COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 18-19 : Turing
(UN)Decidability

All languages

eory

Context-free
Languages

UNdecidable UNdecidable
via Diagonalization via Reductions

Turing Decidability

Format & Notations

@ Represent objects as strings

@ (01, Oa,..., Ok) Is the string representing
objects O;, O,,..., Ok

@ Many encodings are possible.

@ Implicitly, at beginning of an algorithm,
check that input is in the correct format,
otherwise reject.

Format & Notations

EXAMPLE 3.23

Let A be the language consisting of all strings representing undirected graphs
that are connected. Recall that a graph is connected if every node can be reached
from every other node by traveling along the edges of the graph. We write

A = {{G)| G is a connected undirected graph}.

The following is a high-level description of a TM M that decides A.

Format & Notations

M = “On input (G), the encoding of a graph G:
1. Select the first node of G and mark it.

2. Repeat the following stage until no new nodes are marked:

3. For each node in G, mark it if it is attached by an edge to a
node that is already marked.
4. Scan all the nodes of G to determine whether they all are
marked. If they are, accept; otherwise, reject.”

Decidable Languages
about DFA

Apra = {(B,w)| B is a DFA that accepts input string w}.

THEOREM 4.1

Apra 1s a decidable language.

Decidable Languages
about DFA

PROOF IDEA We simply need to present a TM M that decides Apfa.

M = “On input (B, w), where B is a DFA and w 1s a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Decidable Languages
about DFA

We can prove a similar theorem for nondeterministic finite automata. Let

Anea = {(B,w)| B is an NFA that accepts input string w}.

THEOREM 4.2

AnEa is a decidable language.

Decidable Languages
about DFA

N = “On input (B, w) where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA C| using the procedure for

this conversion given in Theorem 1.39.
2. Run TM M from Theorem 4.1 on input {C, w).
3. It M accepts, accept; otherwise, reject.”

Decidable Languages
about DFA

Similarly, we can determine whether a regular expression generates a given
string. Let Arex = {(R, w)| R is a regular expression that generates string w}.

THEOREM 4.3

Arex 1s a decidable language.

Decidable Languages
about DFA

PROOF 'The following TM P decides Arex.

P =“Oninput (R, w) where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using
the procedure for this conversion given in Theorem 1.54.

2. Run TM N on input (A, w).
3. It N accepts, accept; it N rejects, reject.”

Decidable Languages
about DFA

EDFA = {<A>| A is a DFA and L(A) — @}

THEOREM 4.4

Ebea 1s a decidable language.

Decidable Languages

PROOF A DFA accepts some string iff reaching an accept state from the start
state by traveling along the arrows of the DFA is possible. 'To test this condition
we can design a TM 7' that uses a marking algorithm similar to that used in

Example 3.23.

T = “On input (A) where A is a DFA:
1. Mark the start state of A.

2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any

state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

Decidable Languages
about DFA

The next theorem states that determining whether two DFAs recognize the
same language is decidable. Let

EQpra = {{(A, B)| Aand B are DFAsand L(A) = L(B)}.

THEOREM 4.5

EQpea 1s a decidable language.

PROOF o prove this theorem we use Theorem 4.4. We construct a new DFA
(' tfrom A and B, where C accepts only those strings that are accepted by either
A or B but not by both. Thus, if A and B recognize the same language, C' will

accept nothing. The language of C' is
(L(A) A L(B)) g (L(A) A L(B)).

FIGURE 4.6
The symmetric difference of L(A) and L(B)

Decidable Languages
about DFA

Once we have constructed C' we can use Theorem 4.4 to test whether L(C') is
empty. If it is empty, L(A) and L(B) must be equal.

I’ = “On input (A, B), where A and B are DFAs:

1. Construct DFA C' as described.
2. Run TM T from Theorem 4.4 on input (C).

3. If T accepts, accept. If T rejects, reject.”

Decidable Languages
about CFG

Acrc = {(G,w)| G 1s a CFG that generates string w }.

THEOREM 4.7

Acgg 1s a decidable language.

Decidable Languages
about CFG

PROOF The TM S for Acgc follows.

S = “On mput (G, w), where GG is a CFG and w is a string:

Convert GG to an equivalent grammar in Chomsky normal form.

. List all derivations with 2n — 1 steps, where n is the length of
w, except if n = 0, then instead list all derivations with 1 step.

If any of these derivations generate w, accept; if not, reject.”

Decidable Languages
about CFG

Ecrc = {(G)| Gisa CFG and L(G) = 0}.

THEOREM 4.8

Eckc is a decidable language.

Decidable Languages
about CFG

PROOF

R = “On input (), where G is a CFG:
1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

3. Markany variable A where G hasarule A — U Us - - - Uy and
each symbol Uy, . .., U has already been marked.

4. If the start variable is not marked, accept; otherwise, reject.”

Decidable Languages
about CFG

THEOREM 4.9

Every context-free language is decidable.

