COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 12 :
PDA-CFG equivalence

MORE Midterm INFO «

Posted Oct 9, 2019 3:57 PM

The midterm exam will take place on the evening of Oct 17th from 18:00 to 19:30.

Location: Montreal Neurological Institute Jeanne Timmins Amphitheatre

3801 University St.
Practice (2017) midterm exam HERE.

As indicated on the 2017 exam above, my exams are always OPEN BOOK.

All documentation is always permitted.

MORE Midterm INFO «

Posted Oct 9, 2019 3:57 PM

The midterm exam will take place on the evening of Oct 17th from 18:00 to 19:30.

Location: Montreal Neurological Institute Jeanne Timmins Amphitheatre
3801 University St.

Practice (2017) midterm exam HERE.

As indicated on the 2017 exam above, my exams are always OPEN BOOK.

All documentation is always permitted.

send me e-mail for conflicts
NOwWIll

MORE Midterm INFO «

Posted Oct 9, 2019 3:57 PM

The midterm exam will take place on the evening of Oct 17th from 18:00 to 19:30.

Location: Montreal Neurological Institute Jeanne Timmins Amphitheatre
3801 University St.

Practice (2017) midterm exam HERE.

As indicated on the 2017 exam above, my exams are always OPEN BOOK.

All documentation is always permitted.

send me e-mail for conflicts
NOw il

Announcements wv

HW2 details «

Posted Oct 9, 2019 9:44 PM

QUESTION 1.998
The alphabet for parts a.--f. is 2={0,1,2,3,4,5,6,7,8,9}.

d) Exceptionally you may provide an NFA instead of a regular expression if the language is
actually regular. ;-)

e) You may use the following lemma (without proving it) to prove this one:

For every € > 0, there exists integers a and b such that 1 < 2a/5b < 14¢.

HINT: Use the Myhill-Nerode Theorem instead of the pumping lemma...

PDA vs CFG

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

PDA vs CFG

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

PDA vs CFG

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

CFG to PDA

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

CFG to PDA

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.217

The following is an informal description of P.

1. Place the marker symbol $ and the start variable on the stack.
2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol «a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

EXAMPLE of CFG

EXAMPLE 2.4

Consider grammar G4 = (V, X, R, (EXPR)).
V is {(EXPR), (TERM), (FACTOR)} and X is {a, +, x, (,) }. The rules are

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)x(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) | a

(EXPR) — [SX0%) +{ /ERM) | (TERM) |
(TERM) — (TERM)X(FACTOR) (FACTOR) |
(FACTOR) — ({EXPR)) | - |

. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

(EXPR) — (£XPR){TERM) (TERM) |
(TERM) — (TERM)x(FACTOR) (FACTOR) |
(FACTOR) — ((EXPR)) : |

. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:

(EXPR) — (£XPR){TERM) (TERM) |
(TERM) — (TERM)x(FACTOR) (FACTOR) |
(FACTOR) — ((EXPR)) :

. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:
@ (a+a)xa Stack: $

(EXPR) — (£XPR){TERM) (TERM) |
(TERM) — (TERM)x(FACTOR) (FACTOR) |
(FACTOR) — ((EXPR)) :

. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:
@ (a+a)xa Stack: $
@ (a+a)xa Stack: $

Py —
(TERM) — (TERM)x(FACTOR) | (FACTOR) |
(FACTOR) — ({(EXPR)) | «

2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:

@ (a+a)xa Stack: $

@ (a+a)xa Stack: $
@ (a+a)xa Stack: $

Py —
(TERM) — (TERM)x(FACTOR) | (FACTOR) |
(FACTOR) — ({(EXPR)) | «

2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:

@ (a+a)xa Stack: $

@ (a+a)xa Stack: $

@ (a+a)xa Stack: $

o (a+a)xa Stack: x(FACTOR)$

(EXPR) — [XOR) 1 [TERM) | (TERM) |
(TERM) — (TERM)X(FACTOR) (FACTOR) |
(FACTOR) — ((EXPR)) |

2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: c. If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:

