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Grammars



Let’s call the following grammar G1 :  
 
                    A → 0A1  
                    A → B  
                    B → #


Derivation of a string “000#111” : 
 
A⇒0A1⇒00A11⇒000A111⇒000B111⇒000#111.

Context-Free Grammars



Variables


Alphabet (of terminals)


Substitution Rules


Start Variable

Definition of CFG

0, 1, #

A, B, C, ⟨TERM⟩, ⟨EXPR⟩

A → 0A1
⟨EXPR⟩ → ⟨TERM⟩

A
(left-hand side of the first substitution rule)



Definition of CFG



Parse Tree



Definition of CFL

If u, v and w are strings of variables and 
terminals, and A → w is a rule of the 
grammar, we say that uAv yields uwv, written 
uAv⇒uwv.


We say that u derives v ( u⇒*v ) if u=v or if  
            u⇒u1⇒u2⇒...⇒uk⇒v, k≥0.


The language of G is { w∈∑* | S⇒*w }.



Context-Free Grammars

Formally, grammar G1 :  
 
              V = {A,B}  
              ∑ = {0,1,#}  
              R = {A → 0A1 | B,  
                    B → #}  
              S = A


L(G1) = { 0n#1n | n≥0 }.



Example of CFG
G2=(  
      { ⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩, 
              ⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩ },  
      {a,b,c,…,z," "},  
       R2, 
      ⟨SENTENCE⟩ 
     )
R2:



Example of CFG

Rules of

grammar G2 :



Example of CFG
     ⟨ARTICLE⟩ → a | the


means


   ⟨ARTICLE⟩ → a

   ⟨ARTICLE⟩ → the

Rules of

grammar G2 :



















*



Regular Operations : 
Kleene’s theorem (CFG)



Regular Operations : 
Kleene’s theorem (CFL)

CFLs       



Kleene’s 
theorem (CFL)















Let GA=(VA,∑,RA,SA) be a CFG generating LA and 
GB=(VB,∑,RB,SB) be a CFG generating LB (VA∩VB=∅).

Consider 

- GU=( {SU}∪VA∪VB,
-       ∑,
-       {SU → SA | SB}∪RA∪RB,
-       SU ).

LU = LA ∪ LB.

Kleene’s 
theorem (CFL)



              V = {A,B}  
              ∑ = {0,1,#}  
              R1 = {A → 0A1 | B,  
                    B → #}  
              S = A

R2:G1:















Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1 and 
G2=({ ⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩,
⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩ }, 
{a,b,c,…,z," "}, R2 ,⟨SENTENCE⟩) be a CFG generating L2.

Let GU=(
- {SU,A,B,⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩,

⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩},
- {0,1,#,a,b,c,…,z," "},
- {SU → A | ⟨SENTENCE⟩}∪R1∪R2,
- SU ).

LU = L1 ∪ L2.

              V = {A,B}  
              ∑ = {0,1,#}  
              R1 = {A → 0A1 | B,  
                    B → #}  
              S = A

R2:G1:



Regular Operations : 
Kleene’s theorem (CFL)

CFLs       



Kleene’s 
theorem (CFL)















Let GA=(VA,∑,RA,SA) be a CFG generating LA and 
GB=(VB,∑,RB,SB) be a CFG generating LB (VA∩VB=∅).

Consider GC=(
-                             {SC}∪VA∪VB ,

-                    ∑,

-                    {SC → SASB}∪RA∪RB,

-                    SC ).
LC = LA∘LB.

Kleene’s 
theorem (CFL)



              V = {A,B}  
              ∑ = {0,1,#}  
              R1 = {A → 0A1 | B,  
                    B → #}  
              S = A

R2:G1:







Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1 and 
G2=({ ⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩,
⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩ }, 
{a,b,c,…,z," "}, R2 ,⟨SENTENCE⟩) be a CFG generating L2.

Let GC=( {SC,A,B,⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,
⟨PREP-PHRASE⟩,⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,
⟨VERB⟩,⟨PREP⟩}, {0,1,#,a,b,c,…,z," "},  
{ SC → A⟨SENTENCE⟩ }∪R1∪R2,SC ).

LC = L1 ∘ L2.

              V = {A,B}  
              ∑ = {0,1,#}  
              R1 = {A → 0A1 | B,  
                    B → #}  
              S = A

R2:G1:



Regular Operations : 
Kleene’s theorem (CFL)

CFLs       



Kleene’s 
theorem (CFL)



Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Kleene’s 
theorem (CFL)



Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(

Kleene’s 
theorem (CFL)



Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

Kleene’s 
theorem (CFL)



Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

- ∑,

Kleene’s 
theorem (CFL)



Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

- ∑,

- {SS → 𝞮 | SASS}∪RA,

Kleene’s 
theorem (CFL)



Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

- ∑,

- {SS → 𝞮 | SASS}∪RA,

- SS ).

