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Turing Machines

The following list summarizes the differences between finite automata and
‘Turing machines.

1. A 'luring machine can both write on the tape and read from it.
2. The read—write head can move both to the left and to the right.

3. The tape is infinite.

4. The special states for rejecting and accepting take effect immediately.




TM Example

M, = “On input string w:
1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.

Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”




The following figure contains several snapshots of M;’s tape while it is com-
puting in stages 2 and 3 when started on input 011000#011000.
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FIGURE 3.2
Snapshots of Turing machine M; computing on input 011000#011000
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The following figure contains several snapshots of M;’s tape while it is com-
puting in stages 2 and 3 when started on input 011000#011000.
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TM definition

DEFINITION 3.3

A Turing machine is a 7-tuple, (Q, X, I', 0, qo, Gaccept; Greject), Where
@, ¥, I" are all finite sets and

1. () 1s the set of states,

2. ¥ is the input alphabet not containing the blank symbol .,
3. I' is the tape alphabet, where u € I'and X C T,

4. 0: Q xI'—Q xT' x {L., R} is the transition function,

5. qo € @ 1s the start state,

6. Gaccepr € @ 1s the accept state, and

7. Greject € Q 15 the reject state, where greject 7 Gaccepr-




FIGURE 3.10
State diagram for Turing machine M,




TM Configuration

As a Turing machine computes, changes occur in the current state, the cur-
rent tape contents, and the current head location. A setting of these three items
is called a configuration of the Turing machine. Configurations often are rep-
resented in a special way. For a state ¢ and two strings u and v over the tape
alphabet I we write u g v for the configuration where the current state is g, the

current tape contents is uv, and the current head location is the first symbol
of v. The tape contains only blanks following the last symbol of v. For example,
1011¢701111 represents the configuration when the tape is 101101111, the cur-
rent state is g7, and the head is currently on the second 0. The following figure
depicts a Turing machine with that configuration.




TM Computation

FIGURE 3.4
A "luring machine with configuration 1011¢701111




TM definition

@ For all ab,cerl’, u,verl”, qi,qicQ

® Conhg. uaqibv vyields
config. ugqjacv it 9d(qi,b) = qgj,c,L

® Config. uaqibv vyields
config. uacq;v if 8(qi,b) =qgj,c,R

@ Special cases:
Config. qibv vyields qjcv if 8(qi,b) = qj.c,L
Config. qibv vyields cgq;v if 8(qgi,b) = gj,c,R
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TM Computation

@ Start configuration: qow (w = input string)
% ACCQP"'Ing COnﬁgurClﬁOﬂ: S'|'Cl1'€ = qaccept

® Rejecting configuration: state = qreject



TM Computation

@ Turing Machine M accepts input w if there
exists configurations Co, Ci,..., Cnsuch that

@ (o is a start configuration
@ C; vyields Cis for O<i<m
@ Cn is an accepting configuration.

@ The collection of strings that M accepfts is

the language of M or the language
recognized by M, denoted L(M).
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TM Computation

DEFINITION 3.5

Call a language Turing-recognizable if some Turing machine

recognizes it}

® A TM decides a language if it recognizes it
and halts (reaches an accepting or rejecting
states) on all input strings.

DEFINITION 3.6

Call a language Turing-decidable or simply decidable if some

Turing machine decides it.’

l0ften named Recursively-Enumerable in the literature.
20ften named Recursive in the literature.




TM Examples

EXAMPLE 3.7

Here we describe a Turing machine (TM) My that decides A = {0%"|n > 0}, the
language consisting of all strings of 0s whose length is a power of 2.

My = “On input string w:
Sweep left to right across the tape, crossing off every other 0.
. Ifin stage 1 the tape contained a single 0, accept.

. If in stage 1 the tape contained more than a single 0 and the
number of 0s was odd, reject.

Return the head to the left-hand end of the tape.
Go to stage 1.”




TM Examples

Now we give the formal description of My = (Q, 2, T, 4, 1, Qaccept;s Greject)

* @ =1{q1,92,93, 94, g5, Qaccept> Ireject | »

« ¥ = {0}, and

e ' = {0,x,u}.

* We describe § with a state diagram (see Figure 3.8).

* 'The start, accept, and reject states are g1, gaccept, ANd Greject-




TM Computation
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TM Examples

EXAMPLE 3.9

The following is a formal description of M; = (Q,2,T, 8, q1, Gaccept, Greject)> the
Turing machine that we informally described (page 139) for deciding the lan-
guage B = {w#w| w € {0,1}*}.

