# COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 18-19 : Turing (UN) Decidability

All languages

Computability Theory

Languages

we can

describe

<u>Decidable</u> <u>Languages</u>

> Context-free Languages

Regular Languages

UNdecidable

via Diagonalization

UNdecidable via Reductions

### Turing Decidability



Alan Turing

### Format & Notations

- Represent objects as strings
- $O_1$ ,  $O_2$ ,...,  $O_k$  is the string representing objects  $O_1$ ,  $O_2$ ,...,  $O_k$
- Many encodings are possible.
- Implicitly, at beginning of an algorithm, check that input is in the correct format, otherwise reject.

### Format & Notations

### EXAMPLE 3.23

Let A be the language consisting of all strings representing undirected graphs that are connected. Recall that a graph is **connected** if every node can be reached from every other node by traveling along the edges of the graph. We write

 $A = \{\langle G \rangle | G \text{ is a connected undirected graph} \}.$ 

The following is a high-level description of a TM M that decides A.

### Format & Notations

- M = "On input  $\langle G \rangle$ , the encoding of a graph G:
  - 1. Select the first node of G and mark it.
  - 2. Repeat the following stage until no new nodes are marked:
  - 3. For each node in G, mark it if it is attached by an edge to a node that is already marked.
  - **4.** Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}.$ 

### THEOREM 4.1

 $A_{\mathsf{DFA}}$  is a decidable language.

**PROOF IDEA** We simply need to present a TM M that decides  $A_{\mathsf{DFA}}$ .

- M = "On input  $\langle B, w \rangle$ , where B is a DFA and w is a string:
  - 1. Simulate B on input w.
  - 2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."

We can prove a similar theorem for nondeterministic finite automata. Let

 $A_{\mathsf{NFA}} = \{\langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w\}.$ 

THEOREM 4.2

 $A_{\mathsf{NFA}}$  is a decidable language.

- N = "On input  $\langle B, w \rangle$  where B is an NFA, and w is a string:
  - 1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
  - **2.** Run TM M from Theorem 4.1 on input  $\langle C, w \rangle$ .
  - 3. If M accepts, accept; otherwise, reject."

Similarly, we can determine whether a regular expression generates a given string. Let  $A_{REX} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$ .

THEOREM 4.3

 $A_{REX}$  is a decidable language.

**PROOF** The following TM P decides  $A_{REX}$ .

- P = "On input  $\langle R, w \rangle$  where R is a regular expression and w is a string:
  - 1. Convert regular expression R to an equivalent NFA A by using the procedure for this conversion given in Theorem 1.54.
  - **2.** Run TM N on input  $\langle A, w \rangle$ .
  - 3. If N accepts, accept; if N rejects, reject."

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}.$$

THEOREM 4.4

 $E_{\mathsf{DFA}}$  is a decidable language.

### Decidable Languages

**PROOF** A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible. To test this condition we can design a TM T that uses a marking algorithm similar to that used in Example 3.23.

T = "On input  $\langle A \rangle$  where A is a DFA:

- 1. Mark the start state of A.
- 2. Repeat until no new states get marked:
- Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, accept; otherwise, reject."

The next theorem states that determining whether two DFAs recognize the same language is decidable. Let

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | \ A \ \text{and} \ B \ \text{are DFAs and} \ L(A) = L(B) \}.$$

THEOREM 4.5

 $EQ_{\mathsf{DFA}}$  is a decidable language.

**PROOF** To prove this theorem we use Theorem 4.4. We construct a new DFA C from A and B, where C accepts only those strings that are accepted by either A or B but not by both. Thus, if A and B recognize the same language, C will accept nothing. The language of C is

$$L(C) = \Big(L(A) \cap \overline{L(B)}\Big) \cup \Big(\overline{L(A)} \cap L(B)\Big).$$



### FIGURE 4.6 The symmetric difference of L(A) and L(B)

Once we have constructed C we can use Theorem 4.4 to test whether L(C) is empty. If it is empty, L(A) and L(B) must be equal.

F = "On input  $\langle A, B \rangle$ , where A and B are DFAs:

- 1. Construct DFA C as described.
- **2.** Run TM T from Theorem 4.4 on input  $\langle C \rangle$ .
- 3. If T accepts, accept. If T rejects, reject."

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}.$ 

THEOREM 4.7

 $A_{\mathsf{CFG}}$  is a decidable language.

