COMP 330 2017, Assignment 3
Due Thursday, November 16th 2017 23:59

2.4 Give context-free grammars that generate the following languages. In all parts the alphabet \(\Sigma \) is \{0,1\}.

b. \(\{w | w \) starts and ends with the same symbol\}
c. \(\{w | \) the length of \(w \) is odd\}
e. \(\{w | w = w^R, \) that is, \(w \) is a palindrome\}
f. The empty set

2.12 Convert the CFG \(G \) given in Exercise 2.3 to an equivalent PDA, using the procedure given in Theorem 2.20.

2.3 Answer each part for the following context-free grammar \(G \).

\[
\begin{align*}
R & \rightarrow XRX \mid S \\
S & \rightarrow aTb \mid bTa \\
T & \rightarrow XTX \mid X \mid \varepsilon \\
X & \rightarrow a \mid b
\end{align*}
\]

2.14 Convert the following CFG into an equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

\[
\begin{align*}
A & \rightarrow BAB \mid B \mid \varepsilon \\
B & \rightarrow 00 \mid \varepsilon
\end{align*}
\]

2.25 For any language \(A \), let \(\text{SUFFIX}(A) = \{v | uv \in A \) for some string \(u\}\}. Show that the class of context-free languages is closed under the \(\text{SUFFIX} \) operation.
2.27 Let $G = (V, \Sigma, R, \langle \text{STMT} \rangle)$ be the following grammar.

$\langle \text{STMT} \rangle \rightarrow \langle \text{ASSIGN} \rangle \mid \langle \text{IF-THEN} \rangle \mid \langle \text{IF-THEN-ELSE} \rangle$

$\langle \text{IF-THEN} \rangle \rightarrow \text{if condition then } \langle \text{STMT} \rangle$

$\langle \text{IF-THEN-ELSE} \rangle \rightarrow \text{if condition then } \langle \text{STMT} \rangle \text{ else } \langle \text{STMT} \rangle$

$\langle \text{ASSIGN} \rangle \rightarrow a:=1$

$\Sigma = \{ \text{if, condition, then, else, a:=1} \}$

$V = \{ \langle \text{STMT} \rangle, \langle \text{IF-THEN} \rangle, \langle \text{IF-THEN-ELSE} \rangle, \langle \text{ASSIGN} \rangle \}$

G is a natural-looking grammar for a fragment of a programming language, but G is ambiguous.

a. Show that G is ambiguous.

b. Give a new unambiguous grammar for the same language.

(\text{DON'T BE INTIMIDATED BY THE '*'})

2.32 Let $\Sigma = \{1, 2, 3, 4\}$ and $C = \{ w \in \Sigma^* \mid$ in w, the number of 1s equals the number of 2s, and the number of 3s equals the number of 4s $\}$. Show that C is not context free.

2.36 Give an example of a language that is not context free but that acts like a CFL in the pumping lemma. Prove that your example works. (See the analogous example for regular languages in Problem 1.54.)

3.9 Let a k-PDA be a pushdown automaton that has k stacks. Thus a 0-PDA is an NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs are more powerful (recognize a larger class of languages) than 0-PDAs.

a. Show that 2-PDAs are more powerful than 1-PDAs.

b. Show that 3-PDAs are not more powerful than 2-PDAs.

(Hint: Simulate a Turing machine tape with two stacks.)

3.12 A \textbf{Turing machine with left reset} is similar to an ordinary Turing machine, but the transition function has the form

$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{ R, \text{RESET} \}.$

If $\delta(q, a) = (r, b, \text{RESET})$, when the machine is in state q reading an a, the machine's head jumps to the left-hand end of the tape after it writes b on the tape and enters state r. Note that these machines do not have the usual ability to move the head one symbol left. Show that Turing machines with left reset recognize the class of Turing-recognizable languages.