* ) = {Qla .+« » 414, Qaccept Qreject}a
* ¥ =1{0,1,#}, and I' = {0,1,#,x,u}.

* We describe § with a state diagram (see the following figure).

* The start, accept, and reject states are g1, Gaccepr, ANd Greject-




M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”
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Turing machine that we informally described (page 139) for deciding the lan-
guage B = {w#w| w € {0,1}*}.

* ) = {Qla .+« » 414, Qaccept Qreject}a
* ¥ ={0,1#},and I' = {0,1 #,x,u}.

* We describe § with a state diagram (see the following figure).

* The start, accept, and reject states are g1, Gaccepr, ANd Greject-
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FIGURE 3.10
State diagram for Turing machine M,




TM Examples

EXAMPLE 3.11

Here, a TM M3 is doing some elementary arithmetic. It decides the language
C ={a'v/cF|ixj=kandi,j k> 1}.

M3 = “On input string w:
Scan the input from left to right to determine whether it is a
member of a*tb*c* and reject if it isn’t.
Return the head to the left-hand end of the tape.
Cross off an a and scan to the right until a b occurs. Shuttle
between the b’s and the ¢’s, crossing off one of each until all b’s
are gone. If all ¢’s have been crossed off and some b’s remain,
reject.
Restore the crossed off b’s and repeat stage 3 if there is another
a to cross off. If all a’s have been crossed off, determine whether

all c’s also have been crossed off. If yes, accept; otherwise,
reject.”




TM Examples

EXAMPLE 3.12

Here, a TM M} is solving what is called the element distinctness problem. It 1s given
a list of strings over {0,1} separated by #s and its job is to accept if all the strings
are different. The language is

FE = {#x #x.# - - - #x,| each x; € {0,1}" and z; # z; tor each 7 # j}.

Machine M4 works by comparing 2, with x5 through z;, then by comparing x5
with x3 through z;, and so on. An informal description of the TM My deciding

this language follows.




TM Examples

M4 = “On input w:
1. Place a mark on top of the leftmost tape symbol. If that symbol

was a blank, accept. If that symbol was a #, continue with the
next stage. Otherwise, reject.

Scan right to the next # and place a second mark on top of it. If
no # is encountered before a blank symbol, only x; was present,
SO accept.

By zig-zagging, compare the two strings to the right of the
marked #s. If they are equal, reject.

. Move the rightmost of the two marks to the next # symbol to
the right. If no # symbol is encountered before a blank sym-
bol, move the leftmost mark to the next # to its right and the
rightmost mark to the # after that. 'This time, if no # is available
for the rightmost mark, all the strings have been compared, so
accept.

(o to Stage 3.




More Turing MACHINES

@ Multitape Turing Machines
@ Non-Deterministic Turing Machines
@ Enumerator Turing Machines

@ Everything else..
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S

FIGURE 3.14
Representing three tapes with one
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Multitape TM

§: Q xT*F—Q xT* x {L,R,S}*¥,

where £ is the number of tapes. The expression

5(Qiaa’17 "°aa'k) — (Qjabla °°°abk‘)L7R1 7L)

THEOREM 3.13

Every multitape "Turing machine has an equivalent single-tape Turing machine.




Multitape TM

S =“Onmput w = wy -+ Wy:

1.

First S puts its tape into the format that represents all £ tapes
of M. The tformatted tape contains

® ® o
#wiweo - wy, HUHUE - #

To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way that M’s transition function dictates.

[f at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”



Multitape TM

COROLLARY 3.15

A language 1s "luring-recognizable if and only if some multitape Turing machine
recognizes it.

PROOF A’luring-recognizable language is recognized by an ordinary (single-
tape) Turing machine, which is a special case of a multitape Turing machine.
‘That proves one direction of this corollary. The other direction follows from

Theorem 3.13.




Non-deterministic TM

The transition function for a nondeterministic Turing machine has the form

0: @ xTI'—P(Q x T x {L.,R}).

THEOREM 3.16

Every nondeterministic Turing machine has an equivalent deterministic Turing
machine.




Non-deterministic TM

. 1nput tape

. simulation tape

.. address ape

FIGURE 3.17
Deterministic TM D simulating nondeterministic TM N




Non-deterministic TM

I. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.

