leurs travaux eécrits
en anglais ou en francais, a leur guise.

COMP 330 Fall 2019

o Academic integrity : McGill University values academic integrity.
Therefore all students must understand the meaning and
consequences of cheating, plagiarism and other academic offences
under the Code of Student Conduct and Disciplinary Procedures
(see http://www.mcqill.ca/students/srr/honest for more info).

@ Honnéteté académique : L'universite McGill attache une grande
importance a l'honneteté academique. Il incombe par consequent a
tous les etudiants de comprendre ce que l'on entend par tricherie,
plagiat et autres infractions académiques, ainsi que les
consequences que peuvent avoir de telles actions, selon le Code de
conduite de |'etudiant et des procéedures disciplinaires (pour de plus
amples renseignements, consultez
http://www.mcgqill.ca/students/srr/honest).

http://www.mcgill.ca/integrity
http://www.mcgill.ca/integrity

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

COURSE OUTLINE

COMP 330 Fall 2017:
Lectures Schedule

1.5. Some basic mathematics
2-3. Deterministic finite automata
+Closure properties,
3-4. Nondeterministic finite automata
5. Minimization+ Myhill-Nerode theorem
6. Determinization+Kleene’s theorem
7. Regular Expressions+GNFA
8. Regular Expressions and Languages
9-10. The pumping lemma
11. Duality
12. Labelled transition systems
13. MIDTERM

14.
|]
16.
157
18.
18

20.
27T.
22.
20
24.
2.
26.

Context-free languages
Pushdown automata
Parsing
The pumping lemma for CFLs
Introduction to computability
Models of computation
Basic computability theory
Reducibility, undecidability and Rice’s theorem
Undecidable problems about CFGs
Post Correspondence Problem
Validity of FOL 1s RE / Godel’s and Tarski’s thms
Universality / The recursion theorem
Degrees of undecidability
Introduction to complexity

Paris, 1900

Paris, 1900

® German mathematician David Hilbert presented
ten problems in mathematics from a list of 23
(1,2, 6,7 8,13, 16,19, 21 and 22).

http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/David_Hilbert
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/August_8
http://en.wikipedia.org/wiki/Paris
http://en.wikipedia.org/wiki/International_Congress_of_Mathematicians
http://en.wikipedia.org/wiki/University_of_Paris
http://en.wikipedia.org/wiki/20th_century

Paris, 1900

® German mathematician David Hilbert presented
ten problems in mathematics from a list of 23
(1,2, 6,7 8,13, 16,19, 21 and 22).

@ Speaking on 8 August 1900, at the Paris
2nd International Congress of Mathematicians, at
La Sorbonne. The full list was published later.

http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/David_Hilbert
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/August_8
http://en.wikipedia.org/wiki/Paris
http://en.wikipedia.org/wiki/International_Congress_of_Mathematicians
http://en.wikipedia.org/wiki/University_of_Paris
http://en.wikipedia.org/wiki/20th_century

Paris, 1900

@ German mathemafician David Hilbert presented
ten problems in mathematics from a list of 23
(1,2, 6,7 8,13, 16,19, 21 and 22).

@ Speaking on 8 August 1900, at the Paris
2nd International Congress of Mathematicians, at
La Sorbonne. The full list was published later.

® The problems were all unsolved at the time, and
several of them turned out fo be very influential
for 20th century mathematics.

http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/David_Hilbert
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/August_8
http://en.wikipedia.org/wiki/Paris
http://en.wikipedia.org/wiki/International_Congress_of_Mathematicians
http://en.wikipedia.org/wiki/University_of_Paris
http://en.wikipedia.org/wiki/20th_century

Fundamental questions ¢

Fundamental questions ¢

@ Can we prove all the mathematical
statements that we can formulate ?
(Hilberts 2nd problem)
Example: for all natural integers x,y,z and n>2
XN4yN#Zn (Fermats last theorem)

Fundamental questions ¢

@ Can we prove all the mathematical
statements that we can formulate ?
(Hilberts 2nd problem)
Example: for all natural integers x,y,z and n>2
XN4yN#Zn (Fermats last theorem)

@ Certainly, there are many mathematical
problems that we do not know how to solve.

Fundamental questions ¢

@ Can we prove all the mathematical
statements that we can formulate ?
(Hilberts 2nd problem)
Example: for all natural integers x,y,z and n>2
XN4yN#Zn (Fermats last theorem)

@ Certainly, there are many mathematical
problems that we do not know how to solve.

@ Is this just because we are not smart
enough to find a solution ?

Fundamental questions ¢

@ Can we prove all the mathematical
statements that we can formulate ?
(Hilberts 2nd problem)
Example: for all natural integers x,y,z and n>2
XN4yN#Zn (Fermats last theorem)

@ Certainly, there are many mathematical
problems that we do not know how to solve.

@ Is this just because we are not smart
enough to find a solution ?

@ Or, is there something deeper going on ?

Computer Science
version of these issues

@ If my boss / supervisor / teacher
formulates a problem to be solved urgently,
can I write a program fo efficiently solve
this problem 2?7

| can't find an efficient algorthm, | guess I'm just too dumb.

Simple Puzzle

95% of people cannot solve this!