**PROOF** The TM S for  $A_{CFG}$  follows.

- S = "On input  $\langle G, w \rangle$ , where G is a CFG and w is a string:
  - 1. Convert G to an equivalent grammar in Chomsky normal form.
  - 2. List all derivations with 2n-1 steps, where n is the length of w, except if n=0, then instead list all derivations with 1 step.
  - 3. If any of these derivations generate w, accept; if not, reject."

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}.$$

THEOREM 4.8

 $E_{\mathsf{CFG}}$  is a decidable language.

### **PROOF**

- R = "On input  $\langle G \rangle$ , where G is a CFG:
  - 1. Mark all terminal symbols in G.
  - 2. Repeat until no new variables get marked:
  - 3. Mark any variable A where G has a rule  $A \to U_1U_2 \cdots U_k$  and each symbol  $U_1, \ldots, U_k$  has already been marked.
  - **4.** If the start variable is not marked, accept; otherwise, reject."

THEOREM 4.9

Every context-free language is decidable.

**PROOF** Let G be a CFG for A and design a TM  $M_G$  that decides A. We build a copy of G into  $M_G$ . It works as follows.

 $M_G =$  "On input w:

- **1.** Run TM S on input  $\langle G, w \rangle$
- 2. If this machine accepts, accept; if it rejects, reject."

### Decidable Languages

| Decidable | Undecidable        |
|-----------|--------------------|
| ADFA      | EQcfg              |
| ANFA      | ATM                |
| AREX      | HALT <sub>TM</sub> |
| EDFA      | E <sub>TM</sub>    |
| EQDFA     | REGULARTM          |
| Acfg      | EQ <sub>TM</sub>   |
| Ecfg      | PCP                |

Next we consider the problem of determining whether two context-free grammars generate the same language. Let

 $EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}.$ 

 $A_{\mathsf{DFA}}$  and  $A_{\mathsf{CFG}}$  were decidable,  $A_{\mathsf{TM}}$  is not. Let

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$ 

THEOREM 4.11

 $A_{\mathsf{TM}}$  is undecidable.

 $A_{\mathsf{DFA}}$  and  $A_{\mathsf{CFG}}$  were decidable,  $A_{\mathsf{TM}}$  is not. Let

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}.$ 

### THEOREM 4.11

 $A_{\mathsf{TM}}$  is undecidable.

### $A_{\mathsf{TM}}$ is Turing-recognizable.

- U = "On input  $\langle M, w \rangle$ , where M is a TM and w is a string:
  - 1. Simulate M on input w.
  - 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

### THE ACCEPTANCE PROBLEM IS UNDECIDABLE

Now we are ready to prove Theorem 4.11, the undecidability of the language

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$ 

### Assumption: H exists

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

### Hexists $\Rightarrow$ Dexists

- D = "On input  $\langle M \rangle$ , where M is a TM:
  - **1.** Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

### Properties of D

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$

$$D\big(\langle D\rangle\big) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D\rangle \\ reject & \text{if } D \text{ accepts } \langle D\rangle. \end{cases}$$

### Properties of D

$$D\big(\langle M \rangle\big) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$



- H accepts  $\langle M, w \rangle$  exactly when M accepts w.
- D rejects  $\langle M \rangle$  exactly when M accepts  $\langle M \rangle$ .
- D rejects  $\langle D \rangle$  exactly when D accepts  $\langle D \rangle$ .

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

- H accepts  $\langle M, w \rangle$  exactly when M accepts w.
- D rejects  $\langle M \rangle$  exactly when M accepts  $\langle M \rangle$ .
- D rejects  $\langle D \rangle$  exactly when D accepts  $\langle D \rangle$ .

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

- H accepts  $\langle M, w \rangle$  exactly when M accepts w.
- D rejects  $\langle M \rangle$  exactly when M accepts  $\langle M \rangle$ .
- D rejects  $\langle D \rangle$  exactly when D accepts  $\langle D \rangle$ .

### D = "On input $\langle M \rangle$ , where M is a TM:

- **1.** Run H on input  $\langle M, \langle M \rangle \rangle$ .
- 2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

- H accepts  $\langle M, w \rangle$  exactly when M accepts w.
- D rejects  $\langle M \rangle$  exactly when M accepts  $\langle M \rangle$ .

### CONTRADICATESON

- D = "On input  $\langle M \rangle$ , where M is a TM:
  - **1.** Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

• H accepts  $\langle M, w \rangle$  exactly when M accepts w.