Decidable Languages
about CFG

PROOF Let GG be a CFG for A and design a TM M that decides A. We build
a copy of GG into M¢. It works as follows.

Mg = “On input w:

1. Run TM S on input (G, w)
2. If this machine accepts, accept; if it rejects, reject.”

Decidable Languages

Decidable Undecidable

ADFA
ANFA
AREX

Ebpra

Undecidable Languages
about CFG

Next we consider the problem of determining whether two context-free
grammars generate the same language. Let

EQcec = {(G, H)| G and H are CFGs and L(G) = L(H)}.

Undecidable Languages
about TM

Apra and Acpg were decidable, A1y is not. Let

Atm = {{M,w)| M isa TM and M accepts w}.

THEOREM 4.11

Atm 1s undecidable.

Undecidable Languages
about TM

Apra and Acpg were decidable, A1y is not. Let

Atm = {{M,w)| M isa TM and M accepts w}.

THEOREM 4.11

Atm 1s undecidable.

Atwm is Turing-recognizable.

U = “On input (M, w), where M is a TM and w is a string:
1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its
reject state, reject.”

Undecidable Language
about TM

THE ACCEPTANCE PROBLEM IS UNDECIDABLE

Now we are ready to prove Theorem 4.11, the undecidability of the language

Atm = {{M,w)| M isa TM and M accepts w}.

Undecidable Language
about TM

Assumption: H exists

accept 1f M accepts w
H((M,w)) = { ’

reject it M does not accept w.

Undecidable Language
about TM

H exists = D exists

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).

2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

Undecidable Language
about TM

Properties of D

D((M)) = accept if M does not accept (M)
| reject if M accepts (M).

accept if D does not accept (D
D((D)) = { et

reject it D accepts (D).

Undecidable Language
about TM

Properties of D

co N{FR AEDIQTJ@

Undecidable Language
about TM

* H accepts (M, w) exactly when M accepts w.

* D rejects (M) exactly when M accepts (M).

* D rejects (D) exactly when D accepts (D).

Undecidable Language
about TM

accept 1t M accepts w

reject if M does not accept w.

* H accepts (M, w) exactly when M accepts w.
* D rejects (M) exactly when M accepts (M).
* D rejects (D) exactly when D accepts (D).

Undecidable Language
about TM

accept 1t M accepts w

reject it M does not accept w.

* H accepts (M, w) exactly when M accepts w.
* D rejects (M) exactly when M accepts (M).
* D rejects (D) exactly when D accepts (D).

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).

2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

Undecidable Language
about TM

accept 1t M accepts w
reject it M does not accept w.

* H accepts (M, w) exactly when M accepts w.

e D rejects (M) exactly when M accepts (M

CONTRADIGTFE @N

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).

2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

Undecidable Language
about TM

accept 1t M accepts w
reject it M does not accept w.

* H accepts (M, w) exactly when M accepts w.

CONTRADICTION

CONTRADIGTFION

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).

2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

Undecidable Language
about TM

accept 1t M accepts w
reject it M does not accept w.

CONTRADICTION

CONTRADICTION

CONTRABDIGTION
D = “On input (M), where M is a TM:

1. Run H on input (M, (M)).

2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

H (M) = {

Undecidable Language
about TM

(My) (M) (Ms) (My)
accept accept
accept accept accept accept

accept accept

FIGURE 4.19
Entry i, j is accept if M; accepts (M)

Undecidable Language
about TM

(My) (Mz) (Ms) (My)
accept reject accept reject
accepl accept accept accepl
reject reject reject reject

accept accept reject reject

FIGURE 4.20
Entry 1, j is the value of H on input (M;, (M;))

Undecidable Language
about TM

(M) (Mp) (M)
accept reject accepl
accept accepl accept
reject reject reject
accept accept reject

reject reject accept

FIGURE 4.21
[f D is in the table, a contradiction occurs at

“: »

Diagonalization

Decidable Undecidable

ATm

Unrecognizable
Language about TM

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Unrecognizable
Language about TM

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Let M; and M, be TMs respectively
recognizing L and its complement L .

Unrecognizable
Language about TM

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Let M; and M, be TMs respectively
recognizing L and its complement L .

M = *“On input w:

1. Run both M; and M; on input w in parallel.
2. If M, accepts, accept; if Mo accepts, reject.”

Unrecognizable
Language about TM

COROLLARY 4.23

Avwm is not Turing-recognizable.

PROOF We know that Aty is Turing-recognizable. If Aty also were Turing-
recognizable, Atm would be decidable. Theorem 4.11 tells us that Aty is not
decidable, so Aym must not be Turing-recognizable.

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 18-19 : Turing
(UN)Decidability