@ + = + % = 4

L+l +@ P+

Can you find positive whole values
for @, 2, and %7

Simple Puzzle

95% of people cannot solve this!
99.9999%

é+ +j_4

L+ +é P+0

Can you find positive whole values
for @, 2, and %7

Simple Puzzle

95% of people cannot solve this!
99.9999%

@ +
N

Can you find positive whole values

¢=15447 6802108746166441951315019919837485664325669565431700026634898253202035277999
N=36875131794129999827197811565225474825492979968971970996283137471637224634055579
%=4373612677928697257861252602371390152816537558161613618621437993378423467772036

Simple Puzzle

Bremner and MacLeod looked at what happens when we
replace the 4 with something else. When you try to represent
178 in this way, you’ll need 398,605,460 digits. If you try 896,
you’ll be up to trillions of digits...

95% of people cannot solve this!
99.9999%

@ o+ -+ % =4
R+ V+@ @+

Can you find positive whole values
for @, 2, and %7

¢=15447 6802108746166441951315019919837485664325669565431700026634898253202035277999
N=36875131794129999827197811565225474825492979968971970996283137471637224634055579
%=4373612677928697257861252602371390152816537558161613618621437993378423467772036

Computer Science
version of these issues

| can't find an efficient algonthm, because no such algonthm is possible

Computer Science
version of these issues

@ Are there some problems that cannot be
solved at all ? and, are there problems that
cannot be solved efficiently ??

(related to Hilberts 10th problem)

| can't find an efficient algonthm, because no such algonthm is possible

Computer Science
version of these issues

@ If my boss / supervisor / teacher
formulates a problem to be solved urgently,
can I write a program to efficiently solve
this problem 222

| can't find an efficient algorithm, but neither can all these famous people.

Kurt Godel

Kurt Godel

@ In 1931, he proved that any formalization of
mathematics contains some statements that
cannot be proved or disproved.

Alan Turing

Alan Turing

@ In 1934, he formalized the notion of
decidability of a language by a computer.

A Language

@ Let 2 be a finite alphabet. (ex: {0,1})

A Language

@ Let 2 be a finite alphabet. (ex: {0,1})

@ Let 3* be all sequences of elements from
this alphabet. (ex: O, 1, 00000, 0101010101,...)

A Language

@ Let 2 be a finite alphabet. (ex: {0,1})

@ Let 3* be all sequences of elements from
this alphabet. (ex: O, 1, 00000, 0101010101,...)

@ A language L is any subset of 3*

A Language

@ Let 2 be a finite alphabet. (ex: {0,1})

@ Let 3* be all sequences of elements from
this alphabet. (ex: O, 1, 00000, 0101010101,...)

@ A language L is any subset of 3*

@ An algorithm A decides a language L if A

answers Yes when x € L and No when x ¢ L.

Comparing Cardinalities

Comparing Cardinalities

Jalll
languages

Comparing Cardinalities

languages
that we can
describe

Jalll
languages

Comparing Cardinalities

languages

that we
can decide

languages
that we can
describe

Jalll
languages

Comparing Cardinalities

languages

that we
can decide

languages
that we can
describe

Jalll
languages

[
2=

Comparing Cardinalities

languages

that we
can decide

languages
that we can
describe

Jalll
languages

=N

Comparing Cardinalities

languages

that we
can decide

languages
that we can <
describe

=3 IN

Jalll
languages

Comparing Cardinalities

languages

that we
can decide

[
Z

languages
that we can <
describe

=3 IN

Jalll
languages

Comparing Cardinalities

languages

that we
can decide

[
Z

languages
that we can <
describe

=3 IN

Jalll
languages

Alonzo Church

Alonzo Church

@ In 1936, he proved that certain languages

cannot be decided by any algorithm
whatsoever... (even some language that we
can describe precisely)

Emil Post

r
("" \‘%,-/‘ ' i

N Emil Post

Y

@ In 1946, he gave a very natural example of

an undecidable language...

(PCP) Post
Correspondence Problem

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

@ A solution to PCP

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

@ A solution to PCP

aa
!

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

@ A solution to PCP

aa bbb
a: a

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

@ A solution to PCP

aa bbb b
a: a

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

@ A solution to PCP

aa bbb b
a a bb

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

@ A solution to PCP

aa bbb b
a a bb bb

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

@ A solution to PCP

aa bbb b
a a bb bb

Post
Correspondence Problem

Post
Correspondence Problem

Ui Uz U3 Un
Vi V2 V3 T Vr

® Given n tiles, U/Vi ... Un/Vn
where each u; or v; is a sequence of lefters.

Post
Correspondence Problem

Ui Uz U3 Un
Vi V2 V3 T Vr

® Given n tiles, U/Vi ... Un/Vn
where each u; or v; is a sequence of letfters.

@ Is there a k and a sequence <lIy,l2,13,...,Ik>
(with each 1<ijgn) such that

Ui1| uizl Uisl | Uik = Vi1| Vizl Vi3| | Vi @

A Solution to Post
Correspondence Problem

Ui Us Us Un
V1 V2 V3 Vn
Ui Ui Ui Ui, U; Ui

A Solution to Post
Correspondence Problem

A Solution to Post
Correspondence Problem

@ A solution is of this form:

Ui U. WU Ui, Uis Ui«
Vi1 Viz Vi3 Vi4 Vis . Vik

with the top and bottom strings identical when
we concatenate all the substrings.

A Solution to Post
Correspondence Problem

@ A solution is of this form:

Ui Ui. Uis Ui, Ujs Ui«
Vii Vo | Vis | Vi, Vi Vie

with the top and bottom strings identical when
we concatenate all the substrings.

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lecture 1 :
Introduction