### CONTRADICTEDION CONTRADICTEDION

- D = "On input  $\langle M \rangle$ , where M is a TM:
  - **1.** Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

# CONTRADICTION CONTRADICTION CONTRADICTION

- D = "On input  $\langle M \rangle$ , where M is a TM:
  - **1.** Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

|                         | $\langle M_1 \rangle$                        | $\langle M_2  angle$ | $\langle M_3 \rangle$ | $\langle M_4 \rangle$ |       |
|-------------------------|----------------------------------------------|----------------------|-----------------------|-----------------------|-------|
| $M_1$                   | accept                                       |                      | accept                |                       |       |
| $M_2$                   | $egin{array}{c} accept \ accept \end{array}$ | accept               | accept                | accept                |       |
| $M_3$                   |                                              |                      |                       |                       |       |
| $M_1 \ M_2 \ M_3 \ M_4$ | accept                                       | accept               |                       |                       | • • • |
| •                       |                                              | •                    | •                     |                       |       |
| :                       |                                              |                      |                       |                       |       |

**FIGURE 4.19** 

Entry i, j is accept if  $M_i$  accepts  $\langle M_j \rangle$ 

|       | $\langle M_1  angle$ | $\langle M_2  angle$ | $\langle M_3  angle$ | $\langle M_4  angle$ |  |
|-------|----------------------|----------------------|----------------------|----------------------|--|
| $M_1$ | accept               | reject               | accept               | reject               |  |
| $M_2$ | accept               | accept               | accept               | accept               |  |
| $M_3$ | reject               | reject               | reject               | reject               |  |
| $M_4$ | accept               | accept               | reject               | reject               |  |
| :     |                      | ;                    | •                    |                      |  |
| •     |                      | •                    | •                    |                      |  |

**FIGURE 4.20** 

Entry i, j is the value of H on input  $\langle M_i, \langle M_j \rangle \rangle$ 

|                    | $\langle M_1  angle$ | $\langle M_2  angle$ | $\langle M_3  angle$ | $\langle M_4  angle$ |     | $\langle D \rangle$ |       |
|--------------------|----------------------|----------------------|----------------------|----------------------|-----|---------------------|-------|
| $M_1$              | accept               | reject               | $\overline{accept}$  | reject               |     | accept              |       |
| $M_2$              | $\overline{accept}$  | accept               | accept               | accept               |     | accept              |       |
| $M_3$              | reject               | $\overline{reject}$  | reject               | reject               | ••• | reject              | • • • |
| $M_4$              | accept               | accept               | $\overline{reject}$  | reject               |     | accept              |       |
| :<br><i>D</i><br>: | reject               | reject               | accept               | accept               | ٠.  | <u>(;</u>           | •••   |

### **FIGURE 4.21**

If D is in the table, a contradiction occurs at "?"

### Diagonalization

| Decidable        | Undecidable        |
|------------------|--------------------|
| ADFA             | EQcfg              |
| ANFA             | ATM                |
| AREX             | HALT <sub>TM</sub> |
| EDFA             | E <sub>TM</sub>    |
| EQDFA            | REGULARTM          |
| Acfg             | EQ <sub>TM</sub>   |
| E <sub>CFG</sub> | PCP                |

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Let  $M_1$  and  $M_2$  be TMs respectively recognizing  $\boldsymbol{L}$  and its complement  $\bar{\boldsymbol{L}}$ .

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Let  $M_1$  and  $M_2$  be TMs respectively recognizing  $\boldsymbol{L}$  and its complement  $\bar{\boldsymbol{L}}$ .

M = "On input w:

- 1. Run both  $M_1$  and  $M_2$  on input w in parallel.
- 2. If  $M_1$  accepts, accept; if  $M_2$  accepts, reject."

### COROLLARY 4.23

 $\overline{A_{\mathsf{TM}}}$  is not Turing-recognizable.

**PROOF** We know that  $A_{\mathsf{TM}}$  is Turing-recognizable. If  $\overline{A_{\mathsf{TM}}}$  also were Turing-recognizable,  $A_{\mathsf{TM}}$  would be decidable. Theorem 4.11 tells us that  $A_{\mathsf{TM}}$  is not decidable, so  $\overline{A_{\mathsf{TM}}}$  must not be Turing-recognizable.

# COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 18-19 : Turing (UN) Decidability