@ (a+a)xa Stack: $

@ (a+a)xa Stack: $

@ (a+a)xa Stack: $

o (a+a)xa Stack: x(FACTOR)$

@ (a+a)xa Stack: x(FACTOR)$

(EXPR) — [XOR) 1 [TERM) | (TERM) |
(TERM) — (TERM)X(FACTOR) (FACTOR) |
(FACTOR) — ((EXPR)) |

2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand

side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: c. If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:

@ (a+a)xa Stack: $

@ (a+a)xa Stack: $

@ (a+a)xa Stack: $

o (a+a)xa Stack: x(FACTOR)$

@ (a+a)xa Stack: x(FACTOR)$
@ (a+a)xa Stack: ((EXPR))x(FACTOR)$

__(rhetor — (EXPR))

1. Place the marker symbol $ and the start variable on the stack.

@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa

@ (a+a)xa

(EXPR) — (=0 [TaRM) f
(TERM) — (TERM)x(FACTOR) | (FACTOR) |

|

| a

~ 4 2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

Stack:

Stack:
Stack:
Stack:
Stack:
Stack:

Stack

Stack:

$

$
x(FACTOR)$

x(FACTOR)$
. ((EXPR))x(FACTOR)$
)X(FACTOR)$

. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(TERM) — |00 2001 1 | (FACTOR) |

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$

. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(TERM) — [2000} (7267 0)5)) | (FACTOR) |
(FACTOR) — << XPR) !

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
o (a+a)xa Stack: +(TERM))x(FACTOR)$

§ 2. Repeat the following steps forever.

" (EXPR) - (EXPR)}H(TERM) (TERM)

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(TERM) — (157111074, 101, | (FACTOR) |
(FACTOR) — ({ XPRY: !

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: c. If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
o (a+a)xa Stack: +(TERM))x(FACTOR)$
@ (a+a)xa Stack: (TERM))x(FACTOR)$

(EXPR) — (EXPR)+(TERM) (TERM) |
(TERM) — [TERMIEACTOR) | (FACTOR) |
(FACTOR) — ([EXPR))

2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand

side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: c. If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$

o (a+a)xa Stack: +(TERM))x(FACTOR)$

@ (a+a)xa Stack: (TERM))x(FACTOR)$

@ (a+a)xa Stack: +(TERM))x(FACTOR)$

: (EXPR) — (EXPR)+(TERM) (TERM) |
‘ (TERM) = {TERMSFACTOR) | (FACTOR) |
(FACTOR) — ({EXPR))

— 4 2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

1. Place the marker symbol $ and the start variable on the stack.

@ (a+a)xa Stack:)X(FACTOR)$

o (a+a)xa Stack: +(TERM))x(FACTOR)$

@ (a+a)xa Stack: (TERM))x(FACTOR)$

@ (a+a)xa Stack: +(TERM))x(FACTOR)$
o (a+a)xa Stack: a+(TERM))x(FACTOR)$

: (EXPR) — (EXPR)+(TERM) (TERM) |
‘ (TERM) = {TERMSFACTOR) | (FACTOR) |
(FACTOR) — ({EXPR))

— 4 2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

1. Place the marker symbol $ and the start variable on the stack.

@ (a+a)xa Stack:)X(FACTOR)$

o (a+a)xa Stack: +(TERM))x(FACTOR)$

@ (a+a)xa Stack: (TERM))x(FACTOR)$

@ (a+a)xa Stack: +(TERM))x(FACTOR)$
@ (a+a)xa Stack: a+(TERM))x(FACTOR)$

@ (a+a)xa Stack: +(TERM))x(FACTOR)$

| (EXPR) — (EXPR)+(TERM) (TERM) |
‘ (TERM) — {IERMI(FACTOR) | (FACTOR)
(FACTOR) — (/=00%) | a

— 4 2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

1. Place the marker symbol $ and the start variable on the stack.

@ (a+a)xa Stack:)X(FACTOR)$

o (a+a)xa Stack: +(TERM))x(FACTOR)$

@ (a+a)xa Stack: (TERM))x(FACTOR)$

@ (a+a)xa Stack: +(TERM))x(FACTOR)$
@ (a+a)xa Stack: a+(TERM))x(FACTOR)$

@ (a+a)xa Stack: +(TERM))x(FACTOR)$

@ (a+a)xa Stack:)X(FACTOR)$

1. Place the marker symbol $ and the start variable on the stack.

@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa
@ (a+a)xa

@ (a+a)xa

[(£XPR) — (EXPR)+(TERM) j\
‘ (TERM) — {IERMI(FACTOR) | (FACTOR)
(FACTOR) —

|

Stack:
Stack:
Stack:
Stack:
Stack:

Stack

Stack:
Stack:

— 4 2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

)X(FACTOR)$
+(TERM))x(FACTOR)$
(TERM))X(FACTOR)$
+(TERM))x(FACTOR)$
a+(TERM))x(FACTOR)$
. +(TERM))x(FACTOR)$
)X(FACTOR)$
)x(FACTOR)$

(EXPRY - (EXPR) & (TERM) | (TERM) |
(TERM) — (TERM)x(FACTIOR) | (FACTOR)
(FACTOR) — ([2XPR)) | a |

. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$

. Repeat the following steps forever.

(EXPR) — (EXPRY+(TERM) | (TERM)

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(TERWI) - (TERM)x(FACTORY | (FACTOR)
(FACTOR) — << XPR) !

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
@ (a+a)xa Stack: a)x(FACTOR)$

. Repeat the following steps forever.

(EXPR) — (EXPRY+(TERM) | (TERM)

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(TERM) — <TEPM>A<FAW@LQ> | (FACTOR)
(FACTOR) — ({ XPRY: !

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
@ (a+a)xa Stack: a)x(FACTOR)$
@ (a+a)xa Stack:)x(FACTOR)$

. Repeat the following steps forever.

(EXPR) — (EXPRY+(TERM) | (TERM)

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

L RGO | R0 O |
<FACTOR> —> << XPR) ;

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
@ (a+a)xa Stack: a)x(FACTOR)$

@ (a+a)xa Stack:)x(FACTOR)$

@ (a+a)xa Stack: x(FACTOR)$

. Repeat the following steps forever.

(EXPR) — (EXPRY+(TERM) | (TERM)

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

L RGO | R0 O |
<FACTOR> —> << XPR) ;

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
@ (a+a)xa Stack: a)x(FACTOR)$

@ (a+a)xa Stack:)x(FACTOR)$

@ (a+a)xa Stack: x(FACTOR)$

@ (a+a)xa Stack: $

. Repeat the following steps forever.

(EXPR) — (EXPRY+(TERM) | (TERM)

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(TERM) (TERM)x(FACTIOR) | (FACTOR) ,
(FACTOR) — ({ XPRY: !

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: . If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
@ (a+a)xa Stack: a)x(FACTOR)$

@ (a+a)xa Stack:)x(FACTOR)$

@ (a+a)xa Stack: x(FACTOR)$

@ (a+a)xa Stack: $

@ (a+a)xa Stack: a$

. Repeat the following steps forever.

(EXPR) — (EXPRY+(TERM) | (TERM)

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(TERWI) - (TERM)x(FACTORY | (FACTOR)
(FACTOR) — ({ XPRY: !

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

: c. If the top of stack is the symbol $, enter the accept state. Doing so
1. Place the marker symbol $ and the start variable on the stack. accepts the input if it has all been read.

@ (a+a)xa Stack:)X(FACTOR)$
@ (a+a)xa Stack: a)x(FACTOR)$

@ (a+a)xa Stack:)x(FACTOR)$

@ (a+a)xa Stack: x(FACTOR)$

@ (a+a)xa Stack: $

@ (a+a)xa Stack: a$

@ (a+a)xa Stack: $

CFG to PDA

@ Proof: Given a CFG G=(V.2,R,S), we now
construct a PDA P=(Q,2,TI',5,q0,F) for it.

@ We define a special notation fto write an
entire string on the stack in one step.

@ We can simulate this action by adding extra
states to write the sifring one symbol at a
time.

CFG to PDA

@ Let q and r be states of the PDA and let
ac2e Se I¢.