3. Use tape 2 to simulate /V with input w on one branch of its nondetermin-
istic computation. Before each step of N consult the next symbol on tape 3
to determine which choice to make among those allowed by N’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic,

«hoice is invalid, abort this branch by going to stage 4, Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the lexicographically next string. Simu-
late the next branch of N’s computation by going to stage 2.
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Enumerator TM

control prmter

. work tape

FIGURE 3.20
Schematic of an enumerator




Enumerator TM

THEOREM 3.21

A language is Turing-recognizable if and only if some enumerator enumerates it.




Enumerator TM

PROOF First we show that if we have an enumerator F that enumerates a
language A, a TM M recognizes A. The TM M works in the following way.

M = *On input w:
1. Run E. Every time that ' outputs a string, compare it with w.
2. If w ever appears in the output of F, accept.”

Clearly, M accepts those strings that appear on E’s list.



Enumerator TM

Now we do the other direction. If TM M recognizes a language A, we can

construct the following enumerator F for A. Say that sy, s2, 53, ... isa list of all
possible strings in 2*.

E = “Ignore the input.
1. Repeat the following fori =1,2,3,...
2.  Run M for i steps on each input, s1, s2, ..., ;.
3. Ifany computations accept, print out the corresponding s;.”

If M accepts a particular string s, eventually it will appear on the list generated
by F. In fact, it will appear on the list infinitely many times because M runs
from the beginning on each string for each repetition of step 1. This procedure
gives the effect of running M in parallel on all possible input strings.
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Now we do the other direction. If TM M recognizes a language A, we can

construct the following enumerator F for A. Say that sy, s2, 53, ... isa list of all
possible strings in 2*.

E = “Ignore the input.
1. Repeat the following fori =1,2,3,...
2.  Run M for i steps on each input, s1, s2, ..., ;.
3. Ifany computations accept, print out the corresponding s;.”

If M accepts a particular string s, eventually it will appear on the list generated
by F. In fact, it will appear on the list infinitely many times because M runs
from the beginning on each string for each repetition of step 1. This procedure
gives the effect of running M in parallel on all possible input strings.
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Everything Else

® Lambda-calculus
Alonzo Church

@ Recursive Functions |y

@ Programming languages:

s FORTRAN, PASCAL, C, JAVA,.. e Kieene

@ LISP, SCHEME,...

J. Barkley Rosser



Church-Turing Thesis

Alonzo Church Alan Turing



Church-Turing Thesis

FIGURE 3.22
'The Church~luring Thesis
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Paris, 1900

S

' David Hilbert

@ Speaking on 8 August 1900, at fthe Paris 2nd
International Congress of Mathematicians, at La
Sorbonne, German mathematician David Hilbert
presented ten problems in mathematics.


http://en.wikipedia.org/wiki/August_8
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Paris, 1900

' David Hilbert

@ Speaking on 8 August 1900, at fthe Paris 2nd
International Congress of Mathematicians, at La
Sorbonne, German mathematician David Hilbert
presented ten problems in mathematics.

@ The problems were all unsolved at the time, and
several of them turned out to be very influential
for 20th century mathematics.
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Hilberts 10th problem

@ Let P be a polynomial in several variables:
P(x,Y,2)=24x2y3+17x+5y+25

@ Is there a set of integers for x,y,z such that
P(x,y,z)=0 ?

@ This problem is undecidable...
but is Turing-Recognizable...

@ Needed a formal model of s
computing to prove impossibility. O M evicr



Single variable Poly

Dy = {p| p is a polynomial over x with an integral root}.

Here is a TM M, that recognizes Ds:

M, = “The input is a polynomial p over the variable x.

1. Evaluate p with x set successively to the values 0, 1, —1, 2, —2,
3, =3, ... Ifatany point the polynomial evaluates to 0, accept.”




Single variable Poly

Dy = {p| p is a polynomial over x with an integral root}.
Here is a TM M, that recognizes Ds:

M, = “The input is a polynomial p over the variable x.

1. Evaluate p with x set successively to the values 0, 1, —1, 2, —2,
3, =3, ... Ifatany point the polynomial evaluates to 0, accept.”

321 Letciz" + o™ P4 4 epz+cpi1 bea polynomial with a root at z = xo. Let
cmax De the largest absolute value of a ¢;. Show that

Cmax

|.’L'0| < (n_l'l) |Cl, .
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