Kleene’s 
theorem (CFL)



Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
-                            {SS}∪VA ,

-                   ∑,

-                   {SS → 𝞮 | SASS}∪RA,

-                   SS ).
LS = (LA)*.

Kleene’s 
theorem (CFL)



              V = {A,B}  
              ∑ = {0,1,#}  
              R1 = {A → 0A1 | B,  
                    B → #}  
              S = A

G1:



Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1.

              V = {A,B}  
              ∑ = {0,1,#}  
              R1 = {A → 0A1 | B,  
                    B → #}  
              S = A

G1:



Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1.



Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1.

Let  
GS=( {SS,A,B},  
      {0,1,#},  
      { SS → 𝞮 | ASS, A → 0A1 | B, B → #},  
      SS ).

LS = (L1)*.

              V = {A,B}  
              ∑ = {0,1,#}  
              R1 = {A → 0A1 | B,  
                    B → #}  
              S = A

G1:



Construction tools 
(and Reductions)

CFLs are closed under union, concatenation and 
star. If there exists a CFL C s. t. either A*=A’, 
A∪C=A’, A∘C=A’ 
    (but neither complement nor intersection) 
or any combinations of these operations then A’ is 
a CFL as long as A is.  
 
( If A’ is NON-CFL then so is A. )



Construction tools

Constructing a CFG for a regular language L: 
M = (Q={q0,q1,...,qk},∑,δ,q0,F) is converted to  
G = (V={R0,R1,...,Rk},∑,R,S=R0) where 


R contains rule Ri → aRj for each δ(qi,a) = qj 
in M, and rule Ri → 𝞮  for each accept-state 
qi∈F.


R0 is the start variable.



0 MOD 3 (base 2)
M3,2

1

q0

0

1
0

1
q1

q2

0

M3,2 stops in state qr ⟺ w = r mod 3



M3,2

1

q0

0

1
0

1
q1

q2

0

M3,2 = (Q={q0,q1,q2},{0,1},δ,q0,F) is converted to  
G3,2 = (V={R0,R1,R2},{0,1},R,S=R0) where 


R: R0 → 0R0 | 1R1 | 𝞮  
   R1 → 0R2 | 1R0 

     R2 → 0R1 | 1R2



extra EXAMPLE of CFG



extra EXAMPLE of CFG



Ambiguity in CFGs



Leftmost Derivation
A derivation is Leftmost if every time a variable 
is substituted, it is always the leftmost variable.

E

X

A

M

P

L

E



Ambiguity

A string w is derived ambiguously by a CFG 
G if it has two or more distinct leftmost 
derivations. Grammar G is ambigious if it 
generates some string ambiguously.



Ambiguous version of 
example 2.4

G5



Ambiguous CFG



Ambiguity

Ambiguity is not desirable in CFG because it 
may lead to unexpected interpretations of a 
string, for instance in the context of arithmetic 
expressions or programming languages.


However, some languages are inherently 
ambiguous, meaning that all grammars 
generating this language must be ambiguous.


example : {aibjck | i=j or j=k}



Chomsky Normal Form
Noam Chomsky



Chomsky Normal Form



Chomsky Normal Form



Chomsky Normal Form



157





Proof:



Proof:

First, we add a new start variable S0 and the 
rule S0 → S, where S was the original start 
variable.



Chomsky Normal Form









Second, we take care of all 𝞮-rules. We 
remove an 𝞮-rule "A → 𝞮", where A is not 
the start variable.

Then for each occurrence of A on the right-
hand side of a rule we add a new rule with 
that occurrence deleted.

Accordingly, each rule "R → A" is replaced by 
"R → 𝞮" unless it has been already removed.



Chomsky Normal Form







Third, we handle all unit rules by removing 
each unit rule A → B.

In consequence whenever B → u appears, we 
add the rule A → u unless this is a unit rule 
previously removed.



Chomsky

Normal Form







Finally, we convert all remaining rules as 
follows: A → u1u2...uk for k>2, where each ui 
is a variable or terminal with a series of 
rules A → u1A1, A1 → u2A2,..., Ak-2 → uk-1uk 
where each Ai is a new variable.

When k=2, and A → u1u2, we may replace 
any terminal ui by a variable Ui and the rule 
Ui → ui.



Chomsky

Normal Form



Chomsky

Normal Form
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