@ Starting in state g, say we want to read a
from the input and pop s from the stack.
Moreover we want fo push string u=u;..ug

back onto the stack at the same time and
end in state r.

CFG to PDA

@ We implement Tthis action (a,5—ui..up) by

infroducing new states q,...,qi-1 and setting
the transition function as follows:

6(C|1015) = (CII,UE),
6(qllglg) = {(quUE-l)}z
6(quf:£) = {(CIBIUE—Z)},

6(q£_1,£,£) = {(r/ul)}°

FIGURE 2.23
Implementing the shorthand (r, xyz) € d(q, a, s)

CFG to PDA

e, A—-w forrule A—>w

a,a—¢€ for terminal a

FIGURE 2.24
State diagram of P

CFG to PDA

e, A—-w forrule A—>w

a,a—¢€ for terminal a

FIGURE 2.24
State diagram of P

CFG to PDA

(a)
for rule A—w

a,a—¢€ for terminal a

FIGURE 2.24
State diagram of P

CFG to PDA

e,l(élwa for rule A—w

for terminal a

FIGURE 2.24
State diagram of P

CFG to PDA

e, A—-w forrule A—>w

a,a—¢€ for terminal a

FIGURE 2.24
State diagram of P

e, A—-w forrule A—»w CF (f PDA
a,a—e€ for terminal a O

FIGURE 2.24
State diagram of P

The states of P are Q = {gstart, Qloops Gaccept } U E, where E is the set of states

we need for implementing the shorthand just described. The start state is gsare.
The only accept state is gaccept-

e, A—-w forrule A—»w CF (f PDA
a,a—e€ for terminal a O

FIGURE 2.24
State diagram of P

The states of P are Q = {gstart, Qloops Gaccept } U E, where E is the set of states
we need for implementing the shorthand just described. The start state is gsare.
The only accept state is gaccept-

The transition function is defined as follows. We begin by initializing the
stack to contain the symbols $ and .S, implementing step 1 in the informal de-
scription: d(Gseart; €,€) = {(Qloop, 58)}. Then we put in transitions for the main
loop of step 2.

el CFG to PDA

FIGURE 2.24
State diagram of P

el CFG to PDA

FIGURE 2.24
State diagram of P

First, we handle case (a) wherein the top of the stack contains a variable. Let

5 Gloons €y A) = {(Goop, w)| Wwhere A — w is a rule in R}.

el CFG to PDA

FIGURE 2.24
State diagram of P

First, we handle case (a) wherein the top of the stack contains a variable. Let
5 Gloons €y A) = {(Goop, w)| Wwhere A — w is a rule in R}.

Second, we handle case (b) wherein the top of the stack contains a terminal.
Let 5(Q]00p7 a, a') — {(QIoop, 6)}

el CFG to PDA

FIGURE 2.24
State diagram of P

First, we handle case (a) wherein the top of the stack contains a variable. Let
5 Gloons €y A) = {(Goop, w)| Wwhere A — w is a rule in R}.

Second, we handle case (b) wherein the top of the stack contains a terminal.

Let 5(q100p,a,a) - {(QIOO})’S)}'

Finally, we handle case (c) wherein the empty stack marker $ is on the top of
the stack. Let §(qgioop; €, $) = {(Gaccept, €) }-

CFG to PDA

EXAMPLE 2.25

We use the procedure developed in Lemma 2.21 to construct a PDA P; from the
following CFG G.

S — alb|b
T — Tale

S —alb|b
T — Tale

The transition function is shown in the following diagram.

FIGURE 2.26
State diagram of P

FIGURE 2.26
State diagram of P

[5 = arn) b

T — Tale

The transition function is shown in the following diagram.

£,€—a (a)

FIGURE 2.26
State diagram of P

S — alb|b
= 7a)

The transition function is shown in the following diagram.

g,5—b >O€,€—>T)Q £,E—a
e, l—a @ g,e—T l ‘(Cl)

FIGURE 2.26
State diagram of P

S —|alb|l b
T —|Talle

The transition function is shown in the following diagram.

FIGURE 2.26
State diagram of P

S —alb|b
T — Tale

The transition function is shown in the following diagram.

FIGURE 2.26
State diagram of P

S —alb|b
T — Tale

The transition function is shown in the following diagram.

FIGURE 2.26
State diagram of P

PDA to CFG

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

PDA to CFG

First, we simplify our task by modifying P slightly to give it the following
three features.

1. It has a single accept state, gaccept.
2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but it does not do both at the same time.

PDA to CFG

First, we simplify our task by modifying P slightly to give it the following
three features.

1. It has a single accept state, gaccept.
2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but it does not do both at the same time.

e (iving P features 1 and 2 1s easy.

e To give it feature 3, we replace
cach transition that stmultaneously pops and pushes with a two-transition
sequence that goes through a new state,
each transition that neither pops nor pushes with a two-transition sequence that
pushes then pops an arbitrary stack symbol.

PDA to CFG

PROOF Saythat P = (Q,X, T, 4, go, {qaccept }) and construct G. The variables
of G are {Apq| p,q € Q}. The start variable is Ay, g...... Now we describe G’s

rules.

e For each p,q,r,s € Q, t € ', and a,b € ¥, if §(p, a,) contains (r,t) and
(s, b,t) contains (g, €), put the rule A,, — aA,:bin G.

« For each p,q,r € Q, put the rule A,, — A, A,, in G.

e Finally, for each p € @, put the rule A,, — € in G.

You may gain some insight for this construction from the following figures.

« For each p,q,r € Q, put the rule A,, — A, A,, in G.

T

Stack
height

— generated
by Apq

Input string

, D q

S —

generated generated
by A,y by Ayq

FIGURE 2.28
PDA computation corresponding to the rule A,, — A, A,

e For each p,q,r,s € Q, t € ', and a,b € ¥, if §(p, a,) contains (r,t) and
d(s,b,t) contains (q, €), put the rule A,, — aA,bin G.

!

Stack

height generated

by Apq

Input string
—

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

PDA to CFG

cLAIM 2.30

If Ay, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

We prove this claim by induction on the number of steps in the derivation of
x from A,,.

Basis: 'The derivation has [step.

A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side

are A,, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Basis: The derivation has 1 step.
A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side

are A,, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where & > 1,
and prove true for derivations of length k + 1.

Basis: The derivation has 1 step.

A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side
are A,, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where & > 1,
and prove true for derivations of length k + 1.

Suppose that A,, = x with k -+ 1 steps. The first step in this derivation is either
Ay = aA,sbor Ay, = A, A, We handle these two cases separately.

If A, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

In the first case, consider the portion y of z that A, ¢ generates, so z = ayb.
Because A, = y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because A,, — aA,sb is a rule of
(7, 6(p, a, €) contains (r,t) and (s, b, t) contains (g, €), for some stack symbol ¢.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push ¢ onto the stack. Then reading string y can bring it to s and leave ¢
on the stack. Then after reading b it can go to state ¢ and pop ¢ off the stack.
Therefore x can bring it from p with empty stack to g with empty stack.

T

Stack I I
height aH- 7 S b

generated
by Apq

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

If A, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

In the first case, consider the portion y of z that A, ¢ generates, so z = ayb.
Because A, = y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because A,, — aA,sb is a rule of
(7, 6(p, a, €) contains (r,t) and (s, b, t) contains (g, €), for some stack symbol ¢.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push ¢ onto the stack. Then reading string y can bring it to s and leave ¢
on the stack. Then after reading b it can go to state ¢ and pop ¢ off the stack.
Therefore x can bring it from p with empty stack to g with empty stack.

T

Stack I I
height aH- 7 S b

generated
by Apq

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

In the second case, consider the portions y and z of z that A, and A, re-
spectively generate, so z = yz. Because A,, = y in at most k steps and A,, = 2
in at most k steps, the induction hypothesis tells us that y can bring P from p
to r, and z can bring P from r to ¢, with empty stacks at the beginning and

end. Hence can bring it from p with empty stack to ¢ with empty stack. This
completes the induction step.

T

Spack
height _— generated
by qu

Input string

generated generated
by Apr by Arq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

In the second case, consider the portions y and z of z that A, and A, re-
spectively generate, so z = yz. Because A,, = y in at most k steps and A,, = 2
in at most k steps, the induction hypothesis tells us that y can bring P from p
to r, and z can bring P from r to ¢, with empty stacks at the beginning and

end. Hence can bring it from p with empty stack to ¢ with empty stack. This
completes the induction step.

T

Spack
height _— generated
by qu

Input string

generated generated
by Apr by Arq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

PDA to CFG

cLAlM 2.31

If x can bring P from a state p (with an empty stack) to a state g (with an empty
stack), then A,, generates x.

We prove this claim by induction on the number of steps in the computation
of P that goes from p to g with empty stacks on input z.

Basis: 'The computation has 0 steps.
If a computation has 0 steps, it starts and ends at the same state—say, p. So we

must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — €, so the basis is proved.

Basis: 'The computation has 0 steps.
If a computation has 0 steps, it starts and ends at the same state—say, p. So we

must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — €, so the basis is proved.

Induction step: Assume true for computations of length at most k, where & > 0,
and prove true for computations of length k& + 1.

Basis: 'The computation has 0 steps.
If a computation has 0 steps, it starts and ends at the same state—say, p. So we

must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — €, so the basis is proved.

Induction step: Assume true for computations of length at most k, where & > 0,
and prove true for computations of length k& + 1.

Suppose that P has a computation wherein z brings p to ¢ with empty stacks

in k + 1 steps. Either the stack is empty only at the beginning and end of this
computation, or it becomes empty elsewhere, too.

If x can bring P from a state p (with an empty stack) to a state g (with an

empty stack), then 4,, generates x.

T

Stack

height generated

by Apq
Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

T

Stack
height generated
by Apq

Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

the stack is empty only at the begmmng and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

T

Stack
height generated
by Apq

Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

If x can bring P from a state p (with an empty stack) to a state g (with an
empty stack), then 4,, generates x.

the stack is empty only at the beginning and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

. » Foreach p,q,r,s € Q, t € I',and a,b € ¥, if §(p, a, €) contains (r,%) and |
- (s, b,t) contains (g, €), put the rule A,, — aA,sbin G. '

_

T

Stack I I
height arF \—r A b

generated
by Apq

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

the stack is empty only at the begmmng and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

T

Stack
height generated
by Apq

Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

If x can bring P from a state p (with an empty stack) to a state g (with an
empty stack), then 4,, generates x.

the stack is empty only at the beginning and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then d(p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

Let y be the portion of x without a and b, so x = ayb. Input y can bring
P from r to s without touching the symbol ¢ that is on the stack and so P can
go from r with an empty stack to s with an empty stack on input y. We have
removed the first and last steps of the £ + 1 steps in the original computation on
z so the computation on y has (k + 1) — 2 = k — 1 steps. Thus the induction
hypothesis tells us that A,s = y. Hence 4,, = z.

StIck | /\X PN

height al

10 generated
by Apg

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

In the second case, let r be a state where the stack becomes empty other than
at the beginning or end of the computation on z. Then the portions of the
computation from p to r and from r to ¢ each contain at most k steps. Say that

y is the input read during the first portion and z is the mput read durmg the
second portion. The induction hypothesxs tells us that A, = y and A, = 2.
Because rule A,, — A, A, isin G, A,, = z, and the proof is complete.

T

Stack

height _— generated
by Apq

Input string

generated generated
by Apr by Ayq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

it becomes empty elsewhere, too.

In the second case, let r be a state where the stack becomes empty other than
at the beginning or end of the computation on z. Then the portions of the
computation from p to r and from r to ¢ each contain at most k steps. Say that

y is the input read during the first portion and z is the mput read durmg the
second portion. The induction hypothesxs tells us that A, = y and A, = 2.
Because rule A,, — A, A, isin G, A,, = z, and the proof is complete.

T

Stack

height _— generated
by Apq

Input string

generated generated
by Apr by Ayq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

PDA vs CFG

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

PDA vs CFG

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

PDA vs CFG

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 12 :
PDA-CFG equivalence

